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ABSTRACT 
A number of stellar models with a discontinuity in chemical composition have been computed through 

in detail. An arbitrary, but fixed, hydrogen-poor composition was used for the interior of all models, and 
a fixed hydrogen-rich composition was similarly used for all envelopes. The position in the star at which 
the change in chemical composition occurs was varied over a wide range. The computed models were 
found to cover well the observed red giants, as far as radii and luminosities are concerned. The masses 
of the theoretical red-giant models, however, fall systematically somewhat below the standard mass- 
luminosity relation—a circumstance not necessarily in discordance with observation. 

I. INTRODUCTION 

Since 1938 inhomogeneous stellar models have been investigated in a number of 
papers.1 The main conclusion appears to be that inhomogeneities in the interior chemical 
composition may be the main cause for the large radii of the red giants. The question, 
however, of exactly what types of inhomogeneities are needed to explain the observed 
characteristics of the red giants and how these specific inhomogeneities might arise 
during the evolution of a red giant still appears to need further investigation. 

In a recent paper2 a series of models containing a convective core and a discontinuity 
in the chemical composition were computed. These computations were restricted to 
cases with only moderate deviations from the observed mass-luminosity relation. This 
restriction has been criticized3 on the basis of the uncertainties in the few observed 
masses of red giants. This criticism has since gained strength by the circumstance that 
the mass of Capella, formerly considered a first-class datum, has recently been shown4 

to be quite uncertain. 
In the present paper are given two series of models with a convective core and a 

chemical discontinuity—without regard to deviations from the empirical mass-luminos- 
ity law. The two series differ in the assumed variation of the absorption coefficient in the 
deep interior. The individual models in each series differ from one another in the per- 
centage of the total mass contained in the hydrogen-poor interior portion of the star. All 
models of this paper were chosen to have the same hydrogen-poor composition in the 
interior and the same hydrogen-rich composition in the envelope. As in several of the 

* This research was supported in part by funds of the Eugene Higgins Trust allocated to Princeton 
University and in part by contract with the Office of Naval Research. 

1 E. öpik, Pub. Obs. Tartu, Vol. 30, Nos. 3 and 4, 1938; 31, No. 1, 1943; Armagh Obs. Contr., No. 2, 
1949; No. 3, 1951. G. Gamow, Ap. /., 87, 206, 1938. C. L. Critchfield and G. Gamow, Ap. J., 89, 244, 
1939. S. Chandrasekhar and L. R. Henrich, Ap. J., 94, 525, 1941. M. Schönberg and S. Chandrasekhar, 
Ap. J., 96, 161, 1942. F. Hoyle and R. A. Lyttleton, M.N., 102, 218, 1942; 109, 614, 1949. M. H. Harri- 
son, Ap. J., 100, 343, 1944; 103, 192, 1946; 105, 322, 1947. G. Gamow and G. Keller, Rev. Mod. Phys., 
17, 125, 1945. A. Reiz, Ann. d’ap., 10, 301, 1947. P. Ledoux, Ap. J., 105, 305, 1947; Ann. d’ap., 11, 
174, 1948. Li Hen and M. Schwarzschild, M.N., 109, 631, 1949. C. M. Bondi, M.N., 110, 275, 1950. 
C. M. Bondi and H. Bondi, M.N., 110, 287, 1950; 111, 397, 1951. J. G. Gardiner, M.N., 111, 102, 1951. 

2 Li Hen and M. Schwarzschild, op. cit. 
3 C. M. Bondi and H. Bondi, M.N., 110, 287, 1950. 
*0. Struve, Proc. Nat. Acad. Set., 37, 327, 1951. 
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earlier investigations, it was again arbitrarily assumed here that the composition in the 
deep interior, though hydrogen-poor, contained sufficient hydrogen to feed the nuclear 
energy sources in the core. 

II. ASSUMPTIONS AND BASIC EQUATIONS 

The models here considered consist of a hydrogen-rich envelope and a hydrogen-poor 
interior, the latter of which is divided into a radiative intermediate zone and a convective 
core. To simplify the computations, it has been assumed (a) that radiation pressure and 
degeneracy are negligible, (b) that electron scattering can be ignored, and (c) that the 
entire energy generation occurs within the convective core. 

The computations have been carried out with help of the following definitions and 
equations: 

Subscripts: 

e, envelope; f, interior; c, center; 
1, inner interface, between the convective core and the radiative intermediate zone; 
2, outer interface, between the radiative intermediate zone and the envelope. 

Absorption coefficient: 

pT-3-5 with Ko = 4 X 1 025Z (1 + X), 
w g) 

where the guillotine factor is given by 

(i) 

(2) 

with a = 0 in the envelope of both model series and in the interior of the first model 
series, but with a = 0.25 in the interior of the second model series. 

Dimensionless variables: 

GM2 ueHGM 
47rR4’ k R 1 Mr = qM , r = xR . (3) 

Composition parameters: 

n _2Xe + lYe + hZe . _ Z 1+X ¡i 

Me 2X + IF+IZ ’ J Z,l+XeMe' 

Appropriate relation if Z = Ze\j = /°'30. 
In envelope, by definition: le = je = 1- 
In interior, by assumption: l¿ = 2.5,^- = 1.316 . 

Basic equations for radiative parts: 

d¿= _ pq 

dx x2t ’ dx ^ t 
(5) 

uc(ti\ til 
dx J \t2iJ x2t8-5~a’ 

with 
3 / ¿ YY1 Y *o LR°5 

4a c \/jLeHG/ (t/ g) o M5-5 * 

(6) 

(7) 
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Homology invariants: 

U = l 
pX' 

V = l 
tq ' tx ’ 

Emden variables for convective core: 

»+ 1 =-^=: 
jC 

qlS.S—a 

ÿ2-“ ■ 

t=etc, p= en+ipc, x = ^ . 

