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THE RELATION OF COHESION TO ROCHE’S LIMIT 

Harold Jeffreys 

(Received 1947 February 15) 

Summary 

Roche’s proof of the existence of a critical distance for a satellite, within 
which it would be broken up by tidal action, assumed the satellite fluid. It 
is shown that a solid satellite, or a small solid body making a casual near 
approach, would not be broken up even close to the surface of a planet unless 
its diameter was less than a critical value, which is unexpectedly large, of the 
order of 200 km. It appears in particular that small bodies of the sizes of the 
majority of the asteroids could not have been formed by close approach to 
Jupiter, and that fragments of ice consistent with the maximum possible 
thickness of Saturn’s rings could not have been formed by disruption of a solid 
mass by tidal action. 

It was proved by Roche that a small liquid satellite moving in a circular orbit 
about a primary, the periods of rotation and revolution being equal, would take an 
approximately ellipsoidal form provided that it was not too close to.the primary. 
If, however, the mean distance was less than about twice the radius of the primary 
(depending somewhat on the ratio of the densities) there would be no possible 
permanent form and the satellite would be broken up. Many extensions of Roche’s 
argument have been given, notably by Darwin and Jeans ; the theory has been 
given for gaseous satellites and the restriction that the satellite is to be small has been 
removed. On the whole the modifications give surprisingly little change in 
Roche’s main result. But the hypotheses all suppose the satellite to be fluid, and 
the corresponding problem for a solid satellite seems to have escaped explicit 
solution. The solution can actually be derived easily from that of the straining of 
an elastic sphere. 

If an incompressible spherical body with density p, radius a, surface gravity g, 
and rigidity /x is deformed by a gravitational potential knKn, where Kn is a solid 
harmonic, the stress components are given by 

where 
(i) 

271 
A= -? +-2-' Ca2 ; 

2(K-l) 

2« + I 

2(w —l) 
Can, 

f2«2 + 4« + 3 l , 
CI   fi +gpaj = pK, 

(2) 

(3) 

Ai=,x{(4« + 2)B + 2C}+P (kn+ . (4) 

The radial displacement at the surface is but is not required in the 
present problem. Gravity between parts of the small body is of minor importance 
in comparison with rigidity ; even for a body as large as the Earth the terms in the 
coefficient of C are nearly as 6 to 1 for w = 2. We shall therefore neglect terms ing. 
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No. 3, 1947 The Relation of Cohesion to Roche's Limit 261 

Compressibility is also of small importance, affecting the results by only a few 
per cent. 

Now take the body to be at distance c from the centre of a mass M and to 
rotate with an angular velocity to in a plane through the radius vector. Then the 
deformation is derived from a gravitational potential 

u=^~3 (2X*-y2-**) + i«2(*2 +y2-2s2). (5) 

We consider two cases. The body may be a wandering asteroid, making an 
accidental close approach to Jupiter or Mars. In that case it may be supposed that 
¿o is far too small to produce disruption by itself ; in some cases stress-differences 
due to rotation will have already been removed by plastic adjustment. In these 
cases we can take a> zero. 

The body may however be a satellite that is being made to approach its primary 

by tidal friction or a resisting medium. If tidal friction in the satellite itself is 
strong or the satellite is triaxial like the Moon, the relation 

œ2=fMlc2 (6) 

will be maintained throughout the motion. Thus we should take 

u
=M{7x^2f-5z% (7) 

according as we are considering a small body making a single approach to a 
larger one or a satellite gradually approaching its primary. 

In both cases it is found that the greatest stress-difference is | ^-^ | evaluated 
at the origin, that is, at the centre of the small body, and the respective results are 

24/M 

19 cz pa* 
32 fM 2 
— —^ pa2. 
19 cs r (8) 

The different hypotheses about the rotation therefore do not affect the order of 
magnitude of the result. 

