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ABSTRACT 
It is well known that if the ratio of specific heats, F, in a star is a constant and smaller than f, the 

star is dynamically unstable. In this paper the case in which F is variable in the star is discussed in 
some detail, especially for the homogeneous and standard models. It is shown that if F becomes smaller 
than £ in a part of the star, that part has to be very extensive to render the star unstable. For example, 
if F = £ in the central part of a star and is as small as Lin the outer part, this has to extend to a depth 
at which the temperature is of the order of half the central temperature. Peculiar forms of F(r) could in- 
crease the instability considerably, but it is doubtful whether any of these could be of physical im- 
portance. 

1. General considerations.—It has been known for a long time1 that a star with a con- 
stant ratio of specific heats, P, smaller than £ is dynamically unstable. If T is variable, 
this should apply to a certain mean value of F.2 This becomes clearer if we consider a 
formula such as the one given by the author in a recent paper.3 For a small radial 
adiabatic deformation, such that 

— = I Uo) e™*, 
r° 

a2 is given by 
rR rR Pn dv 
/ (3r- 4) £áO0 + 3 / 

_2 _ do p0 d r0 
a ~ TTb 

/ tdlo 
*/o 

(1) 

* Fellow of the Belgian-American Educational Foundation, at the Yerkes Observatory. 
1 Ritter, Anwendungen des mechanisches Wärmetheorie auf kosmologische Probleme, 1879. The result 

derived there concerns a homogeneous star. For a more general result see, e.g., S. Rosseland, Pub. Oslo 
U. Obs., No. 1, p. 20; or S. Chandrasekhar, An Introduction to the Study of Stellar Structure, 1939, p. 52, 
and references given there. 

2 Cf. L. Biermann and T. G. Cowling, Zs.f. Ap., 19, 1, 1939 (first part of the paper, where a formula 
of type [1], except for the term in dT/dr^, is used). 

3 P. Ledoux, Ap. J., 102, 56, 1945. 
i 
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334 P. LEDOUX 

where the suffix zero refers to equilibrium values. Furthermore, 

fío = 
Gm (r) dm 

To 
RPodV0 and 

represent, respectively, the gravitational potential energy and the moment of inertia 
with respect to the origin, and £ is the solution of the differential equation 

d2£ , F4 - ^ I 1 ¿rl i_ Kpo M A I 3 ¿rl n 
L—+fI7¡J ¿7;+Lrp;-75(,3-r;+!v; d7¡J? = 0> dr* 

satisfying the boundary conditions 

£r0 = 0 at 
and 

r0 = 0 

ôP = — EPo j^3 £+ r0 = 0 at r0 =R 

.(2) 

(3) 

(4) 

In equation (2), ju = Gm(r)po/roPo, and T is the general adiabatic exponent defined by 
dQ = dU — Pdp/p2 = 0, where the variation of the internal energy dll is expressed in 
terms of P and p. In a star, F is, in general, a function of the ratio of the pressure of 
radiation to the total pressure (1 — ß), of the degree of ionization, and of the number of 
degrees of freedom of the particles.4 

Equation (2) reduces to Eddington’s equation for small radial pulsations if F is con- 
stant. Formula (1) can also be written as 

9 /’iViVF„+4 fBtda0+3 fBTPor04^- dVo 
«A) Jo dfo _ 

/ ¿¿/o 
Jo 

(5) 

if we integrate the last term of the numerator by parts. 
If <72, as given by equation (1) or equation (5), is positive, a small radial oscillation will 

result, which will be damped out or not according to the condition of vibrational stabil- 
ity.5 But if <T2 is negative, the star will be violently unstable, as the small disturbance 
considered will grow exponentially with the time. 

Cases have been considered in which, because of a very small abundance of hydrogen 
and helium, F becomes smaller than f in an appreciable part of the star.6 The stability 
of these models has been investigated2 by a general method, using the minimal property 
of the total available energy of the star in case of stability. However, the rigorous ap- 
plication of such a condition is rather difficult, and it seems worth while to re-examine 
the problem from the point of view of the sign of cr2. 

