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ABSTRACT 
A search was made for conditions under which models with partially degenerate isothermal cores 

could give radii as large as those of red giants. Special conditions were found for which detailed computa- 
tions gave, indeed, models fitting well the red giants in radius and luminosity. But it has not been investi- 
gated whether the special conditions are likely to be realized in the evolution of a star. 

I. INTRODUCTION 

If a star during the early stages of its evolution possesses no appreciable mixing 
currents in its interior, the central portion of this star will in time burn out of fuel, and 
an exhausted, isothermal core will form. Stellar models with isothermal nondegenerate 
cores were investigated by Schönberg and Chandrasekhar;1 they found that these models 
were fairly similar to the Cowling model and that, hence, stars built according to these 
models should fall reasonably close to the main sequence in the Hertzsprung-Russell 
diagram. Following this investigation, Gamow and Keller2 made approximate computa- 
tions regarding models with isothermal cores in a partially degenerate state; these com- 
putations appear to indicate that under certain circumstances such models could give 
very large radii—large enough to fit the red giants. Subsequently M. H. Harrison3 accu- 
rately computed an array of models with partially degenerate isothermal cores; none of 
these models showed large radii. This result, however, is not certain to be general, since 
the cases considered by Mrs. Harrison were selected according to certain considerations 
regarding stellar evolution. 

At present the internal evolution of a star still seems quite uncertain ; in particular, the 
existence, extent, and strength of mixing currents as a function of time during the evolu- 
tion are still fairly unknown. It therefore appeared useful to extend the earlier accurate 
computations without restrictions following from evolutionary considerations. A first 
such extension was carried out by M. Hayashi,4 who, however, restricted himself to a 
particular composition for the envelopes. A more general extension is presented in this 
paper. 

It is the purpose of the present investigation to check by accurate computations under 
which circumstances models with partially degenerate isothermal cores will give radii as 
large as those of red giants. 

II. APPROXIMATIONS AND BASIC EQUATIONS 

The models here to be considered consist of two zones: (1) a partially degenerate iso- 
thermal core with a composition of 98 per cent helium and 2 per cent heavy elements, 

* This research was supported in part by funds of the Eugene Higgins Trust allocated to Princeton 
University and in part by contract with the Office of Naval Research. 

1 Ap. 96, 161, 1942. 
2 Rev. Mod. Phys., 17, 125, 1945. 
3 Ap. /., 103, 193, 1946. *Phys. Rev., 75, 1619, 1949. 
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i.e., without nuclear fuel (accordingly, the molecular weight in the core is m — 1.342, 
the same for all models) ; (2) a radiative envelope of composition different from the core 
(whenever the envelope is given the same molecular weight as the core, this is meant 
as a limit for a small hydrogen content in the envelope but is not meant to represent an 
exhausted envelope). 

In order to facilitate the integration of the equations and the fitting of the models, 
the following simplifying approximations are made : 

a) The energy generation takes place in an infinitesimally thin shell at the interface 
between core and envelope. 

b) The temperature of this shell—and hence in the entire core—is 30,000,000°, so 
that the carbon cycle can proceed at the required rate. 

c) The composition changes discontinuously at the interface between the hydrogen- 
containing envelope and the bumed-out core. 

d) The absorption coefficient in the radiative envelope is given by Kramers’ law as 

K = /copT3-3-5 with /co = 2 X 1025Z(1 + X) , U) 

corresponding to a guillotine factor of (t/g) = 2. 
e) Radiation pressure is negligible. 
/) The mean molecular weight in the core, p¿, is computed to correspond to the total 

number of particles, not of the electrons alone. Thus the correct equation of state is used 
in the outer, nondegenerate portion of the core, while in the inner portion the degenerate 
pressure is exaggerated by a factor of 1.5 for helium—an error presumably tolerable for 
the present purpose. 

The following definitions and equations form the basis for the computations. 

Subscripts: 

i for the core (interior), 
e for the envelope, 
1 for the interface, 
c for the center (except for the central degeneracy, which is ^o)* 

Dimensionless variables p, t, q, and x for the envelope: 

GM2 ^ GM 
p = pTæ' T = t-JT1C’ 

Mr = qM, r = xR . 