As a specimen we consider a small satellite with the density of the Moon moving 
near the Earth’s surface. The critical stress-differences for the rocks are about 
109 dynes/cm.2. If p0 is the density of the Earth we have 

Mlc3 = ^irp0, (9) 

and the second of (8) gives for rupture the condition 

I?? . ^ . 6*66 x io-8p0pa2>io9, (10) 

whence, with p0 = 5-5, p = 3 g./cm.3, 

x 107 cm. = no km. 

In other words, a satellite, and a fortiori an asteroid, if of rocky constitution, 
could graze the Earth’s surface without rupture if its diameter were less than 
220 km. This value is unexpectedly large, since it is well known that a column of 
rock a few kilometres in height would be crushed under its own weight. The 
difference arises from the fact that in the argument leading to equation (8) the 
centre of the body is free and the resultant attraction of the Earth is used up in 
maintaining the orbital motion. For the column of rock the resultant attraction 
has to be balanced by internal stresses over the base. 

For the approach of a rocky body to Jupiter the result must be multiplied by 
about 2, since p0 is then about 1-3 g./cm.3. Thus if all the asteroids were once one 

19* 
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body, this would have been large enough to be broken by a very near approach to 
Jupiter ; but no number of such approaches could have produced some thousands 
of bodies with diameters of a few kilometres. 

Another interesting case is the approach of a sphere of ice to Saturn. I am 
informed by Mr B. B. Roberts, of the Scott Polar Research Institute, that ice cliffs 
usually break off at a height of about 100 feet. This would indicate a strength of 
the order of 3 x 106 dynes/cm.2; the strength at the temperature prevailing near 
Saturn may be greater. Allowing for the changes in (10) we find that the critical 
radius for an ice sphere, if it is to be broken up by tidal action near Saturn’s 
surface, is of the order of 3 x 106 cm. At the mean distance of the rings, of course, 
this would have to be increased by a factor of 3 or 4. Hence if an ice satellite ever 
revolved about Saturn at the mean distance of the rings, and was broken up by 
tidal action, its diameter was over 200 km. ; and the fragments would cease to be 
broken up further when their diameters had been brought down to this value. 
Since the ring appears equally bright all round and its maximum possible thickness 
is given as 10 km. we can conclude that it was not formed by disruption of a 
solid satellite. 

After the above was written, Dr M. Perutz informed me that laboratory tests on 
ice give an average tensile strength of ii*8 kg./cm.2 = i-i6 x 107 dynes/cm.2, at — 5 
to —10 deg. C., but remarks that individual pieces may fail at half to twice this 
value. In any case the estimates just given are not too low. 

This investigation is supplementary to the usual theory of Roche’s limit, not a 
substitute for it. With sufficiently large bodies it would be possible for the present 
criterion to be satisfied for distances outside Roche’s limit. Subsequent develop- 
ments would then depend on whether the material was of a type to undergo elastic 
failure by fracture or flow. In the former case the satellite would presumably be 
broken into two immediately (that is, within the time needed for a fracture wave ta 
traverse the diameter, probably not more than a few hours, and possibly minutes). 
In the latter case it would adjust itself by flow towards a state of hydrostatic 
pressure, and ultimately the resulting deformation would make Roche’s criterion 
applicable again ; the body would be permanently distorted but not broken up. 

If the present criterion for elastic failure is not satisfied there will be no dis- 
ruption even if the distance is within Roche’s limit. If the distance is within 
Roche’s limit and the criterion is satisfied, the behaviour will differ according as 
failure is by immediate fracture or flow. For fracture, since a non-zero cohesive 
force is suddenly removed, the parts will separate with a non-zero difference of 
velocity towards the primary, and unless the rupture occurs at an apse the parts will 
have different energies per unit mass, and will therefore proceed in orbits with 
different mean distances. For plastic flow, the body will be distorted as a 
quasi-fluid, but will not reach a steady state since this state would itself contradict 
Roche’s theorem. Several complications, such as the ratio of the masses of the 
parts and the rate of plastic adjustment, would affect the details and it does not 
appear possible to say without further information whether the outcome would be 
two independent satellites, two revolving about each other, or the equilateral 
triangle configuration. 

