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THE RATE OF ACCRETION OF MATTER BY STARS 

W. H. McCrea 

(Received 1953 January 1) 

Summary 

It being generally agreed that the present very luminous stars have existed 
as such for only a small fraction of the past life of the Galaxy, it becomes 
important to decide whether they are produced from previously existing stars 
by the accretion of interstellar matter, in accordance with the views of Hoyle 
and others, or are the result of some continuing process of star formation. It 
is emphasized that accretion on the scale required need be only a rarely 
occurring phenomenon. Even so, the quantitative requirements as usually 
discussed do present difficulties. It is here found, however, that accretion 
on this scale would take place, if at all, only after a star has been reduced almost 
to rest relative to surrounding interstellar matter as a result of the retardation 
produced by such matter. This and other effects that have to be considered 
in a full discussion of the problem reduce the requirements to ones that seem 
likely to be found realized in actuality. The main purpose of the present work 
is to estimate these requirements; the frequency of their realization will be 
discussed elsewhere. The accretion theory has naturally to account not only 
for the mass-increment but also for its production at a rate sufficient to 
compensate the transmutation of hydrogen in the stars concerned. It is 
shown that no additional difficulty is likely to arise in this way. 

I. Introduction 
1.1. The problem.—It is well known* that, according to accepted ideas 

concerning energy generation, the most luminous stars can maintain their observed 
luminosities for only a small fraction of the life-time of the Galaxy. It is also 
well known f that the present existence of such stars could be explained by a 
sufficiently high rate of accretion of material from interstellar space. The 
question is whether the required rate is realized in the actually occurring conditions. 

The outcome of an elementary quantitative inspection is indeed to suggest that 
the conditions required for the success of the accretion theory are far removed 
from anything like normal conditions for stars and interstellar matter. The 
theory has consequently not gained general acceptance. J 

As the case is usually presented, however, it overlooks the fact that the processes 
envisaged by the accretion theory of this particular problem must occur only in 
exceptional conditions. The accretion of a large amount of their material in 
recent astronomical times is required by the nature of the case to be the experience 
of only a tiny fraction of all the stars. Moreover, if this large accretion does occur, 
the mechanism is apparently rather different from that assumed in the elementary 
treatment. A closer inspection of the theory shows that the conditions required 
are not so unlikely as those previously thought to be necessary. 

* O. Struve, Stellar evolution, p. 112, Princeton, 1950. 
t F. Hoyle, The nature of the universe, Oxford 1950. 
J See, for example, Struve, op. cit., p. 113; J. L. Greenstein, Astrophysics (ed. J. A. Hynek), 

pp. 591-2, New York, 1951. 
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No. 2, 1953 The rate of accretion of matter by stars 163 

The issue is of fundamental significance. The comparatively recent formatio n 
of the very luminous stars is not itself in question ; the problem concerns the process 
of their formation. If the accretion theory is correct, then the present existence of 
these stars in comparatively small numbers is the result of an already understood 
physical process affecting, on the scale concerned, only these particular stars. 
The problem of the evolution of the majority of all stars is not essentially involved. 
On the other hand, any different explanation would, in the first place, require some 
process of star formation that has not yet been thought of. In the second place, 
this process has to result in newly made stars, since the growth of previously 
existing stars is accretion. But we should not expect a process of making new stars 
to produce only stars of the largest masses. Therefore such an alternative 
explanation must presumably have far-reaching consequences concerning the 
evolution of the stars in general. This shows the importance of trying to decide 
whether accretion provides an adequate explanation. It is put forward as the 

justification for the rather lengthy discussion that follows. 
1.2. Apparent difficulties of the accretion theory.—Current criticism of the 

accretion theory is based mainly upon quantitative difficulties regarding its 
applicability rather than upon matters of physical principle. Consequently, the 
difficulties are best illustrated by quoting particular figures. 

Consider, for instance, a star* of luminosity 106 times that of the Sun. Such a 
star has mass about 43 times the mass of the Sun. The luminosity requires the 

transmutation of hydrogen at the rate of about 6 x io20g/s. If the star does not 
acquire hydrogen from outside, even if it starts as almost pure hydrogen and all of 
this is available for energy generation, its life as a normal star can therefore be 
only about 5 million years [=#=(43 solar masses6 x io20g) seconds]. But, 
according to the accretion hypothesis, the star has not always had its present large 
mass ; this has been acquired from interstellar matter consisting largely of 
hydrogen. In order for this hypothesis to be effective, we should conclude on a 
simple view of the problem that such matter must therefore be accreted at least at 
the rate of 6 x io20g/s. Now, according to the usual accretion formula (equation 
(1) below), the density of interstellar hydrogen required to achieve this rate must be 
at least about 1000 C/3 atoms/cm3, where U km/s is the speed of the star through the 
interstellar gas. Using the same formula, the time taken to produce a star of large 
mass starting with a mass of, say, two solar masses in a cloud of this density is about 
108 years. During this time the star would travel 100 U parsecs. 

A speed of 1 km/s would certainly be an exceptionally low speed for a star 
relative to any surrounding interstellar cloud. Yet, according to these figures, 
even this low speed demands a cloud about 100 parsecs thick with a density of about 
1000 atoms/cm3. This would mean a mass for the cloud, if roughly spherical, of 
about 107 solar masses. It is not knownf whether clouds exist of one-tenth of this 
mass. More particularly, a cloud or cloud-complex of 100 parsecs extent is rare J, 
while the most familiar estimate § of the maximum density in interstellar clouds is 
only about 100 atoms/cm3. Further, since the life of the star after it has ceased to 
accrete must be less than the 5 million years mentioned above, when observed it 
cannot be as much as 5 parsecs away from the cloud if its speed is only 1 km/s. 

