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ABSTRACT 
A theory of the spatial distribution of galaxies is built, based on the following four main assumptions : 

<i) galaxies occur only in clusters; (ii) the number of galaxies varies from cluster to cluster, subject to a 
probabilistic law; (iii) the distribution of galaxies within a cluster is also subject to a probabilistic law; and 
(iv) the distribution of cluster centers in space is subject to a probabilistic law described as quasi-uniform. 
The main result obtained is the joint probability generating function GNv N^k, /2) of numbers N\ and 1V2 
of galaxies visible on photographs from two arbitrarily placed regions coi and C02, taken with fixed limit- 
ing magnitudes mi and respectively. The theory ignores the possibility of light-absorbing clouds. The 
function t^) is expressed in terms of four functions left unspecified, which govern the details of 
the structure contemplated. Methods are indicated whereby approximations to these functions can be 
obtained and whereby the general validity of the hypotheses can be tested. 

I. INTRODUCTION 

The distribution of the numbers of galaxies as revealed by the data of Hubble,1 

Shapley,2 and Shane3 does not conform with the Poisson law and indicates the presence 
of a factor causing “contagion.” In order to explain this phenomenon, two kinds of hy- 
potheses are discussed in the literature. Hypotheses of one kind postulate that not only 
the apparent but also the actual spatial distribution of galaxies is clustered.4 Indeed, some 
clusters of galaxies appear to be identified and are studied per se.5 The hypotheses of the 
alternative type tend to explain the apparent clustering of galaxies by the effects of ex- 
tinction of their light by interstellar clouds.6 Undoubtedly both factors play a role. 

The purpose of the present paper is to study the implications of a probabilistic model 
of spatial clustering of galaxies, ignoring the possibility of extinction by clouds. It is 
hoped that this model will fit the data relating to regions of the sky not affected by 
clouds. However, whether it does or not, the evaluation of the effects of clustering in 
space and the comparison with observations are likely to be helpful in understanding the 
machinery of the phenomena studied. 

The probabilistic model considered is based on several postulates which we classify 
under two headings: postulates essential to the model, or structural postulates, on the 
one hand, and secondary postulates, on the other. All the postulates are described below 
in precise mathematical form. Here, however, it seems useful to characterize them in a 
manner which is less precise but which is likely to make a stronger appeal to the intuition. 

The postulates labeled “structural” or “essential” are those reflecting the major 
properties of the universe contemplated. These are: 

ol) Galaxies occur only in clusters. 
b) The number of galaxies varies from one cluster to another in a manner subject to 

a definite probabilistic law, the same for all clusters. 

* This paper was prepared with the partial support of the Office of Naval Research 
1Tf/. W. Conir., No. 485; Ap. /., 79, 9, 1934; Mt. W. Contr., No. 557; Ap. J., 84, 517, 1936. 
2 Harvard Ann., Vol. 88, No. 2, 1932; Vol. 105, No. 8, 1937; Vol. 106, No. 1, 1938. 
3 In preparation; see also Proc. Amer. Phil. Soc., 94, 13, 1950. 
4 C. V. L. Charlier, Ark. mat. astr.fys., Vol. 16, No. 22,1921; Medd. Lunds Obs., Ser. II, No. 128, 1950. 
6 E. Hubble and M. Humason, Mt. W. Contr., No. 427, 1931; Ap. J., 74, 43, 1931; H. Shapley, Proc. 

Nat. Acad. Sei., 19, 591, 1933. 
6 V. A. Ambartzumian, Comm. Burakan Obs., issue VI, 1951. 
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DISTRIBUTION OF GALAXIES 145 

c) The distribution of galaxies within a cluster is random and is subject to a proba- 
bilistic law which also is the same for all clusters. 

d) The distribution of cluster centers in space is random and what we propose to call 
u qua si-uniform.” To explain this term, we shall consider two cubes, ki and &2, of equal 
volume arbitrarily placed in space but nonoverlapping. A distribution will be called 
“quasi-uniform” if it satisfies the following two conditions: (i) Whatever the integer 
^ ^ 0, the probability that there will be exactly n cluster centers in k\ is always equal 
to the probability that there will be exactly n cluster centers in &2. We emphasize that 
this equality persists regardless of the location of the two regions ki and fe. (ii) The 
presence in ki of any particular number of cluster centers does not influence the proba- 
bility that fe will contain exactly n cluster centers (w = 0, 1, 2, . . .), and this is regard- 
less of whether ki and k2 are near by or distant, provided that they do not overlap. 

e) Whatever may be the motions of the cluster centers and of the galaxies within the 
clusters, they can be neglected. 

The last two postulates require some comments. Postulate d characterizes what we 
call “quasi-uniformity of a distribution.” Ordinarily, when one speaks of statistical uni- 
formity in space, one has in mind a distribution of points obtainable from a particular 
machinery of distributing these points. This machinery consists in dividing a bounded 
portion 33 of the space into a finite but very large number N of elementary volumes t) of 
equal size. Then, in order to place a point Pi in 93, we select one of the elements t), with 
equal chance l/A" for each element, and place Pi in the element selected. Once the point 
Pi is placed, we proceed to place the next point, P2, in exactly the same manner and with- 
out regard to the position assumed by Pi, etc. As is well known, if N and the number of 
points Pi, P2, . . . , are both large, then the distribution resulting from the above opera- 
tions will conform with the law of Poisson: whatever be the volume 93* partial to 93, the 
probability that it will contain exactly n points P is given by the formula 

where X is a suitable constant. This machinery of distributing points P in the volume 
93 may be called the “Poisson machinery.” 

It will be seen that the Poisson machinery of distributing points possesses the char- 
acteristic of quasi-uniformity which we described. We discuss this point in some detail 
for the reason that the converse statement is not true, so that a quasi-uniform distribu- 
tion of points need not necessarily be the Poisson distribution. In order to illustrate this 
circumstance, consider the following machinery of distributing points Pi, P2, . . . , in the 
volume 93. As formerly, this volume 93 is divided into a large number N of elements 
of equal size. Then a die is thrown, and the number d of dots on the upper face is noted. 
Further, out of the N elementary volumes, one is selected, with the probability of any 
particular selection equal to \/N. Then the first d points, Pi, P2, . . . , Pd, are put into 
the volume element selected. This process is then repeated many times. The machinery 
just described will satisfy postulate d. However, it is obviously not the Poisson machin- 
ery.. It, and many similar machineries, produce what is known as contagious distributions 
of points—this in spite of the characteristic of quasi-uniformity. 

The purpose of formulating postulate d in this particular form is to cover the possi- 
bility that the cluster centers are distributed in space independently of each other (that 
is, Poisson-wise) and also the possibility that they themselves are clustered. In the latter 
case the presence of a cluster center in a given volume would increase the probability 
that the volume includes some additional cluster centers. 

Now we must comment on postulate e. Although not explicitly stated, postulates a-d 
refer to a particular moment of time, for example, to the moment of taking photographs. 
The galaxies photographed are generally at different distances from the observer and, 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
52

A
pJ

...
11

6.
.1

44
N

 

146 J. NEYMAN AND E. L. SCOTT 

owing to the time spent by light in traveling to the observer, the positions and the ap- 
parent magnitudes of the individual galaxies photographed refer to different moments. 
Should the galaxies and/or the cluster centers have substantial velocities, then the dis- 
tribution of their positions at these different times need not conform with postulates 
a-d, even though the distribution of simultaneous positions does. The purpose of postu- 
late e, then, is to eliminate the consideration of this possibility. An alternative postulate 
might be one reflecting the hypothesis of an expanding universe. 