Differential equations for the envelope: 

with 

dp _ P<1 dq _ px2 

dx too2 ’ dx / ’ 
— = c 
dx x2t8-b’ 

3k0/ k y-5 

Aac \fxeHG/ 
LR05 

* 

(2) 

(3) 

(4) 

Homology invariants in envelope: 

(5) 
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Dimensionless variables !■ and \[/for the core: 

r = „ ^s(2mkT) ~^{2mG) -]/^ , (6) 4 7T jU- ¿ JoL 

p=^L(2mkT) WßiHF^ (*) , (7) 

P = 
Stt 
3¥ 

(2MkT)*/2kTFs/2W) , (8) 

where the Fermi-Dirac integral is defined by 

/°0 Jjjv 

Differential equation for core: 

Homology invariants for core: 

p _ Fi/2 OA) £3 Fi/2(^) 3 / y<¿d\p\ 
Fz/2{t)'2t\ * dt)' 

(9) 

(10) 

(ID 

Fitting conditions at the interface between core and envelope, where the jump in molecular 
weight occurs: 

Uu _ Vu 
Uu Vie 

with (12) 

For the envelope, ten particular solutions of equations (3) (corresponding to ten values 
of the parameter C), with the boundary conditions that p = t — 0 and q = 1 at # = 1, 
were obtained by numerical integration.5 Five of these solutions are shown in Figure 1 
in terms of the U-V plane. 

For the core, G. W. Wares6 has obtained eight particular solutions of equation (10) 
(corresponding to eight values of po, the degeneracy at the center). Five of these solu- 
tions are shown in Figure 1 in terms of the U-V plane. 

m. PRELIMINARY ORIENTATION IN THE U~V PLANE 

The family of models here to be considered has three free parameters. In dimensionless 
terms, one may use for these parameters po (which fixes the particular core solution to 
be used); £i (which fixes the end-point on the core solution, i.e., Uu and Fh, at which 
the jump to the envelope solution should occur); and l (which, according to eq. [12], 
gives the length of the jump in the U-V plane and hence the starting point Uu and Fie, 
from which the envelope solution should be followed out to the surface). In physical 
terms, the three free parameters are the total mass of the star, M; the fraction of the 
total mass in the exhausted core, qi] and the ratio of the molecular weights in core and 
envelope, 1. The explicit occurrence of M as an independent parameter here is caused by 

B To be published in a forthcoming Princeton U.Obs. Contr. 
6Ap, 100, 158, 1944; also “Partially Degenerate Stellar Models” (dissertation, University of 

Chicago, 1940). 
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Fig. 1.—Solutions for the cores and envelopes in the U—V plane. The envelope solutions are labeled 
by values of log C, the core solutions by \J/q. The solution labeled — <» is the nondegenerate isothermal 
core. 
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the complicated equation of state here used. It introduces a computational complication 
not found in such nondegenerate models as those discussed in the preceding papers of 
this series, where the mass could be transformed away by a homology transformation. 

Since it does not seem practicable at present to cover the three-parameter family of 
models completely by individual numerical examples, it appears necessary, first, to find 
out in which part of the U-V plane the physically interesting cases are to be found. Such 
a survey was carried out as follows. 

If for this survey / = 1 is used, any model can be represented in the U-V plane by the 
point Li, Fi, which characterizes the interface between core and envelope. The repre- 
sentative points of all the models which have the same value of the mass will form a curve 
in the U-V plane. Such curves of constant mass may be derived as follows: The value of 
the density at the interface can be expressed in terms of pi and h by the first two equa- 
tions (2). The same density value can also be expressed in terms of Fi^pi) by equation 
(7). Setting the two expressions equal, one obtains an equation which, besides dimension- 
less variables, involves M and R. Eliminating R with the help of the second equation (2), 
one obtains for M 

M fi F'fi \2^fißeH) ' 

h2kT1\
3/i 

(13) 

With fjLe = 1.342 and Ti = 30,000,000°, the two right-hand factors in this equation are 
known constants. Regarding the first factor, pi and h can be interpolated from the enve- 
lope solutions for any point in the U-V plane. Similarly for the second factor, Fi^ipi) 
can be interpolated from the core solutions. Therefore, M can be computed for any point 
in the U-V plane, and points of equal M can then be connected by curves. These curves 
of constant M are shown in Figure 2, a. The curve corresponding to 1.8 solar masses may 
be thought of as the center line of a strip containing all the models with masses of the 
right order for red giants. 