* Such a star is AO Cas A in Table I ; the derivation of the figures quoted in the present section 
is implicit in some of the work that follows. 

t L. Spitzer and M. Schwarzschild, Ap. J., 114, 385-397, 1951. 
t W. H. McCrea, The Observatory, 70, 100, 1950. 
§ B. Strömgren, Ap. J.y 108, 242-275, 1948; but see Section 3.1. 
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Thus the star would be observed in or very close to the exceptional region of 
nebulosity described. Such a special association is not observed for every massive 
star, although it is true that such stars are associated in a general way with regions of 
relatively high density of interstellar material. Finally, owing to the occurrence 
of Í73 in the density needed for a given rate of accretion, if U is much more than 

' about i km/s, the conditions required for an amount of accretion that would be 
significant for the present problem are apparently beyond the bounds of possible 
realization. Yet we have to recall that the mean peculiar velocities of massive 
stars* are of the order of 10 km/s and the mean peculiar velocities of interstellar 
cloudsf are probably about 5 km/s, so that the mean relative velocities of stars and 
clouds are also of the order of magnitude 10 km/s. Anything like a Maxwellian 
distribution of such relative velocities would allow a velocity of less than 1 km/s in 
only about one case in a thousand. 

The needed combination of rare occurrences in respect to velocity, cloud- 
density, and cloud extent are apparently the considerations that lead many 
astrophysicists to reject the accretion theory. Nevertheless, the entire problem 
is necessarily one concerning exceptional occurrencesj since the stars concerned 
are such a small proportion of all stars (perhaps about one in a million). 
Moreover, figures such as those quoted are sufficient to show that, in a favourable 
combination of admittedly rare but not impossible conditions, accretion is at 
any rate on the verge of being significant. If refinement in the theory and in its 

application can combine to yield a factor of about 10 in the right direction there 
would be little doubt that it is significant. 

It is the purpose of this paper to call attention to certain considerations that 
do appear to sway the decision in this direction. Since in the nature of the case 
we are dealing with marginal considerations, it is not surprising that the work 
depends upon rather critical and tedious arguments. In this paper we deal 
with the possibility of the occurrences ; elsewhere some attempt will be made to 
investigate their frequency. 

In Section 2 the basic results of the theory of the accretion process are quoted 
and certain formulae required for their application are derived. In Section 3 
the quantitative application of these formulae is discussed. The position is 
briefly reviewed in Section 4. 

2. Accretion theory 

2.1. Rate of accretion.—We consider a star S moving through a cloud of 
interstellar material of indefinitely large extent in all its dimensions. Apart 
from the disturbance produced by the star, we treat the cloud as being at rest 
and having uniform density p. We consider only rectilinear motion of the star ; 
we take an axis OX along its path. At epoch £, let the star be at P on OX, where 
OP = x, and let its velocity § be Ï7=dxjdt. Let O be taken so that # = o when t = o, 
and let the values of other parameters at t = o be distinguished by suffix o. 
Let M be the mass of S, this being a function of t if accretion takes place. 

* Spitzer and Schwarzschild, loe. cit. 
t A. Blaauw, B.A.N., 11, 459-473, 1952. 
Î This point has been particularly emphasized by Mr F. Hoyle in various discussions on the 

subject. 
§ In Section 1,2 the velocity U was expressed in km/s; this convention is not employed in the 

general formulae in the rest of the paper. 

© Royal Astronomical Society • Provided by the NASA Astrophysics Data System 



19
53

M
N

R
A

S.
11

3.
.1

62
M

 

No. 2, 1953 The rate of accretion of matter by stars 165 

For cloud material of sufficiently small density and kinetic temperature, 
Bondi and Hoyle* derived the accretion formula 

dM¡dt = K . 27TPG2M2/U3, (i) 

where G is the gravitational constant. Here a is a numerical factor which depends 
upon the way in which the “ accretion stream ” has been established but is such 
that i<a<2. Its value for particular ways of establishing the stream has been 
discussed by the authors quoted and also by Dodd.f The value oc = 2 had been 
given by the earlier treatment of Hoyle and LyttletonJ (see § also DM (3.19)). 

For cloud material in which the kinetic temperature is not negligible and the 
density is not necessarily small, Bondi || has recently obtained in the case U=o 

the formula 

dMjdt = a' . 27TpG2M2/a3
y (2) 

where a is the speed of sound in the cloud at infinity. Here a' is again of the 
order of unity; Bondi’s values for various possible types of behaviour of the 
medium lie in the range 0*5 ^oc' ^2*24. 

When C/=£o, a^o, Bondi conjectures that the formula 

dMjdt = a . 27tPGzM2I( U2 + a2fl\ (3) 

with a= I, should give the order of magnitude of the accretion rate. The solution 
of the hydrodynamical problem presented by this general case is of extreme 

difficulty. However, with the aid of an electronic computer, Dodd^f has made 
considerable progress with its solution by numerical methods for particular values 
of Uja when this ratio is greater than unity and when the gas is isothermal. 
He obtains substantial confirmation of the quantitative validity of Bondi’s 
estimate (3) taking a==2*24, the value actually indicated by Bondi’s treatment 
for the isothermal case. It is not, of course, suggested that (3) gives accurately 
the analytical form of the solution of the hydrodynamical problem. 

Thus the combination of Bondi’s general arguments with Dodd’s particular 
values would permit us to use the formula (3) with considerable confidence. 
However, we shall see that we require this formula only in a somewhat subsidiary 
way. If the arguments to be given in this paper are correct, the major part of 
any actual accretion that occurs is governed by formula (2), and this appears to 
be on an even firmer footing. Nevertheless, an interesting point arises here. 
What we actually want is to be justified in using (2) as a valid approximation to 
the rate of accretion after U has been reduced to a sufficiently small value compared 
with a. Now, when U is precisely zero, Bondi shows that the value of a' in (2) 
is strictly not determined by his analysis, but only by certain physical arguments 
which he uses to supplement the latter. These arguments show that a' should 
be maximal in a certain sense. The significant point is that Dodd finds the 

corresponding indeterminacy not to arise in his case of U^o. Hence it would be 
tempting to conclude that it is removed from Bondi’s analysis by taking the limit 
when C/-K). This would not be rigorously justified, since Dodd’s work applies 
only for U>a. Nevertheless, we shall deal with cases where initially U>a; 

* H. Bondi and F. Hoyle, M.N.y 104, 273-282, 1944. 
t K. N. Dodd, M.N.y 112, 374, 1952. 
î F. Hoyle and R. A. Lyttleton, Proc. Camb. Phil. Soc., 35, 405, 1939. 
§ K. N. Dodd and W. H. McCrea, MJV., 112,205-214,1952; this paper will be quoted as “DM”. 
IJ H. Bondi, M.N.y 112, 195-204, 1952. 