St. John's College, 
Cambridge : 

1947 February 14. 
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THE EFFECTS OF COLLISIONS ON SATURN’S RINGS 

Harold Jeffreys 

(Received 1947 February 15) 

Summary 

If Saturn’s rings were several particles thick the damping effect of collisions 
on the inclinations and eccentricities would reduce the rings in less than a year 
to a state where the particles were piled one on another. Dissipation by 
friction and impact would not cease at this stage. Its later effects would 
extend the ring inwards and outwards in its own plane, until it was nowhere 
more than one particle thick and the spacing was just enough for collisions 
to be avoided. The time needed to attain this state is estimated to be of the 
order of 106 years for particles of diameter 1 cm. and less for larger ones. 
Some comments are made on Maxwell’s and Goldsbrough’s criteria for 
stability. 

The outstanding observational facts about Saturn’s rings are as follows. 
{1) Spectroscopic evidence shows that the velocity at any point is nearly that of a 
particle in a circular orbit at the same distance. (2) The reflecting power is high, 
that of Ring B exceeding that of the planet and that of Ring A approaching it. 
(3) Nevertheless the rings are not quite opaque, stars having occasionally been 
seen through them. (4) The reflecting power is appreciably lower when Saturn 
is at quadrature than at opposition, even when allowance is made for the difference 
of distance. (5) The ring is extremely thin. 

Maxwell showed that a set of satellites moving in one circle about the planet 
would be stable, and that all the other suggested types of constitution that he con- 
sidered would be unstable. Since his essay his results have usually been quoted as 
the chief evidence for the meteoric constitution, but they are not quite decisive, 
because in considering a liquid or gaseous ring he supposed it to be in uniform 
rotation like a rigid body. Previous work of Laplace and Kowalewsky had shown 
that a ring in such a state of motion would have a thickness comparable with its 
width, and in view of our present knowledge of the thickness of the ring this 
hypothesis scarcely merits further consideration. But a fluid ring could be 
arbitrarily thin if we abandon the hypothesis of rigid-body rotation, which in itself 
would suggest a very high viscosity.* The stability of a fluid ring with variable 
rotation has not, I think, been discussed. The best way of presenting the case for a 
meteoric constitution at present, I think, is to rely on the observational data (1), (4) 
and (5) above. (1) and (5) limit us to the meteoric theory or to a gas or liquid with 
the velocities mainly controlled by gravity and not viscosity. A gas can be 
excluded, since the distribution of density normal to the plane would satisfy the 
usual laws for a gas. But in the small normal field that must exist in a mass 13 km. 
thick at most the density could not build up sufficiently to give great scattering of 
light. A liquid, again, would have a smooth surface and give regular reflection. 
Images of the ball of Saturn and of stars would be formed in the ring, and could not 
have escaped observation. Accordingly, quite apart from the mechanical 
arguments, which are incomplete, I think that optical considerations alone are 

* For an analogous problem cf. Jeffreys, The Earthy 1929, pp. 49-52, Cambridge. 
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264 Harold Jeffreys Vol. 107 

enough to show that the meteoric theory is the only tenable one. Further, the 
meteoric theory explains (4), as has been shown by H. Seeliger.* 

Nevertheless the meteoric theory needs considerable mechanical investigation 
before it can be regarded as complete. Maxwell’s essay was confined to a set of 
particles in a single circle, and recent investigations of perturbations have con- 
sidered only disturbances from such a circle. Attractions between particles at 
different distances are ignored. But in any case, since the masses of the satellites, 
are small, and that of the ring also small, all mutual gravitation is of the second 
order of small quantities. But in a system of freely moving solid bodies we may 
expect collisions to be frequent and to give discontinuous changes of momentum 
of the first order of small quantities. A preliminary treatment of these has been 
given f, but further investigation is needed. 