In core, by assumption: 7 = f or w = 1.5. 

Fitting conditions at discontinuity: 

U^=Vli = li=2.5 , ^41=ii=1.316 
U 2e V 2e h + 1 Je 

319 

(8) 

(9) 

(10) 

m. CONSTRUCTION OR THE MODELS 

The numerical solutions needed for the three parts of the model were obtained as 
follows. 

In the envelope where Kramers’ law was assumed for the absorption coefficient 
(a = 0), the differential equations (5) and (6), together with the usual boundary condi- 
tions (p = t = Q,q = 1 for # = 1), define a single-parameter family of solutions depend- 
ing only on the value of C. Ten particular solutions of this family, covering a range in 
log C from —1 to —7, were obtained by numerical integrations.5 

For the convective core, the one solution needed, which has no singularity at the 
center, is available in tabular form.6 

For the intermediate zone, equations (5) and (6), together with the condition pf a 
continuous fit at the boundary of the convective core, give a single-parameter family of 
solutions. Each particular solution of this family is characterized by a value of the 
independent Emden variable, £i, which gives the point at which the convective core is 
terminated and the intermediate radiative zone is started. A method of obtaining start- 
ing values for these solutions by applying the appropriate fitting conditions at the sur- 
face of the convective core has been described previously.2 Five particular solutions 
covering the necessary range in £i were obtained by numerical integration5 under the 
assumption of a = 0. These solutions were used for the construction of the first series 
of models. For the second series, for which a = 0.25 was taken in the intermediate zone, 
a set of numerical integrations for the intermediate zone was already available.2 

All the numerical solutions used are shown in Figure 1 in terms of the homology in- 
variants U and V. The two halves of this figure correspond separately to the two series 
of models. 

To complete the models, it remains to fit the intermediate zones to the envelopes 
under the conditions of equations (10). This fitting can conveniently be done with the 
help of the U-V plane, as shown in Figure 1. If one arbitrarily selects a particular solu 
tion for the intermediate zone and if, further, one selects a particular point on this solu- 
tion for the outer boundary of the intermediate zone, one can read off directly U^i and 
F2¿. The starting point for the corresponding envelope solution in the U-V plane {Ute, 
V^e) can then be obtained from the first of equations (10). The jump from the point 
{Un, V2i) to the point (Uie, Vie) is represented in the U-V plane by a straight line point- 
ing to the origin. In general, however, this procedure will not permit the second equation 

5 To be published in a forthcoming Princeton U. Obs. Contr. 
6 Brit. Assoc. Adv. Sei., Math. Tables, Vol. 2, 1932. 
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Fig. 1.—Representation of the models in terms of the homology invariants U and V. The left figure 
represents the first-model series, the right figure the second. The numbers on the envelope solutions de- 
note the values of log C, the numbers on the intermediate zone solutions indicate the values of £i. The 
various models, given in detail in Tables 1 and 2, are represented here by straight lines and are denoted by 
Roman numerals. 
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(10) to be fulfilled; the value of nu corresponding to the point (Uu, R2¿) can be obtained 
from the intermediate-zone solutions (or by interpolation between them), and similarly 
the value of nu corresponding to the point (JJu, T^e) can be obtained by interpolation 
between the envelope solutions. In general, these two values of n will not fulfil the second 
condition (10) but will do so only for one specific point on each intermediate-zone solu- 
tion. This specific point was determined for each of the numerical solutions for the inter- 
mediate zone by graphical interpolation, together with the corresponding point on the 
envelope solutions. Each such pair of points is shown in Figure 1 by a straight line con- 
necting them. Any such jump line represents one particular model and is designated by 

TABLE 1 

Mathematical Characteristics of First-Model Series 

i ii hi IV v VI VII 

a. 
Ui. 
Fl 

u2e.... 
V2e  
(tt+l)2e. 

log C. 
log h. 
log p2. 
log q2. 
log £2. 

log k/k. 
log k. . 
log pi. . 
log qi. . 
log Xi. . 