K. N. Dodd, Proc. Cambridge Phil. Soc., 49, 1953. 
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by virtue of Dodd’s work, no indeterminacy is involved here ; hence, the problem 
being fully defined physically, no indeterminacy can arise at any later stage and, 
if we appeal to physical continuity (where the mathematical continuity is 
unavailable in the absence of calculations for o < £7<a), we get back to formula (2) 
with Bondi’s maximal value of a'. In other words, Dodd’s work gives additional 
justification for using (2) with Bondi’s values for a' in the circumstances in which 
we need to do so. 

2.2. Retarding force,—We have to consider the force F by which the cloud 
retards the motion of the star. Suppose, first, that the cloud consists of particles 
(atoms or grains) having negligible thermal motions and moving independently 
of each other when disturbed by the gravitational attraction of the star. Then 
the force produced by all the particles whose initial undisturbed positions lie 
within distance s from OX is 

^ G*M\ ( s*U*\ 
F— 277/) jji¿ In + £2 ^2 J (4) 

acting along OX ; this is proved in DM (3.6). 
Under the conditions stated in DM the formula (4) is exact. No difficulty 

arises merely from the fact that in DM the motion relative to the star was 
considered, while here it is considered relative to the cloud. However, here we 
shall be concerned also with the variation of the relative velocity. Some 
correction would be needed if this variation is considerable during the time 
taken by a cloud-particle to traverse the significant portion of its trajectory; 
for present purposes we neglect this refinement. 

The application will be to a star S in the presence of a typical distribution of 
other stars. These will determine a “cut-off” value for s. In fact, we have to 
assign a sphere of influence to S such that the motion of the cloud-particles may be 
considered to be affected by S, and S alone, only when the particles are within 
this sphere. It can be shown* that (4) gives a good approximation for the 
force if s in the formula is put equal to the radius of this sphere. Now we shall be 
interested in those members of the stellar distribution for which F is most 
appreciable. Elementary properties of particle-orbits under an inverse-square 
law of force show that, for producing a deflexion of the relative motion in excess of 
some stated amount, the effective target-area of a star is proportional to C/-4. 
Hence there is comparatively little effect from the presence of stars with values of U 
larger than those in which we are interested. We conclude that the significant 
approximation for s is about half the mean separation of neighbours amongst these 
particular stars, the presence of other, faster-moving, stars being ignored. 

For the values of the parameters concerned in our work we shall have 
s2U*/G2M2pi. Then the logarithm in (4) is effectively the logarithm of this 
quantity. Its values for some typical cases are given later in Table III. Since it 
varies so much more slowly than the other factors in F, we shall now write as a 
sufficiently good approximation to (4) 

F=-ß.27TPG
iM2IU2. (5) 

In any particular application we shall treat /? as a constant. In principle, we should 
evaluate as a suitable average of the logarithm for the range of values of the 
parameters occurring, but we shall see that in practice we may use its value at one 
point in the range. 

* This approximation has been studied by Mr Dodd in work not yet published. 
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The formula (4) was obtained in DM for the simplest possible conditions in the 
cloud. But it was shown to agree essentially with that got by Bondi and Hoyle 
{loc. cit.) for rather more realistic conditions. These authors also used the 
approximate form (5). However, for their immediate purposes, they did not have 
to give much attention to the determination of the cut-off value of s. 

In the extreme case where the motion of the cloud is hydrodynamical, no direct 
estimate of the force has yet been achieved. But, since we know that the passage 
in this case makes little difference to the calculated accretion rate, except for small 
values of [/, we have ground for supposing that it also makes little difference to the 
calculated force. So far as the consequences of the force are concerned, the case 
of U>a is the important one, and this is the one to which the foregoing argument 
particularly applies. 

2.3. Other forces.—The force expressed by (4) or (5) arises because the star 
deflects the motion of particles of the cloud in its vicinity. But the star and the 
cloud-particles are acted upon also by the gravitational forces produced by all the 
other matter present. Nevertheless, such forces will not in themselves have a 
first-order effect upon the relative motion of the star and the neighbouring part of 
the cloud. It is true that they could have such an effect if, in the case of the cloud- 
material, they were opposed by a pressure gradient. This, however, is unlikely to 
occur in practice, since the cloud is presumably somewhat “ broken” into patches 
or filaments, as is seen commonly to be the case with interstellar clouds that 
happen to be directly visible. Such a system would not be in a condition to 
establish a pressure gradient of the required character. We may conclude that the 
relative motion of the star and the portion of the cloud in which it is immersed at 
any epoch is controlled by the retarding force discussed in 2.2, and that we may 
ignore other forces so far as their relative motion is concerned. 

More correctly, we may conclude that there can be cases to which this treatment 
applies and we may assert that these are the cases to which we shall restrict 
ourselves. At the same time, it would be desirable to examine more fully the 
possible effects of gravitational fields, though this will not be done here. 

2.4. Equation of motion.—The equation of motion of the star relative to the 
cloud is 

d(MU)/dt = F. (6) 

This expresses the law of conservation of momentum for the system when, for the 
reasons stated in 2.3, we assume F to be the only force affecting the relative motion. 

We first consider the motion under the conditions in which the formulae (i), 
(5) provide sufficiently good approximations for dM/dt and F. This means that 
U>a, though we expect the approximation to be adequate almost down to U~a* 

From (1), (5), (6) we then obtain 

dMjdt — a . crM2/ C/3, (7) 

dU/dt=-(oL + ß)aM/U> (8) 
and, by definition, 

dx/dt-U. (9) 
Here we have written 

<7 = 277/) G2 (10) 

and we shall also write 
K=V./((/. + ß). (Il) 
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The system (7), (8), (9) has the following integrals which are readily verified. 
They give the unique solutions satisfying the initial conditions stated in 
Section 2.1. 