The essential point is that the high opacity of the rings shows that on an average 
most rays of light striking the ring at angles up to 270 meet a particle on their way* 
But every particle of the ring must cross the mean plane of the ring twice in each 
revolution. Consequently we may expect it to undergo at least two collisions on 
the way. The point is that the opacity and the frequency of collisions depend on 
the same function of the number and size of the particles, namely the total surface of 
the particles per unit area in the plane of the ring ; and if the departures of the 
particles from steady motion in circles can be treated as random the opacity shows 
that collisions will have a dominating effect. But collisions between solids are 
essentially non-conservative ; at each collision the relative velocity is reduced by 
imperfection of restitution and by friction, usually by a fraction in the neighbour- 
hood of Hence relative velocities between neighbouring particles will be 
rapidly annulled, with a time of relaxation not more than the orbital period, about 
a day. If for instance the particles were originally in an anchor ring, an average 
normal to the plane of revolution intersecting several particles, the velocities 
normal to this plane would be practically annihilated in a year. Further, the 
radial velocities corresponding to the orbital eccentricities would be removed at the 
same rate. But there is little to alter the mean motions. Hence the state reached 
in a year would be a peculiar one. The ring would be thin, but at any distance 
several particles would be piled one on another, in permanent contact. Such a 
state could last with little change for a long time, because the particles would 
acquire such rotations that there would be little difference of velocity at the points 
of contact. Nevertheless dissipation would not be altogether abolished. Detailed 
treatment is beyond the present resources of statistical mechanics, for even in the 
absence of dissipation the problem would be that of a fluid with the molecular 
spacing comparable with the molecular dimensions. But motion in and out, or up 
and down, would persist, though its actual amount would be only that needed to 
maintain rolling. Interchange between motions in different directions remains 
possible, since the lines joining centres of bodies in contact might be in any 
direction in relation to the mean plane of revolution. We have in fact a case of 
kinetic theory where there is no independent agitation ; such agitation as there is 
would be parasitic on the general motion. 

The outstanding cause of further dissipation would be the differences in 
orbital period. For simplicity take the particles to be spheres of radius 0, and 

* Abh. Bayer. Akad., 18, 1-72, 1893. For full discussion cf. E. Schönberg, Handb. Astrophys.y 
2, part I, 130-170, 1929. 

f Jeffreys, M.N.y 77, 89-92, 1916. 
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No. 3, 1947 The Effects of Collisions on Saturn's Rings 265 

consider two sets moving in circles of radii r, r + b, where b <i2a. In free motion 
the ratio of the periods is 1 — f è/r. Hence if the spacing in longitude is also è, a 
particle on the inner circle will encounter on an average § particles in a revolution 
and share momentum with them. If v is the orbital velocity at distance r, m the 
mass of a particle, the outward transfer of angular momentum at a collision is of 
order —mbr dv/dr, the numerical factor being less than 1 but probably more than 
o-i. Hence a particle transfers outwards, per unit time, an angular momentum 
of order 

^mbv dv 

477 dr * 

As the particle occupies an area zab, this is equivalent to a tangential stress 

mv dv 

m~Ir' 

where À will probably be between o-oi and o-i. Using the relation 

v* = fjb/r 

we have for the tangential stress 

and for the total rate of outward transfer of angular momentum in a belt where the 
normal section is c, 

TrXfjbcmlar2. 

The total angular momentum in a ring, if a, b, c are constant, is 

i i cmv . 

Comparing these results, we see that the time that would be needed to transfer 
the whole of the angular momentum from the inner to the outer half of the mass 
would be of order 

2 r*[r*] 

377À nb 

where n is the mean motion of a particle at the mean distance of the rings. If we 
take them as having their present extent, and è = 1 cm., this quantity is of the order 

of 106 years. In the early state that we are considering, when the values of r would 
differ by much less, the time would be shorter. It would also be shortened by 
taking b larger, as we should have to do if we are to maintain the hypothesis that the 
particles were produced by tidal disruption of a solid body. The conclusion to 
draw is therefore that though the evolution in this state would be slow compared 
with the damping out of inclinations and eccentricities, it would still be rapid on a 
cosmogonical scale. 