The foregoing structural postulates are used below to obtain general forms of the dis- 
tributions of galaxies on the photographic plate. In order to obtain these distributions 
numerically, it is necessary to adopt further hypotheses specializing the distributions 
mentioned in the structural postulates. These additional hypotheses are described as 
“secondary” postulates. They can be formulated in many different ways. Our attitude 
toward any particular function selected is that toward an interpolation formula. The 
final choice will depend upon comparison with observations. In the meantime, our pref- 
erence is for as few parameters as possible combined with flexibility and simplicity in the 
formulae.7 

II. PRELIMINARY REMARKS 

Under this heading we combine certain known formulae of the calculus of probability 
which will be used frequently. 

1. Fundamental formula on conditional expectations.—In the following we shall use fre- 
quently the fundamental formula connecting conditional and absolute expectations. Let 
X and Y be any two random variables. Let E{Y\X = x) denote the conditional expec- 
tation of F, given that the random variable X assumed a specified value x. Further, let 
E{Y) denote the unconditional or absolute expectation of F. We assume that both these 
expectations exist. Starting with E{Y\X = a;), we define a new random variable E(Y\X) 
as follows : Whenever X assumes any value æ, then E{Y\X) assumes the value E{Y\X = 
x). The fundamental formula mentioned is, then, 

E ( F) =E{E(Y\X) }. (2) 

2. Probability generating function.—Let Xi, X2, . . . , Xa be a set of s random variables, 
all capable of assuming only nonnegative integer values 0, 1, 2, ... . Further, let fi, /2, 
. . . , be arbitrary nonnegative numbers not exceeding unity. Then the probability 
generating function of Xi, X2, . . . , Xs is defined as the expectation of the product 

. . . tf*. The generic notation for the probability generating function is 

Gx^ v2 > • • • » x8(h> h, , ts) 

i=i 
(3) 

CO OO 00 3 

= •••X fl^pi (*! = »:) (^2 = w2) . . . (X8 = «s) }, 
n=0 n^O n =0 ¿ = 1 1 2 s 

where PKXi = Wi)(X2 = nf) . . . (X8 = nf}) denotes the probability that simultane- 
ously Xi = wi, X2 = w2, . . . , Xg = and where the multiple series in the right-hand 
side is uniformly convergent for 0 ^ 1, f = 1, 2, . . . , j. 

A probability generating function is differentiable indefinitely with respect to all its 
arguments for 0 rg < 1, i = 1, 2, . . . , s. The partial derivatives of the probability 
generating function are connected with the probabilities P{(Xi = ^i)(X2 = nf) . . . 

7 The results obtained in connection with certain secondary postulates will be published in a subse- 
quent paper by the authors and C. D. Shane. 
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DISTRIBUTION OF GALAXIES 147 

(Xs = na)} and also with the moments and product moments of the variables Xi, X^, 
■ ■ ■ , Xa. In fact, formula (3) implies that 

P{ (X1 = n1)(X2 = n2). ..(Xs = ns) 

\n 

dt^dty . . . dtn* 12 a 
fi — 4- -i 71A 

(4) 
:° ?=7 

Also, if the derivative of the right-hand side of expression (4) exists at ¿1 = ¿2 = • 
= 1, then 

Qnl+n2+. . . +naQ „(^7 I 

U.Í7ÁrT-“tó!t d^id/”2 . dlnt 
(5) 

Because of these properties, the study of distributions of random variables capable of 
assuming only nonnegative integer values is reducible to the study of the corresponding 
probability generating functions. This method was introduced by Laplace. A modern 
presentation referring to single variate distributions is given in a recent book by Feller.8 

III. GENERAL STOCHASTIC MODEL OE THE SPATIAL DISTRIBUTION OE GALAXIES 

In this section we restate in mathematical form the several structural postulates which 
underlie the stochastic model of the universe studied in this paper. However, it is con- 
venient to change the order in which the postulates are listed. 

Postulate 1.—To every region R with volume 33 there corresponds a random variable 
y(R) representing the number of cluster centers falling within R. The distribution of y(R) 
depends on the volume 33 only. It does not depend either on the shape of the region R or 
on its location. 

The probability generating function of y(R) will be denoted G7(/|33). 
Postulate 2.—Whatever be the nonoverlapping regions Ri, R2, R3, ^ the correspond- 

ing random variables Y(Rj), j = 1, 2, . . . , are completely independent. 
Postulates 1 and 2 deal with the probability distribution of the number of cluster cen- 

ters within any given region R in space. In the following it will be necessary to consider 
as random the position of a single cluster center, given that it is located in R. This ap- 
pears to require a special postulate (postulate 3) to the general effect that, as far as their 
positions in R are concerned, all clusters are, in a sense, equivalent. Then postulates 1, 
2, and 3 combine to imply that the position of any given cluster is random. This point is 
discussed in some detail in Section IV. 

Postulate 3.—Let R be an arbitrary region of positive volume 33 > 0 and Ri an ar- 
bitrary part of R. If R is known to include exactly n > 1 cluster centers numbered Ci, C2,. 
. . . , Cn, and ¿/ ai < a2 < ...< is an arbitrary combination of m < n numbers se- 
lected out 0/ 1, 2, . . . , n, then the probability that Ri will contain exactly m cluster centers 
and that these cluster centers will be Cai, Caj, • • • , Cam is independent of the combination 
ai, a2, . . . , am and is equal to the conditional probability that y(Ri) = m, given that 
y(R) = n, divided by the number of combinations of m objects out of the given n. 

We shall use the symbol CÆR\ to denote that the cluster center Ci is included in R\. 
Also the notation9 

m 

n (Ch e Ri) = (Ca, e Ri) (C0! e *:) • • • (Cam e rx) « 
¿=1 

8 Probability Theory and Its Applications (New York: John Wiley & Sons, Inc., 1950). 
9 This notation is very convenient and was used in formula (3). The reader unaccustomed to it may 

wish to consult J. Neyman, First Course in Probability and Statistics (New York: Henry Holt & Co., 
1950). 
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148 J. NEYMAN AND E. L. SCOTT 

will denote the logical product of the m propositions Ca¿C for i = 1, 2, . . . , w. The 
meaning of this term is: All the cluster centers C0l7 Ca2, . . . , Cam are included in R\. 

With this notation, postulate 3 may be expressed by the formula 

=w]n |t(£) =n\ 
i = l (7) 

ml (n-m)l . rz>, x 
=  P{y(Ri) — m \ y (R) =n\. 

Postulate 4.—To every cluster center there corresponds a random variable v, represent- 
ing the number of galaxies belonging to this cluster. The distribution of v is the same for all 
clusters. 

The probability generating function of v will be denoted by Gv{t). 
Postulate 5.—The random variables vi, . . . , , representing the numbers of 

galaxies in different clusters, are completely independent. 
Further below we shall need symbols to denote the co-ordinates of a cluster center 

and those of a galaxy, which we shall treat as a point. In cases where a random cluster 
center is considered, its co-ordinates will be treated as random variables and denoted by 
the capital letters U,V,W. The particular values assumed by these variables will be de- 
noted by the corresponding lower-case letters u, v, w. Similarly, the random variables 
representing a random galaxy will be denoted by the capitals X, F, Z, and the particular 
values of the variables by x, y, z. The co-ordinate axes will be assumed orthogonal, with 
their origin at the observer and with arbitrary directions. 