MIM0 = (U0¡U)K, 

U0
Z+K- U*+K 

l- (4a + 3ß)aM0U0
K’ 

U^+K-Uá+K 

X- (5z + 4ß)oM<iU0
K- 

In applications, /c is a small positive fraction, while U0¡a is most likely to be in 
the range about 2 to 5. As we have said, our results should be sufficiently good 
approximations almost down to U=a. Therefore, the smallest value of U for 
which these results are to be used will give C/3^ C/0

3 and C/4<^ C70
4. Therefore, if 

we substitute this value of C7 in (13), (14) we obtain t=h, x = x1, approximately, 
where 

h = t/0
3/(4« + 3ß)oM0, (15) 

*1 = £V/(5« + 4ß)°Mo- (16) 

In any case, these are not underestimates of the values of t, x. The quantities 
tly Xj, are independent of the particular value of U which has been employed. 
The physical explanation is evident from the forms of (13), (14); they show 
that, owing to the steep increase in the effective resistance expressed by (8) with 
decreasing U, most of the time and distance are required to produce a small 
initial reduction of U. Once any appreciable reduction has been achieved, it 
does not take relatively much longer to complete the reduction. 

This has another consequence. Since, over most of the time and distance 
given by (13), (14), U does not differ much from C/0, the appropriate estimate 
of ß to be used in these expressions is simply the entry in Table III for U = U0, 
and not a value between this and one for a small value of U. 

Further, if the force merely remains of the same order of magnitude from 
a value of t/ a little above a to a value a little below a, the time and distance 
required for this further reduction of U are small compared with tly x^ This 
is easily checked. Hence tly xx given by (15), (16) are sufficiently good estimates 
of the time and distance in which U is reduced from U0 to a value somewhat 
less than U=a. This conclusion is valid apart from any detailed knowledge of 
the precise manner in which the equations (7), (8) may have to be modified in 
the neighbourhood of U=a. 

When U is less than ay we can use Bondi's simple accretion formula (2). 
We do not require the more general formula (3) for actual application, but 
merely to assure ourselves that (2) is a good approximation as soon as t/2 is 
sufficiently small compared with a2. 

We shall now disregard any increase of M during the time and, on account 
of what has just been said, we shall conclude that at the end of this interval M 
starts to increase in accordance with (2), that is, 

dM/dt = ol'g M21 c? (M=M0 when t = t1). (17) 

The main purpose of neglecting any accretion during ^ is to avoid over- 
estimating the total accretion. But we notice that, for the range of values 
mentioned above, this is actually a good approximation. For, assuming 

(12) 

(13) 

(14) 
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that (12) is even approximately valid down to £/ = a, it will leave M/M0== 1 
on account of the smallness of k. 

The integral of (17) is 

Thus M will have become large compared with M0 at time where 

t2-t1 = ai¡cL'oM0. (19) 

Since (18) implies that M would become infinite in this time, it is clear that 
at some stage equation (17) must cease to apply. But the order of increase of M 
with which we are concerned in practice will remove only a small percentage of 
the cloud material and so we may conclude that we shall be working within the 
range of applicability of the equations. A simple property to notice in (18) is 
that the time required for a very large increase of M is not much more than 
that for a moderate increase (e.g. a five-fold increase takes only about 60 per cent 
longer than a two-fold increase). 

The derivation has been framed so as to make it clear that we have nowhere 
had to use a force-formula for very small values of U. But, without going into 
details, it is evident that the star will be brought effectively to rest relative to the 
cloud at about time ^ and that x1 therefore expresses effectively the whole 
displacement of the star through the cloud. The significant time for the whole 
process would be the greater of ^ and t2 — tly but we cannot generalize as to 
which of these will turn out to be the greater in actual applications. 

To sum up : If at any epoch a star is moving through a cloud with a given 
speed exceeding the speed of sound in the medium, then it will be brought 
effectively to rest in the cloud in a distance xly and its mass will have increased 
to a considerable multiple of its initial value in a time t2. These quantities 
are given by (15), (16), (19) and depend essentially only upon the force-formula 
for the initial speed and upon the accretion formula for a star at rest. The 
effective limitation upon the applicability of the results to an actual case is that 
the cloud should extend over a distance greater than x1 and should remain in 
existence for a time greater than t2. 

2.5. Comparison with simple treatment.—The simplest treatment of accretion, 
such as that upon which the figures quoted in the introduction are based, 
disregards the retarding effect of the cloud. Hence, for a star moving through 
the cloud at speed (70, the rate of accretion cannot exceed that given by (1) with 
U= C/0. By analogy with (19), the total time t2*y say, required for a large increase 
in M is then not less than 

¿2* = 

during which the star travels a distance x2*y where 

#2* = U0t2*. 
Using (15), (16), (19) these give 

t2 a cc / a\3 

t2* ~ 4<x + 3j8 + a'\£/0/ 
1 

x-L a 

*2* ~ 5a + 4ß’ 
It will be noted that (22), (23) are independent of />, M0 and that (23) is 
independent also of U0. 

(20) 

(21) 

(22) 

(23) 

© Royal Astronomical Society • Provided by the NASA Astrophysics Data System 



19
53

M
N

R
A

S.
11

3.
.1

62
M

 

170 W. H. McCrea Vol. 113 

Remembering that xx is effectively the whole displacement required by the 
treatment in 2.4, and noting that the numerical values in Section 3 will show 
that the fraction (23) is less than we see the extent of the difference 
resulting from the more detailed treatment. A reduction of the linear size of 
the cloud required by this factor 20 means a reduction in its total mass by a factor 
of nearly 10000. This alone would reduce the conditions described in the 
introduction to something less difficult to find realized in practice. 

It will be found also that the fraction in (22) is about in actual cases, 
so that the times required are also considerably reduced. One way in which 
this' is important appears from the next section. 

The effect of our more detailed treatment is to show that retardation takes 
precedence over accretion, i.e. that it destroys the relative velocity before a 
significant increase of mass occurs. This is always assuming that no other 
forces affect the relative motion ; if they do, then we may indeed in some cases 
get back to conditions in which the elementary treatment gives more significant 
results. 

2.6. Accretion and hydrogen consumption,—In testing the accretion hypothesis 
of the production of massive stars, we have not only to see whether stars of the 
right mass can be formed but also to see whether they can be formed sufficiently 
rapidly. That is to say, we must now find the condition upon the rate of 
accretion that ensures its adequately compensating the transmutation of 
hydrogen within the stars concerned. We again consider accretion within 
a cloud of effectively uniform density. 

