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INHOMOGENEOUS STELLAR MODELS. IV. MODELS WITH 
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ABSTRACT 
Nine sample models are constructed in which the mean molecular weight varies from the center to 

the surface by a factor of 2.5 and in which this variation occurs continuously inside an intermediate zone. 
These models are compared with simpler models in which the same composition variation occurs discon- 
tinuously at an interface. The comparison shows that the simpler, discontinuous models may be used to 
compute the luminosity with satisfactory accuracy but that they tend to exaggerate the radii—in certain 
cases by an order of magnitude. 

I. INTRODUCTION 

In recent investigations about the internal structure of red giants, several series 
of stellar models have been constructed with inhomogeneities in the chemical composi- 
tion. In nearly all cases these inhomogeneities were represented by an abrupt change of 
the composition at one particular place in the stellar interior, so that the models derived 
consisted of a homogeneous interior and a homogeneous envelope with a discontinuous 
change in the molecular weight at the interface. On the other hand, in real stars any 
inhomogeneities would presumably occur without sharp discontinuities. Thus the ques- 
tion arises how far models with continuous variation of composition might differ from 
those in which the inhomogeneity is limited to one discontinuous jump. 

In an attempt to answer this question, nine sample models with continuously varying 
molecular weight have been constructed. Each of these models consists of three parts—a 
homogeneous envelope, with the molecular weight jue; a homogeneous core, with the 
molecular weight and an intermediate zone in which the molecular weight varies 
continuously from at the inner interface to /xe at the outer interface. For the ratio 
of iii to He, the large value of 2.5 was used here throughout, in order to make the effects 
looked for as large as possible. Finally, the variation of the composition in the inter- 
mediate zone was arbitrarily chosen so that the molecular weight changes proportional 
to Mr (see eq. [11]). The nine models thus selected are obviously only a feeble sample of 
all the possible models with continuously varying composition. It is nevertheless hoped 
that the results obtained with these sample models can be generalized with some assur- 
ance. 

II. ASSUMPTIONS AND BASIC EQUATIONS 

The following simplifying assumptions have been used for the computations: (a) The 
variation of the chemical composition affects only the hydrogen and helium content; the 
fraction Z of the heavy elements is constant throughout the star, (b) The absorption 
coefficient follows Kramers’ law with a constant guillotine factor, (c) Radiation pressure 
and degeneracy are negligible, (d) In the first four models, which have convective cores, 
the entire energy generation occurs within the convective core, (e) In the last five 
models, which have isothermal cores, the entire energy generation occurs within an 
infinitely thin shell at the boundary of the core. 

For the present purpose it does not appear too important whether the foregoing 
assumptions closely approximate real stars. It will, however, be important that these 

* This research was supported in part by funds of the Eugene Higgins Trust allocated to Princeton 
University and in part by contract with the Office of Naval Research. 
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(D-(9) 

models with continuously varying composition be compared only with such discontinu- 
ous models as were computed under the same physical assumptions. The computations 
have been carried out with the help of the following definition and equations: 

Nomenclature, equations, etc. 

Identical with equations (l)-(9) in Paper I of this series (Oke and 
Schwarzschild 1952). 

Here, however, a = 0 throughout. 

Emden variables for isothermal core 

t = Const. = tc , p = e~**pc, 

Composition variation in intermediate zone 

y (10) 

=(i) 
j - /0.30 _ 

Logarithmic variables for intermediate zone 

'b — log 

with 
¿o’ 

\-v 

??—= 1 

T = log , 
h 

qv fifi = 1 
i2 

\p = log 
X 

?0 
^ = log — , Xq 

2 x0(0 * ’ 3 2 

Basic equations in logarithmic variables 

d\\ 

q\'ZvC 
qp po 

x Z9*5 
0 0 

log ( — = + 2X — 9.5t — \ .2>vf — y 

log^ + ^~)= +X —r— (l+r)¿ + 3y 

Xq — Xi . 

[ = logF] , 

[ = log U] . 

(ii) 

(12) 

(13) 

(14) 

Fitting condition at outer interface 

U, V, and (w + 1) continuous . 

Fitting condition at inner interface 

For all models: U and V continuous, 

For models with isothermal core: no fitting condition for (w + 1), 

For models with convective core: {n + 1) continuous and equal to 2.5 . 