Postulate 6.—Given that the center of a cluster is at a specified point (u, v, w), the posi- 
tion of every galaxy belonging to this cluster is random and the probability density of its co- 
ordinates X, Y, Z is represented by a function f (??) depending only on the distance 

—-w) 2+ (y — z;) 2-|- ( 2 — w) 2}1/2 (8) 

between the cluster center and the position of the galaxy. The function {{t}) is the same for all 
clusters and is continuous for all values of rj. 

Postulate 7.—Whatever be the galaxies gi, g2, • . • , gm, • • • , whether belonging to the 
same cluster or not, the triplets of random variables (Xm, Ym, Zm) representing their co-ordi- 
nates, m — 1,2, ... , are completely independent. 

The foregoing seven postulates determine what is considered to be the structure of the 
spatial distribution of galaxies. As such, of course, this distribution is unobservable. The 
following postulate 8 is meant to establish a link between the unobservable distribution 
of galaxies in space and what can be observed on photographic plates. It is convenient 
to make this link in two steps. First we consider an idealized photographic plate which, 
for any given observational setup, has a fixed limiting apparent magnitude, constant 
for the entire plate. If the apparent magnitude of a galaxy is less than this limiting mag- 
nitude, it will sometimes be convenient to say that this galaxy is “visible” in the observa- 
tional setup considered. The relation between the numbers of galaxies visible on an 
idealized plate and the counts on actual plates is dealt with in a later paper by the 
authors jointly with C. D. Shane, in which empirical data are discussed. 

Postulate 8.—Given an observational setup, to every galaxy with co-ordinates (x, y, z) 
there corresponds a probability 0(£) that the apparent magnitude of this galaxy will be less 
than the limiting apparent magnitude of the idealized photographic plate. This probability 
depends only upon the distance 

£ = { * 2 y 22 } 1/2 (9 

to the galaxy and is continuous for all values of 
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DISTRIBUTION OF GALAXIES 149 

It will be seen that, in order to obtain numerically the characteristics of the distribu- 
tion of galaxies visible on photographic plates, many details of the foregoing general 
postulates will have to be specialized. Thus, for example, the probability 0(£) will have 
to be specialized in accordance with the limiting apparent magnitude of the idealized 
plate, with the assumed form of the distribution of absolute magnitudes of extragalactic 
nebulae, and with the effect of red shift. All these details are independent of the struc- 
tural postulates. It is interesting, however, that postulates 1 and 2 do establish a limita- 
tion on the probability generating function Gy{t 133) of the number of cluster centers 
falling in a region of volume 33. 

IV. IMPLICATIONS OF POSTULATES 1 AND 2 

In this section we discuss briefly the general form of the probability generating func- 
tion Gy{t 133) as implied by the two postulates 1 and 2. Let Ri and R2 be two nonoverlap- 
ping regions of finite volumes 33i and 332, and let R\ u R2 be the union of R\ and R2. 
Finally, let 71, 72, and 73 stand for the numbers of cluster centers in Ri, R2 and R\ u i^2, 
respectively. Obviously, 73 = 71 + 72. Because of the independence of 71 and 72, 

^a|a3i + *2) ^G7a|S51)G7a|352). UO) 

Equation (10), valid for all 33i and 332, is, then, a consequence of the assumption that the 
distribution of cluster centers is quasi-uniform. It is easy to see that the converse is also 
true and that every probability generating function depending on a parameter 33, which 
satisfies condition (10), will determine a quasi-uniform distribution of cluster centers. 

Distributions satisfying condition (10) were studied by Paul Lévy,10 who termed them 
“infinitely divisible.” It follows from Lévy’s work that, for every 33, 

g7«|sb) = i)]*5, (id 

so that, in order to know the probability generating function of y{R) corresponding to 
an arbitrary region of volume 33, it is sufficient to know this distribution for 33 = 1. 

It can be shown11 that the function Gy{t \ 1) must be of the form 

00 
G7 (¿ I 1) = exp j — Ao+ hhtk \ = exp [h (t) }, say , (12) 

1 k=i 

where /zo, hi, . . . , fe, . . . are all nonnegative numbers subject to the restriction that the 
00 00 

serieshk is convergent and thatN^ hk = ho. Conversely, if the series formed by the 
k=l 

nonnegative numbers hi, /z2, . . . , fe, . . . is convergent and if its sum is equal to fe, then 
the right-hand side of equation (12) represents a probability generating function such 
that, whatever 33 ^ 0, the expression (11) is also a probability generating function. It 
will then satisfy equation (10). Incidentally, formulae (11) and (12) imply that, what- 
ever. 33, the probability that the number of clusters y(R) = 0 is necessarily a positive 
number. 

If fe = fe = . . • = 0, then equation (11) reduces to 

Gy{t \ SB) = g-W1-*’ ; (13) 

which is the probability generating function of the Poisson distribution. On the other 
hand, if at least one of the hk, for Æ 2, is positive, then, whatever 33, the number of 

10 Théorie de Taddition des variables aléatoires (Paris: Gauthier-Villars, 1937). 
11J. Neyman and E. L. Scott, in preparation. 
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150 J. NEYMAN AND E. L. SCOTT 

cluster centers y(R) does not follow the Poisson law. However, it is interesting to notice 
that the most general distribution of y(R) is, in a sense, reducible to Poisson distribu- 
tions. 

To see this, denote by jui, jlí2, . . . • • • a sequence of completely independent 
Poisson variables with expectation of nk equal to 33^ ior k = 1, 2, 3, ... . Finally, let 

00 

Mo = ^2 ^ • (14) 

4=1 

Because of the independence of the fxk) the probability generating function of mo is equal 
to the product of the probability generating functions of products kßk- Since the proba- 
bility generating function of ¡jLk has the form (13), with hk replacing /z0, it is obvious that 
the probability generating function of the product kiik is given by 

. (15) 

It follows that the probability generating function of mo is 

00 
expT — 33^2 tk) 1 , (16) 

L 4 = 1 J 

which, because of formulae (11) and (12) and because ho = ^2 coincides with Gy(t 133). 
4=1 

As a result of all this, we may state that the most general quasi-uniform distribution of 
cluster centers requires that the number y{Ri) be distributed as is the sum (15) of the 
Poisson variable mi plus double the Poisson variable M2 plus triple the Poisson variable 
M3 and so forth. 

Formulae (11) and (12) imply that, if the expectation of y{R) exists, then the func- 
tion h(t) is differentiable at t = 1 and E [tCR)] =: 33^(1), so that the derivative h'{\) 
represents the average number of cluster centers per unit volume. 

As mentioned above, when it is given that an arbitrary region R of volume 33 > 0 
contains exactly w > 0 cluster centers, postulates 1,2, and 3 imply that the co-ordinates 
Ui, Vt1 and Wi of the ith cluster center are random variables. The joint probability dis- 
tribution of all such triplets has interesting properties, some of which depend on the 
function h{t). One of the properties is needed in the present paper and will be quoted 
without proof as follows. 