The nature of the changes is clear ; on account of the steady outward transfer 
of angular momentum the outer parts of the ring would be driven outwards and the 
inner parts inwards, so that the ring would become thinner. The process would 
stop when the relation b<2a is no longer satisfied. That is, we start from the 
state of close packing in three dimensions, and arrive at one where the particles are 
just widely enough spaced to avoid collisions altogether. They follow each other 
around in circles, the circles being spaced at intervals slightly greater than the 
diameters of the particles ; and the ring is nowhere more than one particle thick. 

© Royal Astronomical Society • Provided by the NASA Astrophysics Data System 



19
4 

7M
N

RA
S.

10
7.
 .

26
0J

 

266 Harold Jeffreys Vol. 107 

The result is, I think, consistent with Seeliger’s conclusion that a distance 
between particles decidedly more than their diameters is needed to explain the 
reduction of albedo near quadrature. It cannot be many times the diameters, 
since the high albedo even when the rings are open to their fullest extent shows that 
a straight line from the Earth to the ring must usually intersect at least one particle. 
If we were in a position to see the ring normally a much smaller fraction of the area 
would appear occupied than from our actual viewpoint. 

Some suggestions arise from these results that may be relevant to the question 
of the sizes of the particles and to the stability. H. Struve * has inferred from the 
failure to detect secular perturbations due to the rings that the total mass is not 
more than 1/27000 of that of Saturn, say 2 x io25g. Supposing the whole area 
of the rings covered to a thickness 2# by matter of density 1, this gives a < 1 • 8 x 1 o4 cm. 
This is less than we have inferred from the hypothesis of tidal disruption of a solid, 
and of course also less than the maximum thickness inferred from observation, 
which is of the order of 10 km. ; and we seem to be driven to the additional hypo- 
thesis that the bodies produced in this way were broken up further by collisions in 
the early stage or to think of some different explanation altogether, such as that the 
rings were formed by direct condensation from the gaseous state as in the formation 
of snowflakes. Allowance for the fact that the whole surface need not be covered 
would not bridge the gap. The collisions in the later stage would be quite gentle, 
since the relative velocity of neighbouring particles would be of the order of their 
diameter in a day—much less than the velocity of fall of snowflakes. 

According to Maxwell’s theory, a set of particles moving in a circle would be 
stable only if m/)3<2*3M, where is the number of particles and M is the mass of 
Saturn, 5*6 x io29g. With spacing equal to the diameters we have 

mpz i*4 x 10 

2a 

10^3 
-77tf3/5-6 x 1029 

3 ID 

which is very roughly 6. The result is independent of a ; but if we allow for the 
spacing being greater than 2a Maxwell’s criterion will be satisfied by the particles 
in each ring separately. It would not, however, have been satisfied in the earlier 
stages. But the stability in any case needs re-examination, on account of the effects 
of the attractions between particles in different circles. 

If there was a division in the ring while the particles were still in contact, the 
tendency of the transfer of angular momentum would always be to fill it up. 
Consequently it is likely that the divisions in the ring have been formed since 
collisions became rare. 

Goldsbrough has recently published | a detailed discussion of the perturbations 
of a circle of satellites by an independent satellite, and concludes that for certain 
ranges of distance the perturbations would produce instability ; he finds that these 
ranges, for perturbations by Mimas, show interesting correspondences with the 
boundaries of the rings, Cassini’s division, and Encke’s division. The theory is 
very intricate and it seems hypercritical to suggest that it is not intricate enough, 
since it neglects the attractions between particles at different distances and the 
reaction on Mimas, whose mass is at any rate much less than the maximum possible 
mass of the ring. Goldsbrough works in terms of a parameter vTs, which also 

* H. Struve, Publ. Obs. cent. Nicolas, 11, 228, 1898. 
t Phil. Trans. A, 239, 183-216, 1946. 
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appears in Maxwell’s stability condition. Cassini’s division, in particular, 
corresponds to the inequalities 

and aj/ct/, the ratio of the mean motions of the particles and Mimas, is given by 

to Q 

<o' ~ Q— i ' 

From the width of the division he derives a value of vTs, which is consistent with 
Maxwell’s criterion. His argument is then that a circle of particles not satisfying 
this condition and moving in the division would be perturbed until some of its 
members collided with particles in the main rings; the circle would then be 
broken up. But it seems to me that this only shows that for each departure of 
Q from 2 there is a critical value of vTs, below which the circle would be safe. The 
division would not be sharp; the brightness would fall off continuously towards 
ii = 2, but would vanish only at this value. 