(15) 

(16) 

(17) 

(18) 

The last of the foregoing conditions may be derived as follows: For a layer in which 
the molecular weight varies with height, one finds, by the usual perturbation arguments, 
the condition for stability against convection to be 

/t dT\ \ _ \ dP\ ( _ \ dß\ 

\ TdrJ^ y V p drJ^K fxdrj' 
(19) 
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INHOMOGENEOUS STELLAR MODELS 447 

In the derivation of this condition, it is assumed that the molecular weight of a given 
element of matter does not vary as a consequence of pressure or temperature variations, 
an assumption valid in the deep interior. If the molecular weight decreases with height, 
as is the case in the present models, condition (19) is much less stringent for the tem- 
perature gradient then the usual stability condition, 

This is understandable because the temperature gradient, to cause instability under the 
conditions here considered, would have to be appreciably steeper than the adiabatic 
temperature gradient, to overcome the greater average weight of the particles at the 
bottom of the zone as compared with those at the top of the zone. Nevertheless, it 
appears unlikely that the fulfilment of the weak condition (19) suffices for stability. If a 
layer fulfils condition (19) but not the stronger condition (20), one may—assuming 
energy to be available—introduce a perturbation which, in a given volume element, 
completely mixes up the material and thus, in this volume element, eliminates the 
gradient of jjl. Now, because equation (20) is not fulfilled, the interior of the element will 
be unstable against turbulent motions of subelements. This turbulence would presum- 
ably eat into the neighboring region and thus eventually turn the entire zone from a 
layer in radiative equilibrium with a ju-gradient into a layer in convective equilibrium 
with a constant /¿. Hence it appears fairly certain that the usual condition (20) must be 
fulfilled for stability against convection, even in zones in which the molecular weight 
decreases with height. 

In the particular case here under consideration, the foregoing argument seems very 
certain. If condition (19) were to be employed in the intermediate zone, so that, at the 
inner boundary of this zone, just the equal sign would hold in this equation, then the 
temperature gradient would have to drop at the interface from the value given by this 
equation to the value given by condition (20) in the convective core. This finite drop of 
the temperature gradient would produce a finite drop of the radiative flux. To compen- 
sate for this drop, the convective flux in the core would have to be finite to the very 
limit of the core. Up to the core surface, therefore, the turbulence, in Öpik’s terms, 
would be active and hence would be sure to eat into the neighboring intermediate zone, 
eliminate its /¿-gradient by mixing, and thus make the zone unstable. Hence it seems 
certain that the stronger condition (20) must be fulfilled in the intermediate zone, from 
which follows the fitting condition (18). 

m. CONSTRUCTION OE MODELS 

To construct the models here considered, numerical solutions were needed for all 
three portions—the envelopes, the intermediate zones, and the cores. For the envelopes, 
the one-parameter family of solutions (characterized by the parameter C) was available, 
since it had already been used in the preceding papers of this series. Similarly, for the 
cores, the unique solution for a convective core (for models 1-4) and the unique solution 
for a nondegenerate isothermal core (for models 5-9) are available in tabular form 
(Comrie 1932; Wares and Chandrasekhar 1949). Only for the intermediate zone with 
continuously varying composition, did new numerical integrations have to be computed. 
These numerical integrations were performed in terms of the logarithmic variables ac- 
cording to definitions (12) with the basic equations (14). For each model, a definite 
value of v was arbitrarily chosen which fixed the rate of change of the molecular weight 
in the intermediate zone according to equation (11). 

The numerical integrations for the intermediate zone of each of the first four models 
were started at the edge of the convective core and at the end were fitted to the inner 
boundary of the envelope as follows. A trial value was chosen for & which represents the 
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448 R. HÄRM AND M. SCHWARZSCHILD 

termination point of the convective core. At this point the values of U\ and V\ were 
read from the tabulation of the core solution. These two values, together with (w + l)i = 
2.5, give, according to the bracketed expressions in equations (14), three conditions for 
the four starting values Xi, ri, ^i, and yi. Since, in addition, = 0 according to the last 
equation (13), all the starting values can be determined from these relations, and a 
unique solution for every trial value of £i can be obtained by numerical integration out- 
ward. Each integration was terminated when the change in i.e., in g, corresponded to 
a change in /, according to equation (11), of exactly a factor of 2.5. Thus such an inte- 
gration represented a zone in which the molecular weight decreased by a factor of 2.5. 
At the end-point, sharply defined by this condition, the values of t/2, F2, and (n + 1)2 
were read from the integration. These values had to be fitted to the envelope solutions 
according to condition (15). Since the one-parameter family of envelope solutions covers 
the U-V plane, one can determine by graphical interpolation the value of (w + 1) given 
by the envelope solutions for the point C/2, E2, representing the end-point of the inter- 
mediate zone integration. In general, the value of {n-\- 1) thus obtained from the enve- 
lopes will differ from the value reached at the end of the intermediate zone integration. 
However, by changing the trial value for £1 and reintegrating, a value of £1 could be de- 
termined for each model such that the corresponding integration gave a terminal value 
of (?z + 1) in agreement with the value from the envelope solutions for the same 27, V 
point. This completed the fitting of the entire model. 