log tc 
log pc 

qi = Mi/M. 
q2 = M2/M. 
xi = ri/R... 
x2 — r2/R.., 
log pc/f>. ■ ■ 

+ 1.21 
+2.57 
+ 1.26 

+0.720 
+1.428 
+3.290 

-5.37 
+0.150 
+2.635 
-0.857 
-1.162 

-0.17 
+0.32 
+3.10 
-1.35 
-1.37 

+0.43 
+3.37 

+0.044 
+0.139 
+0.043 
+0.069 
+2.86 

+1.194 
+2.582 
+ 1.224 

+0.507 
+2.070 
+3.727 

-4.89 
+0.331 
+3.249 
-0.636 
-1.283 

-0.289 
+0.620 
+4.170 
-1.303 
-1.613 

+0.725 
+4.432 

+0.050 
+0.231 
+0.024 
+0.052 
+3.628 

+ 1.193 
+2.583 
+ 1.222 

+0.435 
+2.306 
+3.839 

-4.67 
+0.420 
+3.543 
-0.568 
-1.351 

-0.332 
+0.752 
+4.635 
-1.273 
-1.714 

+0.857 
+4.896 

+0.053 
+0.270 
+0.019 
+0.045 
+3.960 

+1.1925 
+2.583 
+ 1.220 

+0.343 
+2.652 
+3.965 

-4.32 
+0.583 
+4.098 
-0.480 
-1.487 

-0.394 
+0.977 
+5.441 
-1.227 
-1.892 

+1.082 
+5.702 

+0.059 
+0.331 
+0.013 
+0.033 
+4.541 

+1.19232 
+2.583 
+ 1.220 

+0.218 
+3.267 
+4.107 

-3.44 
+0.995 
+5.487 
-0.313 
-1.822 

-0.505 
+1.500 
+7.284 
-1.103 
-2.291 

+ 1.605 
+7.545 

+0.079 
+0.486 
+0.005 
+0.015 
+5.861 

+ 1.192315 
+2.583 
+ 1.220 

+0.181 
+3.501 
+4.141 

-3.00 
+ 1.128 
+5.868 
-0.233 
-1.905 

-0.547 
+ 1.675 
+7.842 
-1.032 
-2.395 

+ 1.780 
+8.103 

+0.093 
+0.585 
+0.004 
+0.012 
+6.244 

+1.192309 
+2.583 
+ 1.220 

+0.141 
+3.844 
+4.174 

-2.50 
+0.985 
+5.070 
-0.113 
-1.683 

-0.604 
+ 1.589 
+7.282 
-0.924 
-2.201 

+ 1.694 
+7.543 

+0.119 
+0.771 
+0.006 
+0.021 
+5.770 

a Roman numeral. The few particular jump lines whose upper end-points do not fall on 
a numerical solution for the intermediate zone were obtained by interpolation between 
the available numerical solutions. Altogether, seven particular models were thus derived 
for the first series and eight for the second series, all of which are shown in Figure 1. 

After the models had been completed in terms of the U-V plane, the remaining non- 
dimensional characteristics were obtained in the following sequence. With the help of 
the values of 272e and F2e, graphic interpolation between the tabulated envelope solutions 
gave directly C, ¿2, ^2, <72, and x2. Next the ratio h/h was read from the intermediate-zone 
solution, since for this zone the starting point (27i, Fi) and the end-point {Uu, V2Î) had 
already been determined. This ratio, together with the previously found value of /2, 
gave the value of A- The values of ÿi, <71, and were then determined from equations (8) 
with the help of the known quantities U\, Fi, wi, and h. Finally, tc and pc were computed 
with the help of the first two equations (9) by applying these equations to the inner inter- 
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face (subscript 1); here the values for h and pi previously found were used, together 
with the value for 0i read from the tabulated solution for the convective core in accord- 
ance with the ¿i value characteristic of the particular model. 

All these nondimensional quantities are listed in Table 1 for the first series of models 
and in Table 2 for the second series. 

IV. PHYSICAL CHARACTERISTICS OR MODELS 

Five of the physical characteristics of interest are completely determined by the 
model as derived in the previous section and do not depend on any specific properties 

TABLE 2 

Mathematical Characteristics of Second-Model Series 

ii HI w v VI VII VIII 

£i- 
*7i 
Fi. 

U2e ■ • - • 
v2e  
(W+Ihe- 

log C. 
log ¿2- 
log p2 ■ 
log g2. 
log ^2. 

log ti/k 
log h. . . 
log pi . . 
log qi-. 
log .. 