On Goldsbrough’s theory the inner edge of Ring B and the outer edge of 
Ring A correspond to instabilities at Q = § and £2 = 3. It is natural to take the 
former as an indication that particles near the inner edge of Ring B would overshoot 
the danger zone and join the crape ring ; but if so there will be a systematic loss of 
angular momentum which, as far as I can see, would be compensated by a gain by 
Mimas, which would thus be driven further off. But if we accept this explanation 
for the crape ring we should expect another crape ring outside Ring A. This is not 
definitely confirmed, though some observers have suggested it. 

St. John's College, 
Cambridge : 

1947 February 14. 
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ON THE THEORY OF GLOBULAR STAR CLUSTERS 

E. Finlay-Freundlich 

(Received 1947 March 14) 

Summary 

The theorem is proved that a spherical system of stars contracting under 
the influence of its own gravitational field passes at one and only one moment, 
before reaching the state of greatest condensation, through a quasi-stationary 
state in which its structure corresponds to a solution of the equations of 
hydrostatic equilibrium. 

The theorem is then applied to observational data discussed in a preceding 
paper. 

I. Introduction.—In a preceding paper* I derived from the latest densito- 
métrie observations, which had revealed wide envelopes of faint stars surrounding 
the clusters of bright stars, that the structure of the globular star clusters corre- 
sponds very nearly to that of an isothermal core, containing the most massive stars, 
surrounded by an “adiabatic” atmosphere of light stars. Obviously a cluster 
cannot remain in this state for an unlimited time, because in the end isothermy 
should prevail and the cluster be scattered over an infinite space. The present 
structure therefore represents only an intermediate phase. The following paper 
adds considerable support to the theory of the preceding paper by showing that 
every cluster necessarily passes, in the course of its evolution, through such an 
intermediate phase. It will be proved that a spherical cluster of stars, contracting 
under its own gravitational field from a very diluted initial state, must pass, before 
reaching the state of greatest condensation, through a distinguished state, called, 
here quasi-stationary, not because in this state the contraction comes to a standstill 
but because in this phase the internal structure of the cluster remains practically 
unchanged for a long time and resembles during this phase the structure to be 
expected, if the hydrostatic equations of equilibrium were directly applicable. 

The following theory applies therefore only to the contracting phase in the 
evolution of a cluster which probably is only a relatively short phase of its total 
lifetime, though not necessarily short in comparison with the present age of the 
universe. It is an essential feature of the theory that purely dynamical consider- 
ations are used to explain the present structure of the globular star clusters, despite 
its close resemblance to the structure of a gas-sphere. This is essential, because it 
has been generally agreed f that the principles of the kinetic theory of gases are not 
applicable to globular star clusters. Owing to this, their actually observed 
structure remained hitherto unexplainable. 

The following dynamical considerations show that the contracting phase of a. 
spherical cluster of stars leads to a state in which its structure corresponds to a. 
solution of the differential equations of hydrostatic equilibrium, without defining 
the actual structure more closely. The observations indicate that the solution 
attained is that of an isothermal core surrounded by an adiabatic atmosphere^ 

* M.N., 105, 237, 1945. 
t ten Bruggencate, Sternhaufen, p. 97, Berlin, 1927. 
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No. 3, 1947 On the Theory of Globular Star Clusters 269* 

After having reached this quasi-stationary state the cluster continues to contract^ 
with only slight changes of its internal structure, until, owing to the increasing 
density of the core, encounters of stars become more and more frequent, and 
statistical considerations are needed to explain the further development which ends 
in isothermal scattering. 