At epoch £, let M be the mass of the star under consideration, let hM be its 
hydrogen content, and let L be its luminosity expressed as the rate of consumption 
of hydrogen. It will be convenient to depart somewhat from the notation of 
2.4 and to let the accretion start at i = o, denoting quantities evaluated at that 
epoch by suffix o. Also for the moment we shall write the accretion formula (17) 
as 

dM/dt = vMn (v, n constant). (24) 

For the purpose of the present section, which is to estimate the minimum 
necessary rate of accretion, we assume that the accreted material is effectively 
all hydrogen. Finally, we shall assume an empirical mass-luminosity law of the 
form 

L = XMP (À, constant) (25) 
provided A ^ o. 

If all the stars concerned follow approximately the same course, we may 
take it that the effect of such factors as the rate of mixing of the accreted 
hydrogen, and the dependence of L upon h as well as M, are automatically 
taken account of by the assumed relation (25). However, we must obviously 
restrict the validity of the equations to values of M, t for which o<A<i. 

Under the conditions stated, the variation of the hydrogen-content is 
expressed by 

(26) 

Equations (24), (26) have the integrals 

v(/> —w + i)[(i — A)M—(1 —A0)M0] =X[MI’-n+1 — M0
ï’-"+1], (27) 

'- v(m-i) LMo"-1 ~ AT-1 
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We shall now consider certain approximations derived from (27), (28). We 
bear in mind that the values ultimately to be substituted for /z, p are 

rc = 2, />=f 3’5* (29) 

The value of n is that in (17) ; the value of p is an accepted empirical estimate.* 
Suppose a normal star of mass is produced by accretion starting with 

the mass M0 and suppose is fairly large compared with M0, say ikf1>4ikf0. 
Let v = v1 determine the smallest rate of accretion that will suffice, and 3T1 be 
the corresponding time required. From (27), this is seen to be the case for 
which h0 — iy and A = o when M=M1. This is obvious physically, for the 
smallest rate of accretion must be that which starts with the star of mass M0 

consisting of almost pure hydrogen and produces the star of mass only just 
before it is on the point of hydrogen-exhaustion. 

From (27), (28) we then have approximately 

AM/-" 

p-n + i’ 
(30) 

^'1 

On account of the neglect of the terms in M0 in the right-hand members of 
(27), (28), these are not underestimated. If L1 is the final luminosity in 
accordance with (25), we may write (30), (31) in the form 

p-n + i /MA71-1 M1 

^ *-i \M0) l,- 

(32) 

(33) 

Part of the object in retaining algebraic symbols for n, p is to show that the 
way in which ^ occurs in (32), (33) does not depend upon the accident of the 
numerical values of w, p. In applications, if the observed value of ^ is used, 
the results therefore do not depend critically upon the exponent in the 
mass-luminosity law. 

Inserting the values (29), we have finally 

= (34) 

y'1=2-5(M1IM0)M1¡L1 = il(v1M0). (35) 

It may be noted that the smallest rate of accretion that compensates the rate 
of hydrogen consumption precisely when the final mass is reached is 
determined by v = v1* where, by (24), (25), 

(36) 

The reason why y1<v1* is, of course, that the star is able to save some of the 
hydrogen accreted in the early stages for consumption at the later stages. The 
formula (36) yields the figure quoted in the introduction. The factor 0*4 in (34) 

is not in itself of much significance, but it serves at any rate to show that figures 
such as those used in the introduction actually leave an appreciable margin to spare. 

The time ^ is that required for the slowest permissible rate of accretion 
to produce the star from an initial mass M0. This is a quantity of some 
importance for fixing ideas concerning stellar evolution. 

* Struve, op. cit., pp. 23-24. 

© Royal Astronomical Society • Provided by the NASA Astrophysics Data System 



19
53

M
N

R
A

S.
11

3.
.1

62
M

 

172 W. H. McCrea Vol. 113 

The possible lifetime of the star considered at fixed mass and luminosity 
Afj, Lx is less than where 

IT1
m = M1/L1. (37) 

For would be its life were the mass Mx to consist of almost pure hydrogen 
(and if we neglect the change of luminosity with hydrogen content at fixed total 
mass). Therefore, if the star was produced by accretion, the accretion process 
must have continued in operation to within less than years ago. As already 
noted, it is this quantity ^'1

# that is found for large Mx to be small compared 
with the age of the Galaxy. 

We can now assert, further, that this accretion process must have started less 
than ! years ago or, at any rate, the star must have been of mass Af0 less than 
F! years ago. This does not preclude the star having attained mass M0 in some 
earlier spell of accretion. Figures given later show, for example, that a star 
of present mass 40 solar masses must have been of mass 10 less than 108 years 
ago. Such figures verify the fact that we are concerned with processes which, 
if they operate at all in the manner under investigation, must do so under 
“recent” conditions in the Galaxy. 

2.7. Binary stars,—In the case of a close binary composed of stars of about 
equal mass Af, the rate of accretion for the system as a whole is that for a single 
star of mass 2M, This rate is four times the rate for a single star of mass My 

since the rate varies as the square of the mass ; hence the rate for each star is 
double what it would be if it alone were present. If the star considered in 2.6 
has a close companion of similar mass, we have therefore in place of (34), (35) 

v1=0-2L1IM1
2, (38) 

= I/(2V1M0), (39) 

where, as before, v stands for the coefficient of M2 in (17). 

3. Applications 

3.1. Properties of interstellar matter.—In briefly reviewing some of the 
observational findings about interstellar matter, we have to recall the fact that 
the applications in which we are interested are marginal effects, concerned 
presumably with extreme conditions rather than average ones. 

Interstellar matter is parcelled into concentrations which we call cloudsy 

though here a cloud may mean also the type of system sometimes called a 
“cloud-complex”. The order of magnitude of the linear dimensions of a cloud 
may be taken as 10 parsecs, with a very wide spread amongst individual examples.* 
In a single cloud the density and internal motion must vary from place to place, 
but presumably the relative motion of neighbouring regions is subsonic. 

In the work, for example, of Bates and Spitzerf there seems to be good 
evidence for the occurrence of densities of 1000 hydrogen atoms/cm3, despite 
the fact that these authors fully recognized that this result was unexpected in 
the light of earlier estimates. Indeed, it seems already to be admitted J that 
values up to 10000 hydrogen atoms/cm3 can occur. The phenomena studied 
in this paper, if they occur at all, occur in the spiral arms of the Galaxy to which 
the stars concerned are apparently confined and which are almost certainly 

* McCrea, loc. cit. 
t D. R. Bates and L. Spitzer, Ap. jf.f 113, 441-463, 1951. 
} Greenstein, loc. cit., p. 557. 
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the regions of the Galaxy in which interstellar matter attains its greatest 
densities. It seems fair to say that as yet there is no available estimate of these 
greatest densities. Some of the criticisms of the accretion theory have arisen 
from the estimate quoted in the introduction; subsequent work makes this 
appear either to be too low or else to apply to types of cloud that are not typical 
for our purposes. 