log tc. 
log pc- 

qi = Mi/M. 
q^Mi/M. 
Xi = ri/R. . 
X2 = r2/R. • 
log Pc/p. • • 

+ 1.1400 
+2.618 
+ 1.112 

+0.718 
+ 1.417 
+3.283 

-5.388 
+0.152 
+2.649 
-0.866 
-1.169 

-0.182 
+0.334 
+3.144 
-1.422 
-1.404 

+0.429 
+3.382 

+0.038 
+0.136 
+0.039 
+0.068 
+2.874 

+ 1.1250 
+2.628 
+ 1.082 

+0.582 
+ 1.774 
+3.567 

-5.140 
+0.248 
+2.980 
-0.738 
-1.235 

-0.245 
+0.493 
+3.706 
-1.402 
-1.531 

+0.586 
+3.938 

+0.040 
+0.183 
+0.029 
+0.058 
+3.273 

+ 1.1213 
+2.631 
+ 1.075 

+0.441 
+2.181 
+3.803 

-4.793 
+0.390 
+3.455 
-0.617 
-1.346 

-0.320 
+0.710 
+4.477 
-1.358 
-1.701 

+0.802 
+4.707 

+0.044 
+0.242 
+0.020 
+0.045 
+3.826 

+ 1.1204 
+2.631 
+ 1.073 

+0.324 
+2.560 
+3.962 

-4.427 
+0.578 
+4.107 
-0.530 
-1.516 

-0.395 
+0.973 
+5.435 
-1.311 
-1.917 

+ 1.065 
+5.665 

+0.049 
+0.295 
+0.012 
+0.030 
+4.521 

+ 1.12012 
+2.631 
+ 1.072 

+ 1.120097 
+ 2.631 
+ 1.072 

+0.190 + 0.127 
+3.140 + 3.541 
+4.115 + 4.173 

-3.723 
+ 1.080 
+5.934 
-0.422 
-1.999 

-0.515 
+ 1.595 
+7.764 
-1.233 
-2.460 

+ 1.687 
+7.994 

+0.058 
+0.378 
+0.0035 
+0.010 
+6.228 

3.000 
1.80 
8.66 
0.36 
2.70 

- 0.60 
+ 2.40 
+ 10.86 
- 1.17 
- 3.20 

+ 2.49 
+ 11.09 

0.068 
0.44 
0.0006 
0.002 
8.52 

+ 1.120093 
+ 2.631 
+ 1.072 

+ 0.110 
+ 3.690 
+ 4.187 

- 2.4 
+ 2.4 
+ 10.9 
- 0.3 
- 3.3 

- 0.6 
+ 3.0 
+ 13.3 
- 1.1 
- 3.8 

+ 3.1 
+ 13.5 

+ 0.08 
+ 0.5 
+ 0.0002 
+ 0.0005 
+10.3 

+ 1.120092 
+ 2.631 
+ 1.072 

+ 0.099 
+ 3.809 
+ 4.195 

- 1.5 
+ 2.8 
+ 12.3 
- 0.2 
- 3.5 

- 0.6 
+ 3.4 
+ 14.5 
- 1.0 
- 4.0 

+ 3.5 
+ 14.7 

+ 0.11 
+ 0.7 
+ 0.0001 
+ 0.0003 
+ 11.1 

of individual stars. These quantities are listed at the bottom of Tables 1 and 2 ; they are 
the fraction of the total mass contained in the convective core, qi\ the fraction of the 
total mass contained in the hydrogen-poor interior (convective core and intermediate 
zone), <72; the fraction of the radius occupied by the convective core, xi; the fraction of 
the radius occupied by the hydrogen-poor interior, x2 ; and the ratio of central to mean 
density, pc/p. 

The fraction of the mass contained in the hydrogen-poor interior, q2, is the essential 
physical parameter which varies from model to model in each series. Tables 1 and 2 
show that the computed models cover a large range in q2, each of the two series starting 
with a model containing less than 14 per cent of the mass in the interior and ending with 
a model containing over 70 per cent in the interior. 

The values listed for x2 show that the hydrogen-poor interior, though containing in 
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many cases a large fraction of the mass, occupies at most a few per cent of the radius 
of the star. This indicates a high central concentration of these models, which is explicitly 
shown by the values for log pc/p listed. 

To derive further physical characteristics for the model stars here considered, it is 
necessary to apply the models described in the previous section to specific cases char- 
acterized by definite values for the mass, the composition, the central temperature, and 
the guillotine factor. Correspondingly, the subsequent computations are based on the 
following assumptions. The internal composition is arbitrarily taken to be X» = 0.01, 

= 0.97, and Z¿ = 0.02, while the envelope composition is assumed to be Xe = 0.92, 
Ye = 0.06, and Ze = 0.02. These compositions correspond to the numerical values of l¿ 
andjh used in the construction of the models. Further, (t/g)o = 2 has been used for the 
guillotine factor law given by equation (2). Finally, the central temperature was assumed 
to be 3 X 107 ° K throughout. This last assumption is a substitute for an accurate 
evaluation of the central temperature needed by the carbon cycle to produce the required 
energy; such computations did not seem worth while at the present state of these models 
and the present uncertainty in the carbon-cycle cross-sections. Finally, regarding the 
assumed stellar masses, the first series of models was applied only to stars of two solar 
masses, while the second series was applied to stars of one, two, and four solar masses. 

Under these assumptions the physical characteristics were computed in the following 
sequence. 

To start with, the radius of a particular model star could be obtained from the second 
of equations (3) by applying this equation to the center of the star; the radius is the only 
unknown quantity in this equation, since Tc, and M are given by the above assump- 
tions, whereas tc can be taken from Table 1 or Table 2 for any specific model. Similarly, 
the luminosity could be found from equation (7). With R and L known, the effective 
temperature, re, could be obtained from its usual definition. Finally, the temperatures at 
the two interfaces and the densities at the center and at the two interfaces could be 
computed directly from the first two of equations (3)—together with the equation of 
state—since the nondimensional values p and t corresponding to these particular loca- 
tions are listed in Tables 1 and 2. 

The physical characteristics enumerated above are given in Tables 3 and 4 for models 
of the first and second series, respectively. 

V. CHECKS ON ASSUMPTIONS 

After the physical properties of the model stars were derived, it was possible to check 
some of the assumptions on which the computations had been based. These checks were 
performed on a typical case represented by model V of the first series as applied to a 
star of two solar masses. For this case temperatures and densities were computed for a 
number of points throughout the star; these are given in Table 5. 

The first check concerns equation (2), the law assumed for the guillotine factor. From 
Morse’s table of the guillotine factor for Russell mixture,7 the guillotine factor was ob- 
tained for the temperatures and densities in question and is listed in the fifth column 
of Table 5. These values for the guillotine factor are also shown as a function of the 
density by the solid line in Figure 2. The dashed lines in the same figure represent the 
guillotine factor, as assumed for the models according to equation (2). The figure shows 
that in the envelope the assumed law is quite representative. In the interior, however, 
the assumption used for the models of the first series gives appreciably too low a guillo- 
tine factor, while the assumption for the second series is apparently much more repre- 
sentative. For future computations a still further increase in the guillotine factor for the 
interior seems to be indicated by Figure 2—not so much in the slope (a) as in the constant 
factor (//g)o- 

7 P. M. Morse, Ap. 92, 27, 1940. 
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TABLE 3 

Physical Characteristics of First-Model Series 
(M/MO = 2) 

R/RO... 
log L/LO- 
log rc.... 
TiXlO-6. 
TzXlO-6. 
log pc  
log pi  
log p2t. . . 
log P2e. . • • 