It appears to me of particular significance that a purely dynamical theory can 
be given which links organically the initial dynamical phase of contraction to the 
final statistical phase. The quasi-stationary state, considered here, is, so to speak, 
the branch-point connecting the two phases. 

2. The following considerations start from a schematic model of a globular 
star cluster, supposed to be a finite spherical agglomeration of stars. In the 
differential equation from which the Virial Theorem is derived, 

ld*Ildtz=T+W, (i) 

the cluster is characterized at every moment, £, by the value I of its moment of 
inertia : 

Jo dr 

where dM(r) = 4.7rp(r)r2dv, p(r) the density at the distance r from the centre, R the 
finite surface radius. T is the kinetic energy, V the potential energy of the cluster 
for a Newtonian gravitational field. We make the assumption that the cluster has 
been slowly contracting under its own gravitational field, all the time remaining 
spherical. Stars which have been lost by “evaporation” during this contraction 
shall be disregarded ; thus the total mass of the cluster M remains constant. 
The cluster is said to expand, if dl/dt^o and to contract when dljdt <0 ; expansion 
being accompanied by a decrease, contraction by an increase in | F|. 

Equation (1) is the “equation of motion” of the dynamical system, i.e. the 
globular cluster; it has the energy integral 

T+V = E, (2) 

in which the energy constant E is supposed to be negative. With the help of (2) 
the kinetic energy T may be eliminated from (1), yielding the equation 

d2I/dt2= -2V+4E. (3) 

Since V is an unknown function of r, not many results have hitherto been drawn 
from equation (3), apart from the Virial Theorem. It will be shown, however, 
that by giving to (3) a new formulation and by performing one integration, 
important conclusions can be drawn which apply to the evolution of globular star 
clusters. 

3. The following special assumptions have to be made : 
(a) During the contraction the value of the potential energy 

V= Kr-m^dM 

shall be a monotonie decreàsing function of the time t\ for £ = 0, i. e. at the initial 
stage of the evolution, I is supposed to have been very large and T small ; 

{b) The density 
dM(r) 

P = 47rr2dr 

shall be a regular function of r only ; likewise the mean square velocity c2 of the 
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stars’ velocities with regard to their common centre of gravity. Then we may 

define also the quantity p (r) = Jp . c2 as a regular function of r only ; p measures in 
hydrostatics the pressure, but need be treated here as no more than a convenient 
parameter. No assumption is made concerning a special velocity distribution. 

(c) There is no reason to doubt that the two preceding assumptions correspond 
to the physical conditions obtaining in a globular cluster. The special, but none 
the less extremely general, assumption that the expression 

i dp kM{t) 

p dr r2 

does not change its sign within the range of all values oîo^.r^R is also introduced 
for mathematical convenience. This assumption represents perhaps only a first 
approximation to physical conditions but merely implies that during the contrac- 
tion the cluster is at every moment contracting at every point of its whole volume. 

4. Equation (1) can be brought into a new form by introducing first into the 
expression of the kinetic energy 

the expressions 

This gives 

p=spc2 and dv = ^7rr2dr. 

T = 
rK 

= 6tt I pr2 dr, 
j 0 

which integrated by parts yields 

T = 67r[^r3]o — 277 r^dp 
R 

The first term vanishes, because r = 0 at the lower limit and p = o the upper 
limit r = i?; hence, 

rR 
r = — 277 7* dp. 

The potential energy, on the other hand, 

J7= - \R Ki-m(r)dM 
J 0 

can be written 

T7 f* M(r) _ 
V= -4tt K-^-pr^dr. 