Estimates* of the gas-kinetic temperature of the interstellar material in 
regions where it is not heated locally by very hot stars lie mainly in the range 
30 deg. K to 100 deg. K, though both lower and higher values have been suggested 

by particular items of evidence. It is not yet known whether the actual tempera- 
ture varies much from one cloud to another. 

It is well established that the cloud material is mostly hydrogen gas and 
our work mainly concerns the so-called HI regions in which this is un-ionized. 
(When one of the stars concerned reaches a sufficiently great mass and luminosity, 
the hydrogen in its vicinity will become ionized with a consequent increase in 
the gas-kinetic temperature. This may be one of the factors that limit the 
ultimate mass attained, but this effect will not be studied here.) However, since 
our calculations involve the third power of the speed of sound in the gas, we 
ought to make allowance for the presence of elements other than hydrogen. 
Recently estimated relative abundances give for the mean molecular weight ¡jl 
in terms of O = 16, approximately, 

^ = 1-4 (40) 

and for the total density approximately i-6 times the density of hydrogen present. 
The excess of p, above unity is due almost entirely to helium, of which the 
abundance is difficult to determine. But the only effect of a revision of the 
estimate of this quantity would be proportionately to alter the temperatures to 
which our results apply, f 

The interstellar material contains also a small admixture of “dust”. The 
chief rôle in the processes with which we are dealing is to provide a mechanism 
whereby thermal energy generated in these processes may be sufficiently rapidly 
dissipated by radiation. This mechanism is explicitly^ required for the 
applicability of the accretion formula (1). It is not essential in principle for the 
applicability of the formula (2), though it affects the values of the parameters 
involved. According to Bondi’s discussion, we should use the value a' == 2*24 
if the mechanism is fully operative so as to render the conditions isothermal. 
We should use a' = 0*5 if it is inoperative so that the conditions are adiabatic. 
Also, the speed of sound at infinity is given in terms of the temperature T at 

infinity by a*=y&TI,x, (41) 

where 3R is the gas-constant, and y = i in the isothermal case, y = f in the 
adiabatic case. When Bondi’s accretion formula is used, for a given value 
of T the isothermal rate of accretion is therefore about 9*6[=f 4*48 x (f )3/2] 
times the adiabatic rate. 

From the way in which the force-formula (5) has been derived, it appears 
that the mechanism involving the dust has no first-order effect upon the 

* Greenstein, loc. cit. ; Bates and Spitzer, loe. cit. ; H. I. Ewen and E. M. Purcell, Nature, Lond., 
168,356,1951. 

t I have used values of relative abundances collated from various sources and kindly supplied to 
me by Dr F. D. Kahn; the values do not differ greatly from those in several published tables. 

} Bondi and Hoyle, loc. dt. 

IS 
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applicability of this formula nor upon the value of the coefficient ß. But, as 
has just been said, the mechanism is required for the applicability of (1) and 
so of (7). If it does not operate, we ought therefore to take a = 0 in (8), (15), (16). 
If it operates fully, then a has a value in the interval 1 <oc <2 as previously stated. 

In order to bracket all these possibilities, we shall derive results for the two 
cases : 

Case I Isothermal case a = 2, y = a'=2*24; (42) 

Case A Adiabatic case oc = o, y = 3, a'=0*5. (43) 

So far as present knowledge of the subject extends, case I is the optimum one 
for all effects associated with accretion. In the sense that we follow Bondi’s 
evaluation of a', as explained at the end of Section 2.1, case A is maximal for 
strictly adiabatic behaviour. Granting this evaluation, case A then gives the 
minimum effects of the processes here studied because any relaxation of the 
adiabatic condition renders these processes more efficient. 

3.2. Necessary accretion rates.—We now consider some actual massive stars 
and evaluate the smallest accretion rate, determined by the parameter ^ in 
Section 2.6, that would be necessary to account for their existence. For this 
purpose we take Kuiper’s* 44selected spectroscopic binaries”. The first two 
stars in his list are not 4‘massive” and so not directly relevant to the present 
considerations, but they may be retained for comparison. By taking a few 
actual stars, we possibly gain a more realistic impression than by considering 
some typical points on the empirical mass-luminosity curve, which would serve 
as well in principle. 

In Table I, the spectral class and the values of log Æ, logoff are reproduced 
from Kuiper’s paper, where J( is the mass M1 in solar masses and the 
luminosity in solar luminosities. The entries AB give mean values for the two 
components of the binary concerned. 

Star 
Castor Cx 

C2 

ß Aur A 
B 

/¿x Sco AB 
V Pup AB 
YCygA 

B 
AO Cas A 

B 
29 C Ma I 

Table I 
Kuiper’s selected spectroscopic binaries 

Spectrum logj£? log^ 
K6-1- —i*i6 —0*201 0-17 

— 1*24 —0247 o-i8 
Ai +1*83 +0-378 ii *9 

+ 1-83 +0-370 12-3 
B3 +3 ‘35 +1-094 14-5 
B2 +3*86 +1-265 21-4 
O9 +4‘5I + 1-240 107 

+4-51 +1-235 no 
08-5 +5*97 +1-634 503 

+ 5-58 +1-582 261 
08-5 +5*84 +1-66 331 

+ 5*39 +i*53 214 

Life ” ^1* 
9-1 X 1011 

9-8 X 1011 

3*5 Xio9 

3*5 X 109 

5*5 Xio8 

2-5 X 108 

5 -4 x 107 

5 *3 X 107 

4-6 x 106 

10 X 106 

6 -6 x 106 

years 

Since these stars are all close binaries with nearly equal components, the 
appropriate formulae are (38), (39). Using the factj* that the transmutation 
of I g of hydrogen releases 6*4 x io18 ergs, and using the known mass and 
luminosity of the Sun, it is found that these formulae become 

^ % 3 x io-53^/^2, (38') 

^ = 27 x years, (39') 

* G. P. Kuiper, Ap. J.y 88, 472-507, Table 12, 1938. 
t See, for example, S. Chandrasekhar, Astrophysics, (ed. J. A. Hynek), p. 632, New York, 1951. 
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while (37) becomes 
years. (37r) 

The values of are given in the last column. As we have seen, they are 
upper bounds to the times for which these stars can continue to radiate at their 
present luminosities without replenishment of their hydrogen. We then note 

that if we take, say, M1/M0=4 we get from (39), (37) that ^ = 10^*. So, 
as explained in Section 2.6, it is seen that even at the slowest possible rate of growth 
the O-stars must have acquired most of their mass within the last 108 years, or 
thereabouts. 