Whatever he the quasi-uniform distribution of cluster centers and whatever he the number 
n ^ 1 m/ cluster centers known to he contained in a region R of finite volume 33 > 0, the con- 
ditional probability density function, given n, of the co-ordinates U, V, W of any one of these 
cluster centers taken separately is constant over the region R and, therefore, is equal to 1/33. 

Another property of the distribution which is of particular interest may be stated as 
follows. 

Given that the region R of volume 33 > 0 contains exactly n > 1 cluster centers, say Ci, 
C2, . . . , Cn, such that P{y(R) = n|33} > 0, the conditional probability Trt that exactly k 
out of the cluster centers C2, C3, . . . , Cn will coincide with Ci is given by the formula, 

{k+\)hk+lP{y{R) =n-k-\\%] 
7^4 ^ 1 

^(« + i)Äm+lJp{T(i?) =«-w-i|5ß| 17> 
m = 0 

for Æ = 0, 1, . . . , w — 1 . 
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DISTRIBUTION OF GALAXIES 151 

It is seen that, if any of the numbers hzy . . . , hn is positive, then this probability may 
be positive. In particular, if Äi = Ä2 = • • • = ^n-i = 0, but hn > 0, then 7rn_i = 1. 
This means that, in this case, all the n cluster centers present in R will coincide or, in 
other words, that, instead of n distinct cluster centers, there will be just one multiple 
cluster center of multiplicity n. 

The final picture, then, of the quasi-uniform distribution of cluster centers is that, in 
the general case, it contains a Poisson distribution of single clusters with the expected 
number of cluster centers per unit volume equal to h\. In addition, it contains a Poisson 
distribution, independent of the first, of double clusters with the expectation of the num- 
ber of centers per unit volume equal to h^. In addition, there will be Poisson distributions 
of cluster centers of triple, quadruple, etc., clusters, all completely independent. If hk — 0, 
then there will be no clusters of multiplicity k. In particular, if /z2 = ^3 = . . . = 0, then 
all the clusters will be single clusters. 

Proofs of these properties of the general quasi-uniform distribution must be relegated 
to a separate publication in a statistical journal.11 Some of these properties are fore- 
shadowed in the work of Paul Lévy already quoted. 

V. JOINT DISTRIBUTION OR THE NUMBERS Ah AND N2 OE GALAXIES VISIBLE 
WITHIN TWO ARBITRARY SOLID ANGLES 

Consider two arbitrary regions, coi and w2, overlapping or not, which will be photo- 
graphed on idealized plates. The same letters coi and co2 will be used to denote the two 
solid angles, with vertices at the observer, corresponding to these regions. The observa- 
tional setups for the two regions may be the same or not, so that the limiting magnitude 

of the photograph of coi need not be the same as the limiting magnitude m2 of the 
photograph of co2. For convenience, we shall assume 

Denote by Ah and Ah two random variables representing, respectively, the numbers 
of galaxies visible on photographs taken over coi and a>2. The purpose of this section is to 
deduce the joint probability generating function Gw:, ¿2) of Ah and Ah as implied by 
the eight structural postulates enumerated above. 

Briefly, the method used consists in dividing the whole space into an infinity of 
bounded regions of convenient shape. Each region will contain a certain number of clus- 
ter centers. Galaxies from the corresponding clusters may fall and be visible either in 
coi or in co2 or in both. Thus Ah and Ah are represented as sums of contributions from each 
of the regions contemplated. Further, the contribution of each particular region is split 
into as many components as there are cluster centers in this region, so that Ah and Ah 
appear as double sums. The advantage of this procedure is that, according to the postu- 
lates adopted, the contribution to Ah of any one particular cluster is independent of that 
of any other cluster, so that Ah appears as the sum of completely independent compo- 
nents. The same applies to Ah. It is noteworthy, however, that the contributions to Ah 
and Ah from any one cluster are dependent. 

After this general description, we may proceed to details. Let A be an arbitrary posi- 
tive number which we shall later make tend to zero. Divide the whole space into an in- 
finity of equal cubes R\, R2, . . . , i?/, . . . , of dimensions A, by passing three sequences 
of planes distant by A, each sequence parallel to one of the co-ordinate planes. The cubes 
Rj will be described as the elementary cubes of dimensions A. The order in which they 
are numbered is immaterial. Obviously, the volume is the same, equal to A3. 

Simplifying the notation adopted earlier, we shall use the symbol 7/ to denote the 
number of cluster centers in R¡. Assume for a moment that 7,- > 0 and consider the Æth 
cluster center in Rj. Denote by Ah,*; the number of galaxies visible in coi which belong to 
the Æth cluster centered in R^. Similarly, N2jk will denote the number of galaxies visible 
in co2 which belong to the same Æth cluster centered in Ry. In further work it will be con- 
venient to consider the variables Ahy¿ and A^ for Æ = 0. In order to do so, we shall adopt 
the convention Ahyo = A^/o = 0. 
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152 J. NEYMAN AND E. L. SCOTT 

With this convention, Ai and Nz may be represented as sums of infinitely many com- 
ponents of the type, say, 

7 y 
Nij= tor i= 1, 2 . (is) 

A:= 0 

Obviously, Nij represents the contribution to N% of all the clusters centered in Rj and is 
equal to the sum on the right of formula (18), whether is zero or not. The postulates 
adopted imply that the couples of random variables (Mi, ^21), (^12, ^22), . . • , {Nih 
Ntj), . . . are completely independent. Taking this into account and noting that 

CO 

Ni = ^ Nij, for ¿=1,2, (19) 
2=1 

we may write 
00 

at2 (/i, ¿2) = ¿2) • (2°) 
2=1 

Thus, in order to compute the joint probability generating function of TVi and ¿V2, it is 
sufficient to compute that of the^th components (18) and to evaluate the infinite product 
on the right-hand side of equation (20). 

In order to compute the probability generating function of Nij and N2j, we start with 
the definition and then apply formula (2), which connects absolute and conditional ex- 
pectations: 

GNlj, *2i (h, h) =E (if <’9 =E\E I yj) ]. (21) 

If is zero, then N\j = N2j = 0. Otherwise, Nij and N2j are sums of the same num- 
ber 7/ of components Nijk and N2jk, respectively. Each pair (¿Viy^, N2jk) represents the 
contributions to Ni and N2 from the &th cluster centered in Rj, The postulates adopted 
imply that all the 7/ pairs are completely independent. Also, the distribution of each of 
the 7?- clusters is exactly the same. Therefore, the joint distribution of each pair (Nijk, 
N2jk) must be the same, coinciding with that of (A'iyi, A^i)? say. For these reasons, 
whether 7/ has a positive value or is zero, 

E (ti 1?¿2 2ÎI 7y) := [GwljV (/1, ¿2) ]7? ; 

and formula (21) may be rewritten as 

Gn^-, N2j(h> h) =E{ [GNlji> n2]-1 (h, ^2)]Ti} . (23) 

Here k) represents the joint probability generating function of the contribu- 
tions Niji to Ni and N^i to N2 of any one of the clusters known to have its center in the 
elementary cube Rj. Referring to the definition of the probability generating function of 
the variable 7y corresponding to Rj, it is easy to see that formula (23) implies 