If F is a constant and if £ is the amplitude of the fundamental mode, then it readily 
follows from equation (1) that the star is unstable for this mode if F is smaller than 

The case of the harmonics, however, is not so simple. If FJ denotes the critical value 
of F for the harmonic of order n, then, on the basis of the general theory of equations 
of type (2), we can expect that F^ will be smaller, the higher the order n oî the harmonic 
considered. We shall see that this is true in the examples which have so far been dis- 
cussed in some detail. Thus, in general, we may expect that if F is a constant for the whole 

4 R. H. Fowler and E. A. Guggenheim, M.N., 85, 961, 1925.. 
5 Cf., e.g., T. G. Cowling, M.N., 94, 768, 1934; 96, 42, 1935; 98, 528, 1938; and P. Ledoux, Ap. 94, 

537, 1941. 
6L. Biermann, Zs.f. Ap., 18, table on 356, 1939; also n. 2. 
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STABILITY OF STARS 335 

star, it is through the fundamental mode that the stability of the star will first be en- 
dangered when we go along a series of models with decreasing T. 

Considering, next, the general case of variable T, we shall first re-write equation (2) 
in the form 

where 

p = TP0
rl and ?=[ (3r - 4) Gm (r) r0p0-3 r*P0. 

Now let Tm be the minimum value of F along r. Denoting by a suffix m the values cor- 
responding to Fw, we have pm ^ p and, if dT/drQ is everywhere negative or zero, qm ^ q- 
Hence ^ 

If dT/dr^ is positive in some regions of the star, we cannot say anything rigorous about 
the relative values of q and qm- But, in general, the second term in g is small compared 
to the first one, and we can expect that in most cases the preceding inequalities will 
hold. Thus if Fm is greater than r”, the star will be stable toward the harmonics of 
order n or greater, and the fundamental mode remains the most dangerous one for the 
stability of the star. Since T°c = the star will be stable if T is greater than f all over the 
star. 

However, there might be exceptions; for, writing equation (1) in the form 

<T*fo
Bl;dI0= - f^irHrl-XLliST-VP^dr», (10 

let us consider again the fundamental mode. The pressure P is essentially positive and 
decreases from the center to the surface, where it can be taken as being zero. If (3F — 4) 
is everywhere positive (F > £), the star will certainly be stable if (3F — 4)P0 decreases 
everywhere with increasing r. 

But if (3F — 4)P0, for instance, remains constant, then o-2 =?= 0, and the star is on the 
verge of instability, although F is greater than J everywhere. Of course, this particular 
case implies an infinite F at the surface, and physically it has no meaning. 

In fact, if (3F — 4) is everywhere positive, we can admit for physical reasons only 
the range of F, 0 < 3F — 4 ^ 1; and (3F — 4)P0 will be an oscillating function in r, 
each oscillation corresponding to the ionization of a new shell of electrons of some fairly 
abundant element. If (3F — 4)P0 starts at the center with its maximum value (this 
is likely as long as the central temperature remains high), these oscillations will be super- 
posed on a generally decreasing curve. And if there should be n regions of increasing 
(3F — 4)P0, there will be {n + 1) regions of decreasing (3F — 4)P0—and one of them 
just near the surface. Starting from the surface, we can associate them by pairs (de- 
creasing, increasing), and the decreasing one will have a greater weight than the increas- 
ing one, as the corresponding r and £ will be greater. 

Therefore, on this account, the right-hand member of equation (i') will tend to be 
positive; but, furthermore, we are still left with a region of decreasing (3F — 4)P0 at 
the center. Thus it is very unlikely that this case could lead to instability. 

If (3F — 4)P0 starts by increasing at the center, then we shall have as many regions 
in which (3F — 4)P0 increases as regions where it decreases. The same reasoning would 
apply, but in this case the argument loses some of its force, as we have no extra region 
of decreasing (3F — 4)P0 near the center. Thus cases in which an important ionization 
takes place just at the center might require a more careful analysis. 

However, for the time being, we shall assume that the fundamental mode is the most 
dangerous for the stability of the star and that it is stable if F is everywhere greater 
than f. 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
4 

6A
pJ

. 
. .

10
4.