Next, curves connecting all representative points corresponding to the same mass 
fraction in the exhausted core may be obtained. Since for any point in the U-V plane 
the value of qi is directly given by the value of q on that envelope solution which goes 
through the point in question, the curves of constant qi are the curves of constant q 
drawn across the envelope solutions. These curves are shown in Figure 2, b. The ap- 
proximate parallelity of the curves of constant M and those of constant qi indicates that 
for a given mass a small change in qi can produce large changes in the model. 

Finally, to be able to judge which of these models may have large radii to fit the red 
giants, the curves of h are to be constructed, since, according to the second equation (2), 
a large value of h corresponds to a large radius. The curves of constant h are again 
identical with the curves of constant t drawn across the envelope-curves—which are 
also shown in Figure 2, This figure indicates that large ti values, and hence large radii, 
are to be found only rather far to the left in the U-V plane. 

The curves of constant M in Figure 2, #, and the curves of constant h in Figure 2, Z>, 
together delineate a narrow section in the U-V plane in which the representative points 
are to be found which give models of the proper masses and radii for red giants. The con- 
struction of models thus selected is described in the following section. 

IV. CONSTRUCTION OP THE MODELS 

Two methods of construction of models were used to get the models whose char- 
acteristics are given in Table 1. For models/, k, l, and m the procedure was as follows: 

Using the U-V plane shown in Figure 1, we start on a given envelope-curve (thus 
fixing the value of C and hence the mass-luminosity relation) and choose an arbitrary 
value of #1. Thus Uie and Vu are determined. Next, choosing a value of /, we jump 
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radially outward from the origin, so as to satisfy condition (12), which fixes Uu and Vu. 
Finally, the appropriate core solution is found by interpolation at the point Uu, Vu be- 
tween the available core solutions. 

After the fitting is accomplished in the U-V plane, the mathematical characteristics 
of the models can be derived as follows: log pu log fi, log qu Uu, and Vu are read directly 
from the numerical integrations for the envelope in accordance with the C and xi values 
chosen. With the help of equation (12), Uu and Vu are obtained; xpo is determined by 
the interpolation between the core integrations; and Fi^ipo) and Fd/2(Po) are read from 
the available tables of the Fermi-Dirac integrals.7 The value of Fi/ztyi) is found by 

Fig. 2.—a, curves of constant mass for models with no jump in molecular weight, b, curves of constant 
q {solid lines) and of constant t {dashed lines), as determined from the envelope integrations. 

interpolation between curves of constant Fi/2(^i) drawn across the core integrations 
in the U-V plane, and \pi is determined from F^ipi) by inverse interpolation in the 
above-mentioned tables. 

The second method of fitting, which produced models a-f, was as follows: The models 
were assumed to have a core mass of 15 per cent. The curve qi= 0.15 was drawn by 
interpolation in the envelope-curves, and the jump-off point (Uu, Vu) was selected arbi- 
trarily on it. Further, the point Uu, Fi¿ was again obtained from equation (12). As before, 
it was necessary to interpolate between the core solutions in order to find \p0, pi, F1/2(po), 
FsftiPo), andFi^^i). However, since the jump-off point on the qi = 0.15 curve did not, 
in general, lie along one of the envelope-curves, it was here also necessary to interpolate 
between the envelope integrations to find log C, xi, pi, and tu 

7 J. McDougall and E. C. Stoner, Phil. Trans. R. Soc. London, A, 237, 67, 1938. 
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The remaining quantities in Table 1 relate to the physical characteristics of the models 
and were determined from the mathematical properties enumerated above as follows: 
Since we assume l and m (/ varying from model to model, the same for all models), 
we find He from equation (12), and since we assume Ze — Zi = 0.02, we find Xe from ße- 
The central density and pressure, pc and Pc, are obtained from equations (7) and (8). 
The mass is found from equation (13), and the radius from the second equation (2). The 
luminosity is derived from equation (4), and then the effective temperature and bolo- 
metric absolute magnitude follow at once. Finally, the density at the interface, pu, is 
obtained from the first two equations (2). 