J 0 ' 

Introducing these new expressions for T and V into equation (1) produces 

4 dt* 
(1.1) 

5. In the preceding paper we put the bracket expression on the right-hand side 
of (1.1) equal to zero, thus obtaining an equation mathematically identical with the 
equation of hydrostatic equilibrium. By borrowing Emden’s mathematical 
solution of this equation, we thus obtained a structure for the globular clusters 
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consistent with observations. We now show by using the equation of motion of 
the cluster in the forms (1.1) and (3) that during its evolution each cluster must 
pass through a state in which d2I/dt2 vanishes. In such a case the bracket- 
expression in (1.1) vanishes and the cluster’s structure satisfies the equation of 
hydrostatic equilibrium 

idp _ KM(r) 

p dr r2 ' 

More precisely, it will be proved that, preceding the moment of greatest conden- 
sation, there is one and only one instant t = tx at which d2I\dt2 — 0. In order to 
prove this theorem we start from equation (3) : 

d2I¡dt2= -2V+4E. 

The first term on the right-hand side is positive ; the second term is a negative 
constant. 

After performing one integration we obtain 

^ = — 2 V(r)¿r + /¡.Et + C, 

where £ is a new constant of integration. 
We shall first consider the case c = o; the cluster is then supposed to have been 

contracting from the beginning solely under its own gravitational field. For 
sufficiently small values of t, dl/dt and d2I¡dt2 will both be negative and the cluster 

will contract. 
But since — F is a monotonie increasing function of the time ty the mean value 

  i rt 
-V=--\ Vdr 

t J 0 

is also a monotonie increasing function of the time and thus there must exist a. 
value t = t0 for whiqh 

-2 \ a VdT= -2Vut0= -4^0 
J 0 

and for which therefore 

di ¡dt = o. 

Beyond this moment t0 we do not investigate the contraction of the cluster. 
Again, in accordance with the “mean value theorem for integrals” there: 

must exist a value tv o <i1 <i0 for which 

“* V(t1)t0= — p V dr, 
J 0 

so that 

^ = - 2V(t1)t0 + \Ets = o 

or 
io[-2F(i1) + 4i?]=o. 

Consequently for t = tv 

d2I/dt2= -2F(i1) + 4£'=0, 

and therefore also in accordance with (i.i) 

I# Mr) 

p dr r2 
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At this epoch, preceding the moment of greatest condensation, the cluster passes 
through a quasi-stationary state. 

6. The general case c^o is best treated in a geometrical way. In the diagram 

the abscissae measure the time t ; the dotted curve illustrates in a schematized way 
the values of d2I/dt2 as a function of the time ; the other curves give the values of 
dl/dt, each curve corresponding to a different value for the constant of integration c. 
Since d2I¡dt2 is a monotonie increasing function and starts for t = o from the 
negative value 4Í?, the curve for d2I¡dt2 must pass through the ¿-axis. This occurs, 
as has been proved in the preceding paragraph, for ¿ = ¿1. The dljdt curve, for 
c = 0, has on the other hand for ¿ ^ a horizontal tangent and passes the ¿-axis at a 
point ¿0>¿i. Similarly all dljdt curves have, when c^o at ¿ = ¿1, a horizontal 
tangent ; di¡dt reaches here its lowest value and from there on the value rises again. 

For negative values of c (only such values are compatible with contraction in the 
initial phase) the curves pass in one and only one point ¿ = ¿0>¿i through the ¿-axis. 
When c>o, but sufficiently small, the curves pass twice through the ¿-axis, once 
for t <¿! and once for ¿>¿!. This is the case for increasing values of c until for 
c = c0, where 

,o=f1[2F(T)-4^T, 
J 0 

the ¿-axis itself becomes at ¿ = ¿x a tangent to the dljdt curve. We consider here 
only the cases c^o\ in all such cases there is one and only one instant, preceding 
the epoch of greatest condensation, at which the cluster passes through a quasi- 
stationary state, i. e. a state in which its density distribution corresponds to a state 

of hydrostatic equilibrium. 
7. Although the theorem just proved refers to a simplified schematic model of a 

globular star cluster, it is general enough to be applied to the evolution of actual 
globular clusters. 

The observations indicate that the globular clusters are in or near a quasi- 
stationary state consisting of an isothermal core surrounded by an adiabatic 

.atmosphere. We may therefore conclude that they are approaching or have 
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