 .
33

3L
 

336 P. LEDOUX 

2. Approximate formula for o2.—Now we shall consider the case in which T becomes 
smaller than f in some part of the star. For the fundamental mode of pulsation one 
usually gets quite a good approximation3 for a2 by assuming £ to be a constant in formula 
(5). In that case, equation (5) becomes 

where 

(3r-4) Oo 

lo 

r 
ffrPodVo 

Jp It * 
' PodVo 
o 

(6) 

(7) 

Thus in a first approximation the sign of <P and consequently the stability or instabil- 
Jrr° ' PodVo 

0 
over the whole star. As the pressure P decreases rapidly with increasing r, the external 
layers, where T is most likely to become smaller than f, will have to be very extensive 

to influence T appreciably. 
3. Applications of formula (6).—As examples we shall consider the cases of the homo- 

geneous and standard models, and for the sake of simplicity we shall further divide the 
star into two parts: a central region, where = f, and an outer part, where re = 1, an 
extreme case very favorable to instability. 

If rc is the radius of the sphere separating the two regions, we know that, for rc = R, 
<j2 is positive and the star is stable; for rc = 0, a2 is negative and the star is unstable. As 
o3 is an eigen-value of equation (2), which is of the Sturm-Liouville type, it will vary con- 
tinuously with the coefficients of equation (2), and when rc decreases from R to zero, 
a2 will decrease continuously, passing through the value zero and becoming negative. 
Thus a2 will have one zero in the interval 0 < r < R, which will separate the stable from 
the unstable configurations. 

In a first approximation we can determine the critical value rc corresponding to a2 = 
0 from a formula of the type (6), which in this case can be written as 

/0(72=o= 9r¿ frcPodVo+9Te f
RPodVo+4tio. (8) J0 J rc 

In the case of the homogeneous model, 

Oo = — if tt^p2#5 and P = ^ p2 {B? - r2) ; (9) 

and our condition becomes, after introducing the numerical values of r¿ and T«,, 

2 

5 
+ A = o. 

This equation has one root in the interval 0 ^ rc/R ^ 1. We find 

ÿ-0.64, 

or, in terms of mass or temperature, 

^c-0.26 and 5^0.6 
M ±o 

if To is the central temperature (small masses). 
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STABILITY OF STARS 337 

For the standard model O0 = — SGM^/IR, and in Emden’s variables the condition is 

3 6.8969 
(3re-4) (r»-re) f

cuizidz = o. (io) 
2 (2.018y2 

We find that equation (10) leads to the following values: 

zc^1.6 or ^^0.23, ^^0.35, ^^0.7. 
R M i o 

Thus in both cases we see that, even with a F as small as 1 in the outer part, this must 
be very extensive before the stability of the star is endangered; in fact, the outer part 
contains appreciably more than half the mass. 

However, our approximation £ = constant, on which equation (8) is based, is rather 
crude. If we go back to equation (5), we see that if £ increases with r, the mean value of 
F should, in fact, be smaller than the one defined by equation (7), and this would in- 
crease the instability of the star. But, on the other hand, the third term of the numerator 
would be positive and contribute to the stability. 

To gain a definite idea as to the magnitude of these effects a rigorous method of treat- 
ing the problem will be developed in the following section and applied to the two cases 
considered here. 

4. Rigorous treatment in the case of a discontinuity of F.—We shall consider again a 
star composed of two parts, separated by a surface of discontinuity of F (sphere rc), and 
we shall distinguish by the suffixes i and e the values relating to the internal and the 
external parts, respectively. 

We have to solve equation (2) ; but in this case, apart from the boundary conditions 
(3) and (4), we shall have two more conditions at the surface of discontinuity of F : a 
kinematical condition which reduces to 

A{ï%)rc=BtOrc (ID 

and a dynamical condition, 

(àPùrc = (ôPe)rc , 

or, explicitly, 

rTF),.-BT-(H-+ 
(12) 

where £t- and £* already satisfy equations (3) and (4), respectively. 
The condition that the homogeneous system (11) and (12) admits solutions other than 

the trivial ones ^4 = B = 0 is that its determinant vanish. We must have 

As £» and £e are functions of a2, equation (13) provides us with an equation to determine 
its value. However, in general, equation (2) does not admit of analytical solutions which 
are explicit in (r2. 