V. PHYSICAL CHARACTERISTICS OP MODELS 

To judge how far the models here constructed are applicable to observed stars, the 
model stars have been plotted in a Hertzsprung-Russell diagram (Fig. 3) according to the 

Fig. 3.—Hertzsprung-Russell diagram. The thirteen lettered symbols correspond to the models 
listed in Table 1. The dots represent cases in which the core contains 15 per cent of the mass (stellar 
masses from 1.9 to 2.7 solar masses), whereas the circles represent cases in which the core contains 36 
per cent of the mass (stellar masses around 0.8 solar masses). The hatched regions indicate schematically 
the observed locations of the giants, subgiants, and main-sequence stars. 

bolometric magnitudes and effective temperatures listed in Table 1. Figure 3 shows that 
the present models cover well the area occupied by the red giants. Hence the present de- 
tailed computations appear to substantiate the earlier tentative conclusions by Gamow 
and Keller2 that models with partially degenerate isothermal cores may under certain 
circumstances have very large radii. 

On the other hand, most of the models here considered—all but the four referring to 
relatively small stellar masses—have a rather small fraction of their mass in the iso- 
thermal core. Indeed, the mass of the core for all thirteen models lies between 28 and 40 
per cent of a solar mass. Hence the masses of the isothermal cores—and even more the 
masses of the degenerate parts of the isothermal cores—lie well below the limit for a de- 
generate mass. This is in agreement with the general considerations pointed out by 
Chandrasekhar.3 

After having compared the model stars with the observed red giants in terms of the 
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Hertzsprung-RusseU diagram, i.e., in terms of luminosities and radii, it remains to 
compare the theoretical and real stars in terms of their masses, or rather their mass- 
luminosity relations. The large log C values listed in Table 1 (compared with log C = 
— 6.0 for the Cowling model) show that the present models are, on the average, 20 times 
more luminous than main-sequence stars of the same mass or that their masses are, on 
the average, two times smaller than those of main-sequence stars of the same luminosity. 
In this regard the present models are similar to those discussed in the first paper of this 
series,8 and correspondingly the discussion of the masses of red giants given there applies 
here too. Accordingly, one may conclude here again that the observational data on the 
masses of red giant stars are still insufficient either to corroborate or to contradict the 
mass-luminosity relation of the present models. 

Even though there is no apparent discrepancy between the present models and red 
giants as far as luminosities, radii, and masses are concerned, the following consideration 
makes it seem somewhat unlikely that partially degenerate isothermal cores should be 
the main cause of the red giant phenomenon. The data represented in Figure 2 indicate 
that for a given stellar mass, M, and for a given jump in the molecular weight, 1, the 
fraction of the mass contained in the exhausted core, ^i, must fall within very narrow 
limits if the star is to be comparable with observed red giants. For smaller values of qi 
the models will lie very close to the main sequence and thus not represent red giants. 
The cases of larger qi values have not been investigated here; it appears, however, 
rather likely that for larger qi values either no equilibrium configuration exists (for a 
given M and /), much as in the Schönberg-Chandrasekhar case of non degenerate 
isothermal cores, or these cases show radii even larger than those of the observed red 
giants. In any case, the red giants can apparently be fitted only by models with 
partially degenerate isothermal cores if qi—as a function of M and l—falls within 
fairly narrow limits, as has already been indicated by M. Hayashi. It does not ap- 
pear too likely that such narrow conditions can actually be fulfilled by the entire red 
giant class of stars. 

One may then conclude that the observable characteristics of red giants can be fitted 
with models with partially degenerate isothermal cores but that this fit can apparently 
be achieved only if the exhausted core fulfils rather narrow conditions. Hence it appears 
possible that partially degenerate cores are a contributing factor, but probably are not 
the main cause, for the large radii of red giants. 

We wish to thank Dr. S. Chandrasekhar and Dr. G. W. Wares for their generously 
making available to us Dr. Wares’s integrations for partially degenerate cores. 

8 J. B. Oke and M. Schwarzschild, Ap. /., 116, 317, 1952. 
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