For the massive stars in Table I, which we shall take to be those with 
the values of £g¡Jfl% range from about 14 to about 500. From (38'), 

the range of for these particular stars is thus about 

4 x io-52 <7/! <1-5 x io~50. (44) 

Also, using (2), (24), 

v = a'. 277G2p/ö3 giving p = va?l(<x' .2ttG2), (45) 

so that we can express the interval (44) in terms of the corresponding density ply 

say. The results are given in Table II for some temperatures of the interstellar 
material in the range mentioned in Section 3.1. We recall that the formulae 
for these smallest necessary accretion rates were derived in Section 2.6 on the 
hypothesis that this material consists effectively only of hydrogen. This 
hypothesis is, of course, retained in the present section; in particular the 
values of a are got from (41) with pu = i*oo8. 

Table II 

Temperature 

30 deg. K 
50 deg. K 

100 deg. K 

Densities for smallest necessary accretion rates 
T Density in hydrogen atoms/cm3 

Isothermal case Adiabatic case 
0‘5<Pi< 18 5<Pi< 170 
i <Pi< 39 io<p1< 370 
3 <p1<no 28<p1<io5o 

There is no intention of suggesting that any of the stars concerned acquired 

the hydrogen at these smallest rates. Also there is, of course, nothing very 
special about the particular bounds here found, beyond the fact that the stars 

in Kuiper’s list happen to typify those which present the problem giving rise 
to the present work. 

The significance of the bounds for px is that they are all below the maximum 
hydrogen densities that seem actually to occur according to the figures mentioned 

in Section 3.1. On general grounds we have to conclude that the phenomena 
under consideration occur only in clouds where the density is exceptionally 
high. Those figures indicate that an ‘4exceptionally high” density is more 
than 1000 hydrogen atoms/cm3. How much more we have still to infer. At 
any rate, the accretion that then occurs is much faster than that at almost all the 
densities in Table II. That is to say, it is more than what is necessary to compensate 
hydrogen consumption in the accreting stars. 

3.3. The values of M0, U0, ß, p.—The values of in Table I show that 

the stars of greatest fixed mass that can maintain their luminosity for a time 
of the order of the past life of the Galaxy are those of somewhere about twice 
the solar mass. On the hypothesis being studied, stars now of mass exceeding 
about two solar masses must have existed in the past as stars of smaller mass 

13* 
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than at present and must have acquired the additional mass by accretion. But 
all the effects associated with accretion are more pronounced the greater the 
mass of the star concerned. Hence, other things being equal, the stars that 
have experienced these effects must originally have been amongst the most 
massive whose existence does not depend upon these effects. It follows that 
M0 corresponding to Ji = 2 is a suitable initial mass for our calculations. 
However, the effects are enhanced if the stars concerned are members of 
sufficiently close binary systems. Also we have to recognize the possibility 
of a star, that has already experienced accretion in one cloud, experiencing 
further accretion at a later stage. In order to cover such possibilities, we shall 
give results also for M0 corresponding to = 

As regards the values of U0 to be considered, we have to take those for which 
the accretion effects can be significant. Later, we have to discuss the 
circumstances in which such velocities can occur. We can sufficiently illustrate 
the results by giving them for £/0 = i, 2, 5 km/s. The speed of sound in the 
interstellar gas is in the range about 0*4 to 1 km/s. So we need not give results 
for less than 1 km/s, since a star with an appreciably lower speed would behave 
approximately as though it were at rest in the gas. 

We require the parameter ß only for the evaluation of tly ^ from (15), (16). 
As explained in relation to these formulae, the effective value of ß is approximately 
the value of 2ln(sU2/GM) for U=U0. Also, the effective value of s was 
estimated as being of the order of one-half the mean distance between the stars 
affected by the processes considered. Were the phenomena to occur in a stellar 
distribution such as that near the Sun, it will be shown elsewhere that only 
about one star in a thousand would be affected. The mean distance between 
such stars would be of the order of 10 parsecs. However, so as not to over- 
estimate the effect, we shall give results for the case of s = i parsec. They are 
relatively insensitive to the value used. Table HI gives the required figures. 

Table III 
Values of 2 In (5U2jGM) giving for U=U0 the required estimates of ß 

[s=i parsec] 
i km/s 2 km/s U 

M 
2 solar masses 
5 solar masses 

9*5 
77 

12*3 
io*5 

5 km/s 

160 
I4’1 

A density given by 
p = 2*5 x io-21 g/cnf (46) 

is just over 1000 atoms/cm3 if the mean molecular weight is given by (40). This 
is a convenient density to choose so as to make the results realistic in the 
sense that they will apply to what is normally regarded as a region of high 
interstellar density. The values of /3, t2, are inversely proportional to p, and 
so they are easily read off for other values of p. 

3.4. Values of tl9 xlt—Table IV gives the values of tly x± calculated* from 
(15), (16) using the values of ß in Table HI and the value of p in (46). 

* The theory applies to a cloud extending indefinitely in all directions. If we consider a star 
that enters a finite cloud from outside, the given values of a, ß will not hold good in the initial stages 
of the motion. The values of tlf are then to be measured from the stage at which the star has 
penetrated sufficiently far for the theory to become applicable. 
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Table IV 
Times and distances for reducing a star to rest relative to a cloud of density 2*5 X 10“21 gUn? 