Exactly the same method of integrating and fitting here described for the models 
with convective cores was also used for the models with isothermal cores, but with one 
change. According to equation (17), the poly tropic index at the start of the intermediate 
zone at the inner interface is free for models with isothermal cores. This extra freedom 
arises physically from the circumstance that the core for models with convective cores 
is determined in size and mass by the equilibrium conditions, whereas for models with 
isothermal cores the past evolution rather than the equilibrium conditions determines the 
size of the core. Each model with an isothermal core is then characterized by two arbi- 
trary parameters, for which we may choose v as before and £1, which gives the termina- 
tion point of the core. Now (ft + l)i is used as eigen parameter which has to be deter- 
mined by trial and error to fulfil the fitting conditions at the outer interface. 

The characteristics thus obtained are listed in Table 1 for the models with convective 
cores and in Table 2 for the models with isothermal cores. The cores and intermediate 
zones of all these models are represented in Figure 1 in terms of the U-V plane. 

It may be noted that in all the models here computed the fraction of the mass con- 
tained in the core is rather small (<71 at most 13 per cent) but that the mass fraction con- 
tained in the inhomogeneous intermediate zones varies greatly from model to model 
(#2 — qi ranging from 9 to 70 per cent). 

IV. COMPARISON WITH DISCONTINUOUS MODELS 

The hydrogen content of the present model varies continuously from a high value in 
the envelope to a low value in the core. These continuous models are to be compared 
with discontinuous models in which the hydrogen content jumps discontinuously from 
a high and constant value in the outer parts to a low and constant value in the inner 
parts. Each continuous model should be compared with a discontinuous model which 
has the same over-all hydrogen content (the heavy-element content, Z, is here taken 
constant throughout each model as well as from model to model). It is therefore neces- 
sary to compute, first, the over-all or mean hydrogen content, which is given by 

X m (21) 
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INHOMOGENEOUS STELLAR MODELS 449 

The quadrature can be performed for the present continuous models with the help of 
equations (4) and (11). The result is 

__v 4/^2 
1 -\-V 5 \fJLe 

(22) 

If we define the over-all mean molecular weight of a star as that mean molecular weight 
which corresponds to the over-all hydrogen content, we obtain, from equation (22), 

Me 1 
v Í „ Me ^ 

— = 1 — i-tt l  21 ] • 
Mm 1 +? V Mi / 

(23) 

TABLE 1 

Characteristics of Models with Convective Cores 

h m IV 

¿i  
Ui.. . 
F, .... 
(w+l)i. 

C/2. . . . 
F2. . .. 
(«-1-1)2. 
log C.. 

log X2. 
log Ç2 • 
log ¿2 • 
log p2- 

log Xi. 
log qi. 
log h. 
log pi. 

log tc. 
log pc. 

qi — Mi/M. 
q2 = M2/M. 
Qd  
Pe/Pm  

1.0 

1.422 
2.412 
1.764 
2.500 

1.230 
1.378 
3.014 

-5.55 

-0.992 
-0.815 
+0.038 
+2.289 

-1.244 
-1.213 
+0.183 
+2.688 

+0.332 
+3.060 

0.0612 
0.153 
0.107 
0.936 

0.5 

1.319 
2.493 
1.506 
2.500 

1.081 
2.493 
3.572 

-5.18 

-0.860 
-0.438 
+0.025 
+2.200 

-1.379 
-1.234 
+0.365 
+3.267 

+0.493 
+3.587 

0.0583 
0.365 
0.190 
0.886 

0.4 

1.294 
2.511 
1.448 
2.500 

0.687 
3.857 
3.947 

-4.75 

-0.729 
-0.188 
-0.045 
+ 1.791 

-1.469 
-1.183 
+0.524 
+3.752 

+0.647 
+4.060 

0.0656 
0.649 
0.297 
0.822 

0.38 

1.290 
2.514 
1.436 
2.500 

0.504 
4.561 
4.059 

-4.60 

-0.646 
-0.114 
-0.127 
+ 1.400 

-1.487 
-1.161 
+0.566 
+3.870 

+0.689 
+4.178 

0.0690 
0.769 
0.340 
0.796 

Similarly, for a discontinuous comparison model, in which the composition jump occurs 
at a mass fraction qd, the over-all hydrogen content is given by 

Xm = Xe(l-qd) +Xiqd. (24) 

If one now equates that over-all hydrogen content of a continuous model as given by 
equation (22) with that of a discontinuous model as given by equation (24), one obtains 

Qd 
_ v ( ßi 

1+Amí- 
Q2 

Me 
Mi — Me ?1). (25) 
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This relation gives the g^-value, which a discontinuous comparison model must have, in 
terms of the characteristics of the continuous model. The values of according to equa- 
tion (25) and of /¿e/W according to equation (23) for the present nine models are given 
in the last two lines of Tables 1 and 2. 