+ 2.19 
+ 0.87 
+ 3.80 
+23.3 
+ 15.7 
+ 2.29 
+ 2.13 
+ 1.84 
+ 1.44 

II 

+ 4.32 
+ 1.20 
+ 3.74 
+23.6 
+ 12.1 
+ 2.17 
+ 2.02 
+ 1.38 
+ 0.98 

III 

+ 5.85 
+ 1.36 
+ 3.72 
+23.6 
+ 11.0 
+ 2.11 
+ 1.95 
+ 1.19 
+ 0.79 

IV 

+ 9.82 
+ 1.60 
+ 3.66 
+23.6 
+ 9.5 
+ 2.02 
+ 1.86 
+ 0.91 
+ 0.51 

+32.7 
+ 2.22 
+ 3.56 
+23.6 
+ 7.4 
+ 1.77 
+ 1.61 
+ 0.32 
- 0.08 

VI 

+49.0 
+ 2.58 
+ 3.55 
+23.6 
+ 6.7 
+ 1.62 
+ 1.47 
+ 0.04 
- 0.36 

VII 

+40.2 
+ 3.12 
+ 3.74 
+23.6 
+ 5.9 
+ 1.41 
+ 1.25 
- 0.36 
- 0.76 

TABLE 4 

Physical Characteristics of Second-Model Series 

h in IV VI VII VIII 

R/Rq. . 
log L/LO- 
log TV .. . 
TiXlO-6.. 
r2xio-6.. 
log Pc  
log Pi... . 
log P2t. . . . 
log P2c. . . . 

R/RQ.... 
log L/LO 
log TV . . . 
TiXlO-6.. 
TaXlO“6.. 
log pc  
log pi  
log p2i  
log P2c  

R/RQ... 
log L/LO- 
log TV . .. 
LiXlO-6.. 
LiXlO-«.. 
log Pc  
log pi  
log P2i  
log P2c  

Jf/MO=l-0 

+ 1.09 
- 0.646 
+ 3.580 
+24.1 
+ 15.8 
+ 2.91 
+ 2.77 
+ 2.45 
+ 2.05 

+ 1.57 
- 0.477 
+ 3.544 
+24.2 
+ 13.8 
+ 2.84 
+ 2.70 
+ 2.22 
+ 1.82 

+ 2.58 
- 0.238 
+ 3.495 
+24.3 
+ 11.6 
+ 2.74 
+ 2.60 
+ 1.90 
+ 1.50 

+ 4.72 
- 0.003 
+ 3.423 
+24.3 
+ 9.8 
+ 2.65 
+ 2.51 
+ 1.58 
+ 1.18 

+ 19.8 
+ 0.390 
+ 3.210 
+24.3 
+ 7.4 
+ 2.49 
+ 2.35 
+ 1.04 
+ 0.64 

+ 126 
+ 0.711 
+ 2.888 
+24.4 
+ 6.1 
+ 2.37 
+ 2.23 
+ 0.63 
+ 0.23 

+530 
+ 1.000 
+ 2.646 
+23 
+ 5.7 
+ 2.3 
+ 2.2 
+ 0.4 
+ 0.0 

+ 1300 
+ 1.71 
+ 2.63 
+24 
+ 6.0 
+ 1-9 
+ 1.8 
+ 0.2 
- 0.2 

M/MO = 2 

+ 2.18 
+ 0.859 
+ 3.806 
+24.1 
+15.8 
+ 2.31 
+ 2.16 
+ 1.85 
+ 1.45 

+ 3.13 
+ 1.028 
+ 3.770 
+24.2 
+ 13.8 
+ 2.24 
+ 2.10 
+ 1.62 
+ 1.22 

+ 5.15 
+ 1.268 
+ 3.721 
+24.3 
+ 11.6 
+ 2.14 
+ 2.00 
+ 1.30 
+ 0.90 

+ 9.44 
+ 1.502 
+ 3.648 
+24.3 
+ 9.8 
+ 2.05 
+ 1.91 
+ 0.98 
+ 0.58 

+39.5 
+ 1.895 
+ 3.436 
+24.3 
+ 7.4 
+ 1.89 
+ 1.75 
+ 0.43 
+ 0.03 

+250 
+ 2.216 
+ 3.114 
+24.4 
+ 6.1 
+ 1.77 
+ 1.63 
+ 0.03 
- 0.37 

+ 1100 
+ 2.501 
+ 2.872 
+23 
+ 5.7 
+ 1-7 
+ 1.6 
- 0.2 
- 0.6 

+2600 
+ 3.211 
+ 2.858 
+24 
+ 6.0 
+ 1.3 
+ 1-2 
- 0.4 
- 0.8 

Lf/3fO = 4 

+ 4.37 
+ 2.364 
+ 4.031 
+24.1 
+ 15.8 
+ 1.70 
+ 1.56 
+ 1.25 
+ 0.85 

+ 6.27 
+ 2.533 
+ 3.996 
+24.2 
+ 13.8 
+ 1.63 
+ 1.49 
+ 1.01 
+ 0.61 

+ 10.3 
+ 2.773 
+ 3.946 
+24.3 
+ 11.6 
+ 1.54 
+ 1.40 
+ 0.70 
+ 0.30 

+ 18.9 
+ 3.007 
+ 3.875 
+24.3 
+ 9.8 
+ 1.44 
+ 1.31 
+ 0.37 
- 0.03 

+79.1 
+ 3.400 
+ 3.661 
+24.3 
+ 7.4 
+ 1.29 
+ 1.15 
- 0.17 
- 0.57 

+500 
+ 3.721 
+ 3.340 
+24.4 
+ 6.1 
+ 1.17 
+ 1.03 
- 0.57 
- 0.97 

+2100 
+ 4.010 
+ 3.098 
+23 
+ 5.7 
+ 1-1 
+ 1.0 
- 0.8 
- 1.2 

+5100 
+ 4.716 
+ 3.084 
+24 
+ 
+ 
+ 

6.0 
0.7 
0.6 
1.0 
1.4 
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The second check refers to the neglect of electron scattering. The sixth column in 
Table 5 gives the ratio of the absorption coefficient here used, according to equations (1) 
and (2), to the absorption coefficient arising from electron scattering. The values given 
are computed for the same typical case used in the first check. The tabulation shows 
that—except in the convective core, where the absorption coefficient has no effect on the 
conditions—electron scattering provides less absorption than photo ionization. However, 
electron scattering is not much less important than photo ionization, at least in the inner 
portions of the star. Nevertheless, for the typical case represented by Table 5, the error 