Gn^-* N2j (h, h) =Gy[G^l].l, Ni.l(ti, t2) I A3] (24) 

or, using formulae (11) and (12), 

Gn^-, n2j (h> ¿2) = exp {Ash [G.v1?v ^2/1 tti, ¿2) ] } • (2S) 

Thus, in order to compute the joint probability generating function of Nij and N2j, it 
is sufificient to compute that of a single pair of components (A^iyi, N2ji) and substitute the 
result for the argument of the probability generating function of 7y. 
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Using formulas (20) and (25), we have 
oo 

GN^N^ihih) — exp {A3 ^ [Gx^.,, n0.-, (hj h)] } • (26) 
2 = 1 

The general form of G^^ mnih, fo) be obtained in the next section. Here we shall 
notice that the series on the right-hand side ot formula (26) need not be convergent. 
However, the cases of divergence are easily interpreted. Owing to the particular mean- 
ing (3) of a probability generating function and because h(t) S 0, if the series diverges 
at h = ¿2 = 0, this means simply that P{(iVi = 0)(i\^2 = 0)} = 0. If the same series 
diverges for htz > 0, then all the probabilities P{ (Ni — ni)(N2 = fh)) = 0 for all values 
of ^1,^2 = 0, 1, 2, ... . This is interpreted to mean that, in this particular case, the prob- 
ability that there will be an infinite number of visible galaxies in at least one of the solid 
angles coi and C02 is unity. While these and similar cases are theoretically possible, since 
they do not correspond to empirical facts, we shall consider only such functions /?(/), 
Gy{t),f(ri), and 0(£) with which the series on the right is convergent for all values of h 
and ¿2, 0 ^ h, ¿2 ^ 1, and, therefore, formula (26) is different from zero. 

VI. FINAL FORM OF Gm, Nzih, ¿2) 

The probability generating function of the variables TViyi, is obtained by using 
certain considerations of a character somewhat different from those above. For this rea- 
son it was thought useful to treat the problem in a separate section. The elementary 
cube Rj may contain a number of cluster centers. However, we are now interested in 
only one of them, namely, the first. The letters U, V, W will be used to denote the co-or- 
dinates of its center so long as these co-ordinates remain random. The letters u, v, w will 
be used to denote the particular values that U, F, and W may assume. The random 
variable representing the number of galaxies in the cluster will be denoted by v. We be- 
gin with the definition of the probability generating function and apply formula (2) 
twice. First we write 

GNljl, Nljl (tu t2) =E =E [E \U, V,W) ]. (27) ' 

Next we consider a fixed system of values u, v, w and consider 

E(ti,:iH2
Ni’l\u, v,w) =E[E(t1

NliH2
N!’'\u, v,w,v) ]. (28) 

In order to proceed further, we consider the mth galaxy of the cluster and two random 
variables am and ßm defined as follows: If the galaxy falls in the solid angle wi and is 
visible in it, then aw = 1. Otherwise, am = 0. If the mth galaxy falls in the solid angle 
co2 and is visible there, then ßm = 1. Otherwise, ßm = 0. Obviously, the random vari- 
ables am and ßm are dependent. Because of postulate 6, the joint distribution of (a w, ßw) 
is the same for all w = 1, 2, . . . , y. Also, because of postulate 7, all the couples (ai, ft), 
(a2, ft), ... , (a„, ft) are completely independent. Finally, given a fixed value of *> > 0, 

9 V 
N2jl=^2ßm. 29) 

m=l m = l 

Repeating the reasoning which now must be familiar to the reader, we find that 

E a/13'1^'11 U, V, W) =Gv [Ga,, /), (tu t2 \U, V,W)]. (30) 

In postulate 8 we introduced the probability that the apparent magnitude of a galaxy 
at distance £ from the observer will be less than the limiting magnitude of the idealized 
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plate. Because the observational setups used to photograph the regions a>i and co2 need 
not be the same, it is necessary to make a distinction between 0i(£) and 02(0 correspond- 
ing to the setups to be used for regions coi and co2, respectively. 

In order to compute the probability generating function of ai and ßi, given that the 
co-ordinates of the corresponding cluster are u, v, w, denote by coioo2 the common part 
of the solid angles coi and co2 and introduce the following probabilities. 

Let pi(u, v, w) denote the probability that a galaxy from a cluster centered at (u, v, w) 
will be visible on the plate taken over the region coi but not on the plate taken over co2. 
Because we have assumed that the limiting magnitude m\ ^ w2, we have 

,»)-//// (??) #i (£) dxdyd z . OD 
«i -£0^2 

Let v, w) denote the probability that a galaxy from a cluster centered at (u, v, w) 
will be visible on the plate taken over a>2 but not on that taken over coi. Obviously, 

p2 {u, V, w) = //// (y) 02 (i) dxdyd z 

+//// (>?)[02(¿) — dxdy d z . 

Finally, let pz(u, v, w) denote the probability that a galaxy from a cluster centered at 
(u, v, w) will be visible on both plates, 

pz (u, v, w) -up (v) 0i (?) dxdyd z . 03) 
£0^2 

As mentioned, the present general statement of the problem is meant to apply to two 
kinds of practical situations. In the first we contemplate counts of nebulae in nonover- 
lapping regions photographed with the same instrument, so that 0i(£) = 02(?)- In this 
case coico2 is empty, and the integrals over this region are zero. The second situation con- 
templated is that in which the photographs are taken with different instruments. The 
most important case of this category is when coi and co2 coincide and thus coincide with 
their common part coiaj2. In this case the integrals taken over coi — a>ia;2 and over 
co2 — are equal to zero, so that, in particular, pi(u, v, w) = 0. 

Using the probabilities (31), (32), and (33), the probability generating function of ai 
and ßi is obtained easily. In so doing, for the sake of brevity, we shall omit the reference 
to (u, v, w) from the symbols of the three probabilities. We obtain 

Ga^ ßx (¿1, ¿2) = 1 — ( 1 — ¿l) ~ ^2 ( 1 ~ ¿2) P<1 (1 t\h) (34) 

and, therefore, using formula (30), 

E I M, î>, w) = G, [ 1 - M1 - 4) - M1 - ¿2) - M1 - 44) 1 • (35) 

In order to obtain the probability generating function of Nin and A^/i, we use formula 
(27) and the result quoted at the end of Section IV to the effect that, given that a cluster 
center is contained in the region Rj of volume A3 > 0, the probability density of the co- 
ordinates of the cluster center is constant over Rj and equal to 1/A3. Thus we have 

Gn,^, N,u (4, 4) 

= ^ JffGA\-pp\-h) — />2 ( 1 — 4) — ÿs ( 1 — 44) ] dud vdw. (36) 
'Ri 
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This formula may now be substituted in formula (26) to obtain the probability gen- 
erating function of N± and Ni- However, before doing so, it is convenient to use the as- 
sumption that the function /(17), representing the probability density of the co-ordinates 
of a galaxy, and also 0i(£) and fe(Ö are continuous and to apply the mean-value theorem 
to formula (36). Namely, the region R¿ must contain at least one point, say (uj, w¡) 
such that the value of formula (36) is equal to the integrand evaluated at this particular 
point. Denote 

pi (ujy Vj, Wj) = pa for ¿=1,2,3. 07) 
Then 

N2ji ^ =GV[1 — pij ( 1 — A) — p2j ( 1 — /2) — pzj ( 1 *“ /lA) ] . (3g) 

Substituting this result in equation (25), we obtain 

N2(hi fa) 

00 
= expj h(Gv[l -h) —¿>2/(1 —h) psj ( 1 -hh)}) I . (3W 

This formula is valid, irrespective of the value of A. Using the assumption that the 
series on the right is convergent for all values of fa and fa, it is easy to see that, as A —» 0, 
the series in the right-hand side, multiplied by A3, converges to a triple integral over the 
whole space, so that 

Gn^ n2 (hi fa) = *2) (40) 

with 
+ 00 

^ (hi fa) = Jf^{Gvil — P\( \ — h) — £2 ( 1 — ¿2) — ^3 ( 1 — hfa) ] } dud vdw , (4i) 
—00 - 

where the symbols pi,p27 pz have the meaning defined in formulae (31), (32), and (33), 
respectively. 