Discontinuous models with convective cores exactly equivalent to the first four of the 
present continuous models have been given by Oke and Schwarzschild (1952). Inter- 
polation into their Table 1 according to the ^-values given at the foot of the present 
Table 1 (with qa being equivalent to their g2) gives exactly the needed comparison models. 
No discontinuous comparison models were available for the present continuous models 
with isothermal cores. Therefore, discontinuous comparison models were here computed 

TABLE 2 

Characteristics of Models with Isothermal Cores 

VI VII VIII rx 

  
f/i  
Vi  
(n+l)i. 

U2  
v2  
(»+1)2. 
log C. . 

log x2. 
log q2. 
log ¿2. 
log p2. 

log Xi. 
log qi. 
log h. 
log pi 

log tc. 
log pc 

qi — Mi/M. 
q2 = M2/M. 

1.0 

9.0 
1.000 
2.518 
3.402 

0.831 
1.677 
3.379 

-5.30 

-1.101 
-0.732 
+0.145 
+2.636 

-1.574 
-1.130 
+0.441 
+3.637 

+0.441 
+5.145 

0.0741 
0.185 
0.129 
0.922 

0.5 

9.0 
1.000 
2.517 
3.510 

0.310 
4.182 
4.111 

-3.78 

-0.879 
-0.106 
+0.151 
+2.173 

-2.139 
-0.902 
+1.233 
+6.350 

+ 1.233 
+7.858 

0.125 
0.783 
0.407 
0.756 

0.49 

9.0 
1.000 
2.517 
3.512 

0.227 
4.648 
4.160 

-3.66 

-0.769 
-0.068 
+0.033 
+1.628 

-2.145 
-0.880 
+ 1.262 
+6.420 

+ 1.262 
+7.928 

0.132 
0.855 
0.440 
0.736 

0.50 

25.0 
0.794 
2.161 
3.488 

0.807 
2.683 
3.730 

-4.83 

-0.960 
-0.389 
+0.143 
+2.541 

-1.881 
-1.185 
+0.760 
+4.719 

+0.760 
+7.280 

0.0653 
0.408 
0.212 
0.873 

0.42 

25.0 
0.795 
2.161 
3.506 

0.444 
4.038 
4.051 

-4.18 

-0.817 
-0.136 
+0.075 
+2.038 

-2.069 
-1.083 
+ 1.049 
+5.677 

+ 1.049 
+8.238 

0.0826 
0.731 
0.344 
0.794 

for the rather extreme cases VII and IX of Table 2. The two comparison models were 
adjusted to models VII and IX, respectively, according to the ^-values, insuring equal- 
ity in total hydrogen content, and the çi-values, insuring equality in the mass fraction 
contained in the isothermal core. 

Among all the characteristics in terms of which the continuous and discontinuous 
models may be compared, the two most directly related to observations are the luminos- 
ity and the radius. The luminosity may be computed from equation (7), which gives 

=[ 

4a c 
(47T) 

(f )] 
(V g) 

Qm 
(26) 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



INHOMOGENEOUS STELLAR MODELS 451 

Here the first bracket contains only universal constants. The second bracket contains 
the mass and central temperature of the star and its over-all composition, which affects 
both the mean molecular weight and the constant in the opacity law. The last bracket 
contains the relevant nondimensional characteristics of the models in which the con- 
tinuous models may differ from the discontinuous ones. The radius may be computed 
by applying the second of equations (3) to the center of the star, which gives 

(27) 

Here the three brackets have the same characteristics as those in equation (26). The last 
brackets of equations (26) and (27), which give the dependence of the luminosity and 
radius on the stellar model, are listed in Table 3 for all the models here considered. 