TABLE 5 

Guillotine Factor, Electron Scattering, and Radiation 
Pressure in Typical Model Star 

r/R Mr/M log T log p log (t/g) Pg/Pr 

0.0  
#1 = 0.005. 
#2¿ = 0.015. 
#2e = 0.015. 
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  

+0.00 
+0.08 
+0.49 
+0.49 
+0.78 
+0.91 
+0.96 
+0.98 
+0.99 
+1.00 
+ 1.00 

+7.477 
+7.372 
+6.867 
+6.867 
+6.16 
+5.83 
+5.60 
+5.42 
+5.24 
+5.07 
+4.88 

+1.77 
+1.61 
+0.32 
-0.08 
-2.26 
-3.28 
-4.00 
-4.62 
-5.18 
-5.75 
-6.38 

+1.07 
+0.90 
+0.47 
+0.40 
+0.24 

+0.8 
+1.3 
+3.8 
+1.5 
+3.0 
+4.1 
+5.0 
+5.1 
+6.0 
+6.4 
+6.9 

+ 54 
+ 78 
+ 130 
+ 130 
+ 110 
+ 100 
+ 98 
+ 81 
+ 78 
+ 68 
+ 59 

Lo9 ^ 

Fig. 2.—The guillotine factor through the star as a function of density. The solid line is the value as 
determined for the typical case of model V of the first series for a star of 2 solar masses. The dashed lines 
are the assumed representations for the models. In the interior, the dashed line marked “a = 0” 
represents the first-model series, while the line “a = 0.25” denotes the second-model series. 

produced by neglecting electron scattering does not appear serious and is partially com- 
pensated for by the use of too small a guillotine factor, as discussed above. For heavier 
giants, however, the relative importance of electron scattering increases (proportional 
to M2), and an appropriate combination of photo ionization and electron scattering will 
eventually have to be taken into account. 

The third check refers to the neglect of radiation pressure. The last column of Table 5 
gives the ratio of gas pressure to radiation pressure for the typical case used above. The 
tabulation shows that radiation pressure plays virtually no role throughout the body of 
the star considered. Since the relative importance of radiation pressure varies with Af2, 
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a red giant has to have a mass of 10 solar masses or more if radiation pressure is to be- 
come really important. 

The fourth check refers to the neglect of degeneracy. If in a diagram8 showing the 
log T — log p plane, the demarcation line between degeneracy and nondegeneracy is 
drawn and if, in the same diagram, the data of the third and fourth columns of Table 5 
are plotted, it is found that the entire typical model star represented by Table 5, includ- 
ing its center, falls in the nondegenerate region. The same is found to be essentially 
true for all the other model stars here considered, as can be seen from the pc values of 
Tables 3 and 4. 

The final check concerns the assumed central temperature of 3 X 107°K. Again 
choosing the same typical model, an integration of the energy generation law for the 
carbon cycle shows that the assumed temperature cannot be much in error if the recent 
estimates9 of the rate of the carbon cycle are essentially correct. 

In summarizing these checks, it appears that the actual physical conditions in stars 
possessing the assumed composition discontinuity are satisfactorily represented by the 
second series of models as long as these models are not applied to too heavy giants. The 
first series of models appears to underestimate the guillotine factor in the deep interior; 
however, the comparison of this first series with the second series is useful in showing 
which of the results depend sensitively on the detailed behavior of the absorption co- 
efficient in the deep interior. 

VI. HERTZSPRUNG-RUSSELL DIAGRAM 

To facilitate the comparison between the present model stars and observations, the 
model stars described above are presented in Figure 3 in terms of the Hertzsprung- 
Russell diagram. 

Each case of Tables 3 and 4 is plotted in Figure 3 according to its values for the lumi- 
nosity and the effective temperature. Each of the three heavy lines in the center and 
right-hand portions of the diagram represents all the models of the second series as 
applied to a definite stellar mass; the bottom line corresponds to 1 solar mass, the middle 
line to 2 solar masses, and the top line to 4 solar masses. Each of the dashed lines crossing 
the solid lines corresponds to a particular model of the second series as applied to various 
stellar masses. Since each model has a definite fraction of the total mass in the hydrogen- 
poor interior, the dashed lines indicate the progression of hydrogen exhaustion; at the 
lower left the mass fraction in the hydrogen-poor interior is small, whereas in the upper 
right portion it is large. 

For comparison the locations of actually observed giants, subgiants, and main- 
sequence stars are very approximately indicated by the shaded areas. 

Figure 3 shows that the models here considered amply cover the territory in the 
Hertzsprung-Russell diagram occupied by the red giants. Indeed, the most extreme 
models of the second series give effective temperatures probably lower than that of 
any observed star. 