Isothermal case (a=2) 
Mq = 2 solar masses 

M0 = 5 solar masses 

Adiabatic case (a=o) 
M0 = 2 solar masses 

Mo = 5 solar masses 

U0 i km/s 

tx 3*i Xio6 years 
Xx 2*4 parsecs 
tx i *5 X 106 years 
Xx i'2 parsecs 

tx 4*0 X i o6 years 
xi 3'1 parsecs 
tx 2*0 X io6 years 
Xx i -5 parsecs 

2 km/s 

20 x 106 years 
32 parsecs 

9*3 X 106 years 
14 parsecs 

25 X 106 years 
38 parsecs 

12 X 106 years 
18 parsecs 

5 km/s 

260 X 106 years 
990 parsecs 

no X 106 years 
440 parsecs 

300 x i o6 years 
1150 parsecs 

140 X i o6 years 
520 parsecs 

3.5. Values of ~ h.—Table V gives the value of t2 — t-x calculated* from 
(19) using the value of p in (46) and the value of a determined by (40), (41). 

Table V 
Times for large mass-increment in cloud of density 2 *5 X io~21 g¡cmz and mean molecular weight 1 *4 

Temperature T 
Isothermal case (7=1, a'^2-24) 

Speed of sound a 
M0 = 2 solar masses t2 — tx 
M0 = s solar masses t2~t1 

Adiabatic case (y=§, a'=0*5) 
Speed of sound a 

M0 = 2 solar masses ¿1 
Mq = 5 solar masses t2 — tx 

30 deg. K 

0 42 km/s 
3*8 X 106 years 
1 -5 X 106 years 

0*54 km/s 
37 X 106 years 
15 X 106 years 

50 deg. K 

0*54 km/s 
8-3 X io6 years 
3-3 X io6 years 

0*70 km/s 
80 X 106 years 
32 X 106 years 

100 deg. K 

0 77 km/s 
23 X 106 years 

9*4 X i o6 years 

0*99 km/s 
226 x 106 years 

90 X 106 years 

3.6. Values of t2*> x2*.—Table VI gives for comparison the values of t2*, 
calculated from (20), (21). In the strictly adiabatic case, these quantities are 
non-existent. 

Table VI 
Times and distances for large mass-increment of a star moving at uniform speed UQin a cloud of 

density 2*5 X io~21 g¡cms 

Isothermal case (a=2) 

M0 = 2 solar masses 

Mq = s solar masses 

U« 
¿2* 
v # x2 
t * Í2 
v # X2 

i km/s 
57 X 106 years 

59 parsecs 
23 X 106 years 

23 parsecs 

2 km/s 
460 Xio6 years 

940 parsecs 
180 X i o6 years 

380 parsecs 

5 km/s 
7200 X 106 years 

36700 parsecs 
2900 Xio6 years 

14700 parsecs 

3.7. Illustrative example.—These tables could, of course, have been made 
more extensive, but this is not necessary on account both of the simple character 
of the formulae and of the inherently approximative character of any likely 
applications. The only factors in all the formulae that do not follow some 
simple rule of proportionality are those containing /?, but this is a slowly varying 
quantity and its variation can be ignored in any small interval of the other 
parameters. 

In order to illustrate the use of the figures given and as an example for 
discussion, consider the following:—A fairly close binary star, each component 

* It is to be noted that the time t2—tx is here calculated from the formula for steady symmetric 
accretion. So far as I have succeeded in further examining the problem, the assumption of a 
steady flow does not lead to any underestimate of the accretion-time. 
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having initial mass equal to two solar masses, enters a cloud of density 
5 x io-21 g/cm3 and gas-kinetic temperature 50 deg. K, with initial relative speed 

i*5 km/s ; sufficient interstellar dust is present to render conditions approximately 

isothermal. 
The effective mass M0 corresponds to four solar masses. So, having 

regard to the way in which density, mass and speed enter the various 
formulae, and using Table IV, the star is brought to rest in time, approxi- 
mately, J x ! x (i*5)3 x i*5 x 106 =f 3-2 x 106 years and distance, approximately, 
^ x| x (i*5)4 x i*2 = 3-8 parsecs. Using Table V, the mass will have reached 
a large value after a further time, approximately, i x | x 3-3 x 106 == 2 x 106 years. 

Using Table VI, we get corresponding time and distance approximately 
5 x 107 years and 75 parsecs. 

Thus, according to the full theory, the star would be stopped by the cloud 
within the moderate distance of about 4 parsecs and would acquire a large mass 
in a total time of about 5 million years. On the other hand, a simple application 
of the simplest formulae would have demanded nearly twenty times the distance 
and ten times the duration. 

This is an arbitrarily chosen example. But none of the requirements seems 
to be excluded by our present knowledge of the properties of interstellar matter, 
though this knowledge indicates that the requirements are still somewhat extreme. 
We seem at any rate to have reached the position that, having found all the factors 
entering into the refined discussion to tend to make it easier for accretion to 
operate, it would now be rather surprising to discover that the requirements 
for its successful operation are never quite realized. 

4. Conclusions 
If the theory here presented is correct and applicable then we may 

provisionally conclude that massive stars are produced from less massive 
ones by the accretion process. The mechanism is simply that the interstellar 
material halts the motion of a star through it and then falls into the star. For 
material of given density and kinetic temperature forming a cloud of given size 
(which must be big enough to yield an adequate quantity of material), the 
requirement is simply that the initial relative speed of the star should be 
sufficiently low. Recognizing that the occurrences must be rare, the sample 
calculations and observational results mentioned in the paper strongly indicate 
that all the requirements are to be found realized in the actual Galaxy. It is also 
noticed that, if the phenomena do occur, the demarcation between the stars 
affected and those not affected must be quite sharp, owing principally to the 
sensitivity of the effects to the velocity factors. 

The only element of uncertainty on the purely theoretical side concerns the 
force-formula. The significant densities are such that the flow is4 ‘ hydrodynamic ’ ’. 
We have been able to give arguments in support of the use of the formula in this 
case, but it has not yet been proved directly. Also, the formula is a “ steady-state ” 
formula as derived and some investigation of its use in non-steady conditions 
would be desirable. 

As regards the applicability of the theory, the only physical factor that 
appears to be ignored is the heating effect of the radiation from the star concerned 
upon the neighbouring cloud material. On general grounds this is expected 
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at most to enter at some stage, when the star has attained great luminosity, to 
produce a cut-off effect. Otherwise there seems to be no obstacle in principle 
to the applicability of the theory. In that case, the main problem is now to 
endeavour in some way to estimate the actual frequency of occurrence of the 
processes. 
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