Fig. 1.—Representation of models in terms of the homology invariants U and V. The intermediate 
zones of models I-IV start at the convective core, those of models V-IX at the isothermal core. The 
envelopes are not shown. 
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V. RESULTS 

Consider a star of a given mass, central temperature, and over-all chemical composi- 
tion. The second column of Table 3 gives for such a star substantially the logarithm of 
the luminosity in its dependence on the model, i.e., on the distribution of the hydrogen 
content throughout the star. The table shows that the present continuous models differ 
in luminosity from the equivalent discontinuous models only little. In fact, even the 
extreme cases IV and VII, in which the variation of the composition is spread over 70 
per cent of the stellar mass, differ from the discontinuous models only by 0.11 in the 
logarithm of the luminosity or 0.28 in bolometric magnitude. We may then conclude 
that we can compute the luminosity of a chemically inhomogeneous star with good 
accuracy by idealizing the inhomogeneity in terms of a discontinuous jump in composi- 
tion, if we place the discontinuity so that the over-all composition remains unchanged. 

TABLE 3* 

Comparison of Continuous and Discontinuous Models 

Model 

jicont. model. 
\discont. compar 

jj/cont. model. . . 
\discont. compar 

III fcont. model. 
\discont. compar 

jy fcont. model. 
\discont. compar 

V cont, model 
VI cont. model 

•fcont. model 
‘Idiscont. compar 

VIII cont. model 
ixic0nt. model. 

\discont. compar 
Cowling model. 

VII 

log U0 tie/lim) 

+0.30 
+0.30 

+0.44 
+0.54 

+0.56 
+0.87 

+0.59 
+1.02 
+0.40 
+1.11 
+ 1.13 
+5.22 
+0.70 
+0.95 
+2.26 
-0.05 

* For stars of the same mass, central temperature, and mean hydrogen content, but 
with different distributions of the hydrogen through the interior, luminosities and radii 
are proportional to the antilogs of the first and second tabulated quantities, respec- 
tively. 

An even rougher idealization appears permitted if only an approximate value of the 
luminosity is needed. The last line of Table 3 gives the relevant material for the Cowling 
model, which has a completely homogeneous composition but is otherwise exactly 
equivalent to all the models here considered (Härm and Rogerson, 1955). Consider 
again stars with a given mass, central temperature, and over-all composition. Then the 
second column of Table 3 shows that all the inhomogeneous models give higher luminosi- 
ties than the homogeneous Cowling model. The differences, in terms of bolometric 
magnitude, however, generally amount to less than 1 mag. and do not exceed 2 mag. 
even in the most extreme cases among the samples here considered. These differences— 
though not negligible in accurate computations—are only a moderate fraction of the 
5-7 mag. by which the star will brighten up during its evolution because of the increase 
in over-all molecular weight caused by the nuclear transmutations. Thus one sees again 
that the luminosity of a star is greatly affected by the over-all composition (second 
bracket in eq. [26]) but depends relatively little on the distribution of the composition 
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INHOMOGENEOUS STELLAR MODELS 453 

throughout the star, i.e., on the model (last bracket in eq. [26]), as was emphasized long 
ago by Eddington. 

The last column of Table 3 gives the logarithm of the radius in its dependence on the 
model. Comparing, first, all the inhomogeneous models with the homogeneous Cowling 
model, one sees again the well-known effect that chemical inhomogeneities (with a mean 
molecular weight decreasing outward) tend to enlarge the stellar radius, often by big 
factors. A homogeneous model can obviously not be used to compute the radius of a 
distinctly inhomogeneous star. 

Finally, one may compare in Table 3 the radii of the present models of continuously 
varying composition with those of the discontinuous models. It is seen that the simpler 
discontinuous models well represent the tendency of inhomogeneous stars to have in- 
creased radii; and even the amount of the increase is represented by the discontinuous 
models with some accuracy as long as this increase over the Cowling model is not more 
than a factor of 3. For the more extended stars, however, the discontinuous models 
appear to exaggerate the radius. In fact, for extreme cases like the present model VII, 
in which the inhomogeneity is spread over 70 per cent of the stellar mass, the equivalent 
discontinuous model cannot be used for the computation of the radius in any approxi- 
mation. 

In summarizing the results regarding the radius, one may conclude from the present 
sample of models that the radius of a star depends delicately on the variation of the 
chemical composition throughout the star, i.e., on the model (third bracket of eq. [27]), 
while it depends only moderately on the over-all composition (second bracket of eq. 
[27]). This has two consequences. First, the observed radius of the star can be used for 
the determination of the over-all composition of the star only if the star is sufficiently 
young that the nuclear processes cannot yet have produced large inhomogeneities. 
Second, for inhomogeneous stars the variation of the composition throughout the in- 
terior has to be determined in fair detail by considerations of the evolution, before the 
radius can be computed with sufficient accuracy to warrant comparison with observed 
radii or effective temperatures. 
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