Formulae (40) and (41) determine the probability generating function of N\ and Ni 
in its final form. With the functions h(í), Gv(t), f(ri), and d(Q not specialized, formulae 
(40) and (41) reflect only the general structure of the universe contemplated and not the 
details considered unimportant. For this reason, the properties of formula (40) which 
are independent of the unspecified functions are of particular interest. 

VII. MOMENTS OF Ni AND N2 

In the present section we use formula (41) to deduce general expressions for the mo- 
ments and product moments of N\ and Ni in terms of the functions h(t), Gv(t),f(ri), and 
0(£). The formulae so deduced reveal certain interesting properties of the variables Ni 
and Ni which are independent of the particular forms that the four functions may pos- 
sess. Of course, in order to deal with these expressions, it is necessary to assume that the 
moments exist. This assumption appears very plausible and will be adopted from now 
on. More specifically, we shall limit our consideration to functions h(t) and Gv(t) which 
are indefinitely differentiable at / = 1. 

In Section II we mentioned that the derivatives of the probability generating function 
evaluated fa = fa — - - - = ta — 1 are connected with the moments of the variables 
concerned. A similar statement applies to the natural logarithm of the probability gen- 
erating function. Since formula (41) involves two such logarithms, namely, p(h, /2) and 
h(t), further work will be simplified if the connection between the moments and the 
derivatives of the logarithm of the probability generating function is given explicitly. 
The derivation of the formulae is elementary and therefore not given here. The formulae 
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reproduced refer to ^(¿i, ¿2), but the reader will have no difficulty in applying them to 
h(t)hy analogy. Although not explicitly marked, all the derivatives appearing in the for- 
mulae are assumed to be evaluated at both arguments equal to unity. The symbol oy8 

will be used to denote the central product moment of order r with respect to N\ and of 
order s with respect to 7V2, so that 

<Jrs=E{ [N1-E{Nl)Y[N2-E{N2)Y} (42) 

for r, s = 0, 1, 2, . . . . With this notation, 0-20 stands for the variance of Ah, etc. We have 

dti 
= E (Ni) , i=l 2 (43) 

d/2 
<720 E (N\) , (44) 

and a similar expression for d2\j//di\ : 

dhp 

dhdh 

d3^ 
d7[ 

<730 — 3 <720 + 2E (Ni) , 

d^ 

á^¿2_<r21 <rn’etC- 

(45) 

(46) 

(47) 

The product moments ovs may be estimated from empirical data. 
We now return to the expression for ^(/i, /2) given in formula (41) and compute the 

successive partial derivatives with respect to h and /2, substituting each time h = ¿2 = 1- 
In so doing, it will be convenient to write hj and Gj for the^th derivatives of h(t) and 
6>(/), respectively, evaluated at / = 1, and to write Rkmn for the triple integral 

+00 

Rkmn = JJf {pi + pzŸ (t>-i + pz)mpldudvdw. (48) 

Notice that the substitution oí ti = h — 1 into formula (41) reduces the arguments of 
both Gv and h to unity. 

Taking derivatives of the first order, we obtain 

E (N\) =^4iJ?iooj E {NY) = AiRqiq , (49) 
where 

A1 = hxGi . (so) 

Derivatives of the second order yield the following three formulae: 

<72o Æ (A^i) = A2R20O i (51) 

<7n= AvRiwA" A\Rqq\ (52) 

cr02 E (N2) = ^4 2-^020 5 (53^ 

where, for the sake of brevity, 

A2 = h^jri -fi h]Gr2 • (^4) 
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Taking derivatives of the third order, we obtain 

ö'so 3 (720 T 2-E ( Ah) ^ AsjRsoq , (55) 

0'21 — o'11 = A 3jR210 ~h A 2^101 y (56) 

CT]2 O'11 =: ^4^120 T ^2^011 

(Tqs 3 i702 + 2E (N2) — A3R-QZ0 , 58) 

where 

A3 — hzG\ -j- 3 h^iGz T hiGz . (59) 

The sequence of these equations can be continued indefinitely. However, the fore- 
going formulae are sufficient to give an idea of the nature of all the equations obtainable 
in this manner. The expressions on the left-hand sides are combinations of moments of 
Ni and N% and, therefore, can be estimated from empirical data. The expressions on the 
right-hand side are products or sums of products of quantities of two different kinds. 
First, there are quantities Aj expressible in terms of hi and Gi and thus, ultimately, in 
terms of moments of the variables 7 and v. It is important to notice that the X/s are in- 
dependent of the internal structure of the clusters, which is governed by the function 
/(?]), and of the distribution of apparent magnitude of galaxies, as reflected in the func- 
tion 0(£). Also, the quantities Aj are independent of the regions on and co2. 

The other kind of quantity appearing on the right-hand side of the equations are the 
triple integrals Rkmn* The simplest of these integrals, namely, Ahoo, -^oio, and Æ001, depend 
on the function 0(£) and on the regions on and C02 but not on anything else. In fact, 

■^100 = in 0i (?) dxdyd z , (60) 
wi 

T^oio = in 02 (?) dxdyd z , (6i) 

T^ooi = ¡if 0i (?) dxdyd z . (62) 
a>iW2 

It will be sufficient to prove only one of these formulae, for example, the first. Refer- 
ring to formulae (31) and (33), we have 

Pi + Pz = /iß (rj) 0i (?) dxdyd z , (63) 
CO 1 

and R100 is defined as the integral of this quantity with respect to u, v, w taken from — 00 
to + 00 for each of the three variables. Now the variables u, v, w enter into formula (63) 
only through 77. Therefore, changing the order of integration, we obtain 

+00 

R100 = ///h (O //// (7]) dud vdw^dxdyd z \ (64) 
co1 œ 

and it is easy to show that the internal triple integral is equal to unity regardless of the 
particular form of the function 

f(n) = f{ [ (x - u) 2 + (y - v)2 + (z-w)2]1^}, (65) 
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which, it will be remembered, represents the probability density of the co-ordinates of 
a galaxy belonging to a cluster centered at (w, v, w). This particular property of the func- 
tion /(t?) implies that, whatever be u, v, w, the integral of /(t?) with respect to x, y, z, 
taken from — oo to + oo for each variable, must be equal to unity. Making the substitu- 
tion 

u = x-{-x', y ~ y "Ty1 ? w=z+zf, (66) 

where and z' are new variables of integration, the internal integral in formula (64) 
is reduced to 

+ 00 

ffff{ [x't + y'* + z'*]'/*} dx' dy'd z' = 1 , («7) 

which, combined with formula (64), proves formula (60). Formulae (61) and (62) are 
proved in exactly the same manner. 