How sensitively the effective temperature of a star, i.e., its radius, depends on the 
exact run of the absorption coefficient in the deep interior is shown by the thin solid 
line which represents the first series of models as applied to stars of 2 solar masses. 
According to this series, a star of 2 solar masses reaches its lowest effective temperature 
at about 3500° K, while the same star, according to the second series, can reach an 
effective temperature below 1000° K. Therefore, to predict accurately the position in 
the Hertzsprung-Russell diagram of an inhomogeneous star, it will be necessary not 
only to specify in detail the character of the chemical inhomogeneity but also to repre- 
sent the absorption coefficient in the interior with appreciable accuracy. 

8 G. W. Wares, Ap. 100, 158, 1944. 91. Epstein, Ap. 112, 207, 1950. 
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To indicate the great difference in location in the Hertzsprung-Russell diagram be- 
tween chemically homogeneous and inhomogeneous stars, the position of homogeneous 
stars with central temperatures of 3 X 107 ° K is indicated by a set of lines in the left- 
hand part of Figure 3. Here again each solid line connects all points corresponding to a 
given stellar mass, while each dashed line corresponds to a given degree of hydrogen 
exhaustion. For the homogeneous models the degree of hydrogen exhaustion is given 
directly by the hydrogen abundance (assumed constant throughout the star) which 
decreases from 92 per cent near the middle of Figure 3 to 1 per cent near its left edge. 

Fig. 3.—The Hertzsprung-Russell diagram for the models in terms of bolometric magnitude and 
effective temperature. The three heavy lines marked 1, 2, and 4 in the right part of the diagram represent 
the models of the second series applied to stars of 1, 2, and 4 solar masses. (The extra thin solid curve 
shows, for comparison, the line for 2 solar masses for the first-model series.) Each dashed line represents 
a specific model, which is marked by its Roman numeral and its percentage of the total mass in the 
hydrogen-poor interior. The solid and dashed lines to the left denote the corresponding homogeneous 
models. The hatched areas represent, approximately, the normal observed Hertzsprung-Russell diagram. 
The square and cross represent, respectively, the observed positions of Capella and Aurigae. 

Figure 3 permits a rough estimate of the possible evolutionary track of a bright star 
through the upper portions of the Hertzsprung-Russell diagram. A star of, say, 2 solar 
masses will start approximately as an FO star with a bolometric absolute magnitude of 
about +3. If this star contains strong mixing mechanisms and correspondingly remains 
chemically homogeneous throughout its life, it will evolve along the middle one of the 
solid lines in the left-hand part of Figure 3 and thus increase in both absolute magnitude 
and effective temperature. If, however, the same star contains only a limited mixing 
mechanism, which only successively reaches through larger and larger fractions of the 
stellar mass, then the star will evolve along the middle one of the solid lines in the right- 
hand portion of Figure 3. It will thus, while slowly increasing in luminosity and be- 
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coming redder and redder, reach a minimum in the effective temperature, after which 
it will increase its effective temperature again and, passing through the supergiant region, 
end as a bright-blue star—assuming that no new physical phenomena set in before the 
star has essentially exhausted all its hydrogen. The great difference in the evolutionary 
track through the Hertzsprung-Russell diagram for homogeneous and inhomogeneous 
stars shows that the strength and character of the internal mixing mechanisms play a 
decisive role in the apparent evolution of bright stars. 

It is tempting to compare Figure 3 with the Hertzsprung-Russell diagram for a 
globular cluster under the assumption that the cluster stars are built according to the 
inhomogeneous models here considered. To derive for each star its present position along 
its evolutionary track, one has to take account of the difference in speed of evolution 
for stars of different luminosity or mass. Thus a star of 1 solar mass may still be essential- 
ly homogeneous; a star of 2 solar masses may already have developed the hydrogen-poor 
core containing, say, 15 per cent of the total stellar mass; and a star of 3 solar masses 
may already have extended its hydrogen-poor core to over 70 per cent of its total mass. 
If one draws a line through the three corresponding points in Figure 3, one obtains a 
curve which has some resemblance to the main branch of the Hertzsprung-Russell dia- 
gram of a globular cluster. It does, however, not seem warranted to follow this specula- 
tion at present into further detail, mainly because of the arbitrariness with which the 
character of the chemical inhomogeneity has been selected for the models here in- 
vestigated. 

VII. MASSES OF RED GIANTS 

In the preceding section the present stellar models were compared with observations 
in terms of absolute magnitudes and effective temperatures. It remains to compare 
the theoretical models with observed stellar masses. 

The direct observational data on masses of red giants appear to be still very restricted 
and uncertain. The best available data seem to be those for Capella and Zeta Aurigae. 
The red components of these two binaries are indicated in the Hertzsprung-Russell dia- 
gram of Figure 3 by a square and a cross, respectively. By interpolating in this diagram 
between the heavy lines which represent various stellar masses, one can read off mass 
values for the two stars. One thus obtains approximately 2.5 and 5 solar masses for the 
red components of Capella and Zeta Aurigae, respectively. These theoretical mass values, 
derived under the assumption that the present inhomogeneous models are applicable to 
the stars considered, are to be compared with the observational values. 

For the red component of Capella the earlier observational value of 4 solar masses 
has recently been shown to be possibly too high. The new observations10 give, with much 
uncertainty, a mass around 2.7 solar masses, which is in satisfactory agreement with the 
above theoretical value. 