If it is assumed that the apparent luminosity of the galaxies varies inversely as the 
square of their distance (thus, if one ignores “red shift”) and that the absolute magnitude 
of the galaxies is a random variable independent of the distance, then the functions 
0i(£) and 02(£) are relatively simple, and the integrals (59)-(61) can be evaluated as 
explicit functions of the limiting apparent magnitude. The resulting formula for E(N¡) 
is well known.12 Ordinarily, it is deduced on the assumption that the luminous objects 
(stars or galaxies) are distributed in space Poisson-wise. It is interesting that the same 
formula appears to hold on the more general assumption that the galaxies appear in 
clusters and that the cluster centers are quasi-uniformly distributed in space. 

If the effect of red shift is taken into account, then the function 0(£) becomes compli- 
cated, and the values of 2?ioo, -Koio, and J^ooi must be obtained by numerical integration. 
The integrals Rhmn with k m n > 1 depend essentially not only on 0(£) but also 
on/(77). In general, their evaluation appears to require numerical integration. 

Perusing formulae (49)-(58), we see that they can be combined so as to eliminate the 
quantities Aj. The equations resulting from such eliminations connect the integrals 
Rkmn directly with the moments of N\ and AV Thus, for example, combining formulae 
(49)-(53), we obtain, say, 

Q (¿Oí, W2)  £110  
¡^200-^020 } ^ 

(68) 
^n^ioo ~R {N\)Roo\ 

which is an equation containing only integrals Rkmn and the moments of N\ and 
Similar equations can be obtained by eliminating ^2 and ^4 3 from formulae (51) and (55)- 
(58). 

The existence of relations between the integrals Rkmn and the moments of N\ and N<¿ 
is a very important fact because it creates the possibility of studying the internal struc- 
ture of the clusters, more specifically, the functions/(77) and 0(£), in a manner which is 
independent of how the cluster centers are distributed in space and independent of the 
variation of the number of galaxies from one cluster to another. While details of this 
study must be relegated to a later paper, some indications as to how this can be achieved 
are given in Section IX. 

Returning to the quantities Aj, we see that they represent derivatives at ¿ = 1 of the 
function h[Gv(ij\. This function can be interpreted as the logarithm of the probability 
generating function of the random variable f defined to be the total number of galaxies 

12 W. M. Smart, Stellar Dynamics (London: Cambridge University Press, 1938), p. 263. 
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belonging to all the clusters which have their centers in a specified region of unit volume. 
Once reasonable approximations to the functions/^) and 0(£) have been determined and 
given a substantial set of empirical material, any number of moments A j can be obtained 
from equations such as (49)-(58). The estimates of these moments can then be used to 
approximate the distribution of f. Although of interest, f is not what one might consider 
a basic concept in the structure of the universe contemplated. Instead, our interest is 
directed toward the variables 7 and v. 

Since the moments of Aj are simple combinations of quantities hi and (7¿, which, in 
turn, are simple functions of the moments of 7 and p, one might hope that knowledge 
of the moments for^’ = 1, 2, . . . , s would make possible the evaluation of at least a 
few of the moments of 7 and v taken separately. Unfortunately, this is not the case be- 
cause each depends on both of the quantities hj and Gy, which do not appear in Ai, A2, 
. . . , A y_i. Thus, even with the knowledge of the functions /(??) and 0(£), unless inde- 
pendent information regarding the distribution of 7 and v is obtained from other sources, 
no separate moments of 7 and v can be determined from any finite set of moments of TVi 
and N2- The next section gives an even stronger result to the same general effect. 

VIII. NONIDENTIFIABILITY OP THE DISTRIBUTION OP CLUSTER CENTERS 

In the present section we shall show that the same joint distribution of Ni and N2 can 
result from an infinity of different pairs of distributions of 7 and v and that, therefore, 
knowledge of the joint distribution of Ni and N2 is not sufficient to determine the dis- 
tributions of 7 and v separately. 

For this purpose we return to formula (41) and notice that the integrand depends not 
on the functions h(t) and G„(/) taken individually but rather on the result of substituting 
G„(l) instead of the argument in k(t). Thus the probability generating function Gwi, 2v2(h, 
¿2) depends on the nature of the function, say, 

H(l) = h [Gv (/) ]. (69) 

Hence, if the two functions h(t) and G„(0 are replaced by any other two functions, say, 
h*(t) and G*(/), such that, however, 

h* [G? {t)]=h [Gv (0 ], (70) 

then this change will not produce any change in the joint distribution of N\ and N2- The 
existence of functions h*(i) and G*(¿) having the above property is assured by the fol- 
lowing theorem. 

Theorem.—Whatever he the {infinitely divisible) distribution of y with probability gen- 
erating function 

G7(¿|«= 1) = eMO, (71) 
where 

CO 
h{t) = — A0 + X hktk ’ (72) 

k=l 

with hk ^ 0, k = 0, 1, . . . and h(l) = 0, and whatever be the distribution of v, with proba- 
bility generating function G„(t), there exists an infinity of Poisson laws with probability gen- 
erating functions, say, 

G* 01 X) = ex(i_l) , (73) 

where X is any positive number exceeding a certain limit Xo, and a set of corresponding proba- 
bility generating functions G*(t|X) such that 

Gy [Gv (t) I = 1 ] =Gy [G* G I X) I X]. 74) 
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Proof.—Tn order to prove formula (74), we use equation (73) with the parameter X 
unspecified, substitute it in (74), and take the logarithms of both sides. Using formulae 
(69) and (71), the identity to be proved is reduced to 

CO 
H{t) =h[G,m = -h+^hk[G,it)]k 

k=1 (75) 

= X [G* (¿|X) - 1] 
or to 

Gf a|X) = (76) 
X 

It is seen that every value of X > 0 determines a corresponding function G£(/|X). In 
order to complete the proof of the theorem, we have to show that formula (76) is a prob- 
ability generating function. We shall show that this is true for an infinity of values of X 
—in fact, for all values of X which exceed a certain limit Xo. 

In order that formula (76) may be a probability generating function, it must have the 
following properties : 

(i) 

(Ü) 

(in) 

G* ( 11 X) =1, 

G*(0|X) ê0, 

dmG* (/1 X) . n 
for 

In order to see that formula (i) is satisfied, we substitute ¿ = 1 in formula (76) and then 
refer to formula (75). Since Gv(l) is necessarily unity and since h(l) = 0, we obtain 
#(1) = 0 and formula (i) follows. 

Proceeding to property (ii), we substitute / = 0 in formula (76) and again refer to 
(75). Since G>(0) = Pj? = 0} = p0, say, we have 

G* ( 01 X) = 1 +1 ¿7 ( 0), (77) 
X 

where 
oo 

H(Q) = -h0+^hkpk
0, (78) 

k=l 

which is easily seen to be a finite negative number. Thus, condition (ii) will be satisfied 
if X ^ —H(0) = Xo, say. 

In order to prove condition (iii), we notice that 

dmG* 0| X) 
dtm 

_ 1 dmH it) 

t—o x dtm 

1 dm 

XU™ 

co 

2 Jr=l 
hk [G, il)]k 

¿=0 

(79 

Since the derivatives of Gv(t), evaluated at / = 0, are all nonnegative and since the con- 
stants hk è 0 by hypothesis, property (iii) follows. 