For the red component of Zeta Aurigae a mass of 15 solar masses or more has been 
derived from the observational data.11 The discrepancy between this value and our 
theoretical value of 5 solar masses is very large indeed. The question arises whether the 
observational value could possibly be greatly in error. The observational mass is based 
on the determination of the mass function and the mass ratio. The mass function was 
derived from radial-velocity measurements of the K component, which has many sharp 
lines, on spectrograms which covered the entire orbit; accordingly, the mass function 
seems fairly secure. On the other hand, the mass ratio is derived from radial-velocity 
measurements of the B component, which has few and broad lines, on a small number 
of spectrograms, which in each of the three investigations in question covers only one 

10 Struve, loc. cit. 
11 W. Christie and 0. Wilson, Ap. /., 81, 426, 1935. 
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particular phase of the orbital cycle. Accordingly, the mass ratio for Zeta Aurigae ap- 
pears to be extremely uncertain. Instead of using the uncertain mass ratio, one might use 
the assumption that the B component of Zeta Aurigae falls on the mass-luminosity rela- 
tion applicable for main-sequence stars. Thus one would get, for a bolometric magnitude 
of —1.4,12 a mass of 5 solar masses for the B component. The latter value, together with 
the observed mass function, would give 6 solar masses for the mass of the K component. 
This empirical value would be in excellent agreement with the theoretical value derived 
above. Whether, however, this interpretation of the observational data on Zeta Aurigae 
is correct can be decided only after a set of spectrograms covering the B component 
around an entire orbital cycle has been obtained. 

In addition to the use of individual binaries with red-giant components, statistical 
data for whole groups of such binaries may be used to derive averaged masses of red 
giants.13 Such averaged mass determinations for red giants appear, however, at present 
still very uncertain, as is indicated by the appreciable difference in the result, depending 
on whether trigonometric or spectroscopic parallaxes are used. 

Besides the direct method of determining stellar masses from binaries, two indirect 
methods may be used for gaining information regarding the masses of red giants. 

As a first method the period-density law for pulsating stars may be applied to ceph- 
eids. Since for cepheids the periods are very well known and the radii can be deter- 
mined with fair accuracy from absolute magnitudes and effective temperatures, the theo- 
retical period-density law can be used to determine the masses of cepheids. The resulting 
masses are, by a factor of approximately 3, smaller than those which are obtained if the 
mass-luminosity relation of main-sequence stars is applied to the cepheids.14 This dis- 
crepancy has in the past been interpreted as indicating that the numerical coefficient 
in the theoretical period-density law must differ appreciably from the value thus far 
derived from pulsation theory. Now, however, it appears at least equally likely that one 
should interpret this discrepancy as indicating that the masses of cepheids are, in fact, 
appreciably smaller than had been inferred from the application of the mass-luminosity 
relation for main-sequence stars to cepheid variables. 

As a second indirect method, one may derive the gravitational acceleration in the 
atmosphere of a star by a detailed analysis of the line strengths in its spectrum. When 
this method was first applied to giants and supergiants, values were found for the 
gravitational acceleration which were smaller by large factors than those derived from 
the mass-luminosity relation. This large discrepancy has since been greatly diminished, 
first, by introducing the H~ absorption, which increased the mean absorption coefficient, 
and, second, by introducing the turbulent velocities as deduced from line profiles, 
which increased the total kinetic temperature.15 Nevertheless, the gravitational accelera- 
tions now derived are still smaller than those obtained from the mass-luminosity law 
of main-sequence stars by a factor of the order of 3. Perhaps this may be taken as further 
indication that the masses of the red giants are indeed somewhat smaller than those im- 
plied by the standard mass-luminosity relation. 

In summarizing the observational data regarding the masses of red giants, one may 
conclude that the indirect evidence somewhat favors the relatively low masses required 
by the present inhomogeneous models and that the direct evidence does not necessarily 
contradict these low values. 

12 P. Weltmann, A.N., 279, 257, 1951. 
13 H. N. Russell and C. E. Moore, The Masses of the Stars (Chicago: University of Chicago Press, 

1940). 
141. Epstein, Ap. /., 112, 6, 1950. 
15 O. C. Wilson, Ap. /., 107, 126, 1948; M. Schwarzschild, B. Schwarzschild, and W. S. Adams, 

Ap. /., 108, 207, 1948. 
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VIII. SUMMARY 

The inhomogeneous models described in detail in Sections III and IV and compared 
with observations in Sections VI and VII appear to cover well the observed ranges for 
red-giant stars, as far as luminosities and radii, i.e., position in the Hertzsprung-Russell 
diagram, are concerned. 

The present models give masses for red giants which are smaller than those given by 
the mass-luminosity relation of main-sequence stars by factors of from 1.5 to about 3. 
The limited observational evidence on the masses of red giants, though in itself not 
suggesting a deviation from the regular mass-luminosity relation, still does not seem to 
be in direct discordance with these relatively low masses. 

The two series of inhomogeneous models here described indicate that the evolutionary 
track of a bright star through the Hertzsprung-Russell diagram does depend sensitively 
both on the precise character of any chemical inhomogeneity and on the detailed run of 
the absorption coefficient in the deep interior. For stars with weak mixing mechanisms 
and an absorption law not too different from that of Kramers, the present models 
indicate an evolution which starts at the main sequence, passes through phases of in- 
creasing radius until a maximum size is reached, when the hydrogen-poor interior and 
the hydrogen-rich envelope are comparable in mass, and ends in a return toward the 
main sequence. 

Stellar models like the present ones must still be considered as exploratory, owing to 
the arbitrariness with which the character of the chemical inhomogeneity is assumed. If, 
indeed, a chemical inhomogeneity is an essential feature in the internal structure of the 
red giants, as now appears likely, it will be possible to derive definite models for red 
giants only after the physical mechanisms which govern the degree and character of the 
internal mixing have been determined. 
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