Obviously, formula (74) implies formula (70). 
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In order to illustrate the bearing of this theorem, assume for a moment that the true 
distribution of the number 7 of cluster centers per unit volume is a particular negative 
binomial law with probability generating function 

(/1 23 = 1) = [2 - Z]“1 (so) 

and that this is combined with a specified binomial distribution of the number v of gal- 
axies per cluster, so that 

G„(t) = tid+Ol 1000 . (SD 
Then 

H(t) = h [Gv (t) ] = — ln{ 2 — [i(l + ¿)] 1000 }, (82) 
and 

G* (t) = 1-Ilni2- [§ (l+Ol 1000 !, (83) 

with 
-H(0) = In{ 2 — (i) 1000 l = X0 . 84) 

It follows that the joint distribution of N\ and N2 resulting from the true distributions 
(80) and (81) will be identical with that which would be observed if the number of cluster 
centers per unit volume followed a Poisson distribution with expectation X satisfying 
(84) combined with the distribution of the number of galaxies per cluster as determined 
by formula (83). Naturally, therefore, observing the joint distribution of Ni and Nz and 
nothing else, it is impossible to decide whether the number of cluster centers per unit of 
volume follows a Poisson law or any other quasi-uniform distribution. This, of course, 
does not exclude the possibility that we can decide this question on other grounds. 

IX. CONCLUDING REMARKS 

All the preceding pages are given to deductions from the structural postulates regard- 
ing the spatial distribution of galaxies as enumerated in Section I and, in a more precise 
form, in Section III. The main result of this work is represented by formulae (40) and 
(41), which determine the joint distribution of the numbers Ni and N2 of galaxies visible 
on idealized photographs of two arbitrary regions 0)1 and a>2. Confrontation of the theory 
thus developed with empirical facts requires specialization of at least some of the four 
functions involved in the model. The work done in this direction will be described in a 
subsequent publication.13 However, before concluding the present paper, it seems ad- 
visable to include at least a few remarks indicating how formula (41) and its conse- 
quences (49)-(58) can be used for an empirical study of the actual distribution of 
galaxies. 

Keeping in mind the general properties of the moments of i\h and N2 described in 
Section VII, it appears advisable to divide the empirical study into two parts: the inter- 
nal structure of clusters and the distribution of cluster centers. 

The theoretical results which are basic for the first part of the study are exemplified 
by equation (68). Because of the analogy between the definition of correlation coefficient 
and the expression <2(coi, a^) on the left-hand side of equation (68), we propose to describe 
this quantity as the quasi-correlation between Ni and A2. At least in the early stages of 
the empirical study, the function 0¿(£) will be taken from the published work of Hubble14 

or Holmberg.15 When this is done, the right-hand side of equation (68) contains only 
known quantities and the moments of N\ and N2, for which estimates from actual counts 
will be substituted. The selection of coi and co2 and of mi and m2 is at our disposal and may 

13 J. Neyman, E. L. Scott, and C. D. Shane, in preparation. 
14 Mt. W, Contr., No. 548; Ap. 84, 158, 1936. 
16 Medd. Lunds Obs., Ser. II, No. 128, 1950. 
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be adjusted to the material available. For example, a>i and 0)2 may mean two Io X Io 

squares taken k degrees apart, with N\ and Nz representing the numbers of galaxies in 
these squares up to the limiting magnitude appropriate to the observations made at the 
Lick Observatory or any other. Then the regions coi and C02 do not overlap, 0i(£) = 02(0, 
and formula (68) giving the quasi-correlation between N\ and N<¿ reduces to 

Q (coi, C02) 
■^110 _ tfii 

i?200 ~^0--E(^i) 
(say) . (85) 

If the available set of data is substantial, then empirical values, say Qt, of Qk mav be 
obtained for a number of values of Æ. If the present model approximates the actual dis- 
tribution of galaxies, then, solely by adjusting the function f(rj), the sequence of quotients 
R110/R200, computed for Æ = 1, 2, ... , can be made to agree with the series of numbers 
Q*. This is true of the quasi-correlation as defined in (68) and (85) but, perhaps a little 
unexpectedly, no such statement can be made with regard to the ordinary correlation 
coefficient between Ni and Nz, say, 

= ^21= A2R110 (86) 
P *20 ^200 +£(^l)’ 

because the value of p depends on ^42 and hence on the distribution of cluster centers in 
space. 

Having obtained empirical quasi-correlations Qt, the search for an appropriate func- 
tion/^) may be attempted by the trial-and-error method. We choose a plausible family 
of probability densities, say /(??, $), perhaps depending on a single parameter â. For 
selected values of # a sequence of values of the quotient R110/R200 is computed for & = 1, 
2, ... . Each such sequence is compared with the empirical sequence of numbers Qt. 
Finally, the value of the parameter, say $*, is determined which provides the best agree- 
ment between the quotients R110/R200 and the numbers Q*. The corresponding probabili- 
ty density /(?], #*) is then our first approximation to the unknown function/(t?) and is 
open to various tests of validity. 

One such test may consist in using /(t?, #*) to compute quasi-correlations between 
numbers Ni and N2 of galaxies in the same region coi = co2 but counted to two different 
limiting apparent magnitudes, mi < m2. Empirical material with which results of this 
kind can be compared consists of two systems of counts covering the same region of the 
sky. 

If the empirical numbers Qt, Qt, • • • cannot be approximated by any choice of the 
functionary), this would indicate that the probabilistic model of the structure of the 
universe is essentially wrong and that it should be modified, perhaps by including 
the effects of extinction by interstellar clouds, etc. 

Once a plausible approximation/(ry, #*) of/(ry) is obtained, a similar method may be 
used to find plausible approximations to the distributions of 7 and v. A certain number 
of moments are estimated, as outlined in Section VII. Then approximations to 
Gy(t\iß = 1) and Gv(t) are sought among functions with few adjustable parameters. 

At this point we should make a distinction between the following two situations. First, 
it is possible that some a priori considerations will suggest special forms of the distribu- 
tions of 7 and of v which may be approximated by probability generating functions of 
known form involving several adjustable parameters. In this case the quantities hk and 
Gk can be represented by known functions of the same parameters and, knowing the 
values of the moments Aj, the best-fitting values of the parameters can be found. 

If no a priori knowledge of the distribution of 7 and v is available, then the best we 
can do is to refer to Section VIII above and to estimate that distribution of v which, 
combined with a Poisson distribution of 7, could yield the joint distribution of Ni and 
N2 that is actually observed. 
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The treatment of this aspect of the problem requires setting 

h (l) = \(t — 1) j hi = \ , hfc= 0 for k > l , (87) 

where A > 0 is an adjustable parameter. Then, for j = 1, 2, . . . , 

Aj=G{\1 j (88) 

and, if the distribution of v is approximated by a known distribution with several ad- 
justable parameters, the best-fitting values of these parameters and of A can be obtained 
from equations of the type of (88). 

The present paper originated from conversations with Dr. C. D. Shane, director of the 
Lick Observatory, to whom the authors are deeply indebted. Although signed only by 
the present two authors, the paper should be considered as the first part of a broader 
study, involving not only theoretical considerations but also the analysis of empirical 
data, conducted jointly with Dr. Shane. 
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