The direct procedure would then be for a given value of rc to choose a value of tr2, 
compute by numerical integration the corresponding values of £» and £e, and determine 
whether they satisfy condition (13). Repeat this until a correct value of o2 has been 
found. If it is. positive, move rc toward the center and start all over again, and so on 
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338 P. LEDOUX 

until a critical value of rc, r'C) is found such that, for rc > r', a2 > 0, and, for rc < r', 
<72 < 0. This would be a very arduous task. 

However, as we are mainly interested in the critical value of rc, we can obtain it much 
more simply by putting <72 = 0 in equation (2) and treating rc as a parameter, which can 
then be determined by equation (13). In this way only one numerical integration will be 
required. 

a) The homogeneous model.—Writing x = r/R and using relation (9), we can write 
equation (2) as7 

where 

^i+ 4-6x2 g!+/¿ = 0 
x(l-*2) dx^ K ’ 

J 
IvCpY 

If we suppose that <r2 = 0, then 

2 a and .=(3-1). 

j = a . 

(14) 

(15) 

Equation (14) has two regular singularities, one at r = 0 (æ = 0) and one at r = 
R{% = 1). The roots of the indicial equation at # = 0 are 0 and —3. The general 
solution would then have the form 

& = A\i(x) + A '#-3 [<fo + X» (x) Ig x], (16) 

where \i(x) is holomorphic and <j)i regular in the vicinity of # = 0. As the solution (16) 
must satisfy the boundary condition (3), we must take ^4' = 0, and we are left with 

= ,4\*(£). 

T. E. Sterne, in the paper we have already referred to, has shown that Xt(^) is of the 
form 

00 
(x) = ^2 a2kx

2k, ' (17) 
k=0 

where the coefficients are determined in accordance with the relations 

a0 = 1 and #2fc+2 = & 2k 
2k (2k + 5) -J 
(2k + 2)(2k + 5) * 

(18) 

If P is a constant over the whole star, then this solution should also satisfy condition 
(4), which is possible only if J has one of the values 

Jk=2k (2k A- 5) ; (19) 

for the series (17) will then terminate with the term and will represent the eigen- 
function of order k; the corresponding eigen-value of <r2 can be deduced from equation 
(19) and the definition of J. For any other value of J than those given by equation (19) 
the series does not terminate. However, it is converging for 0 # < 1 and diverging 
only at # = 1. 

Another point brought out clearly by Sterne’s analysis is that, while the fundamental 
mode becomes unstable for F < |-, the higher harmonics continue to be stable. Indeed, 
as we may directly verify from equation (19), the first harmonic becomes unstable only 
if P < f and the second one if F < -^ 

7 T. E. Sterne, M.N., 97, 582, 1937. 
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STABILITY OF STARS 339 

At r = i?, the indicial equation has the double root 0. We can again, from the bound- 
ary condition (4), show that the solution of equation (14) will be of the form £e = B\e(x) ; 
and, expanding \e{x) as a series in powers of (1 — x), we obtain from equation (14) 

00 

Ae(s) = (20) 
fc=0 

with the following recurrence formula for the coefficients : 

- 1) (¿ + 4) - /] (&*-i - bk-2) + (¿ + 1) [(£ - 1) bk-,+ bk-2] . (21) 

If we take 
/=(£-!) (¿ + 4) (22) 

and if we admit that this value of J also satisfies the relation 

(¿-D ^+^-2 = 0, (23) 

so that bk = 0, it is easy to prove that bk+i and all the succeeding coefficients also vanish 
and the series will terminate with the term 0^-i(l — æ)*-1. 

However, as we can readily verify with the first few terms, the relation (23) will be 
satisfied only if k is odd. The series will accordingly terminate with an even power of 
(1 — x). If F is a constant for the whole star, our solution (20) must also satisfy equation 
(3), and this is possible only if the series terminates, that is, for the values of J given by 
equation (22) for k odd. One verifies that these /’s are identical with those given by 
equation (19). Thus, starting from the surface, we recover the same eigen-values as 
those given by Sterne. This is, of course, what we should expect. For any value of J 
different from the ones given by equation (22), the series (20) converges for 0 < æ ^ 1; 
but it diverges at rr = 0. 

In our case the values of J are fixed by equation (15). With the values F» = £, 
Fe = 1, which we have already adopted, = —1.2 and Je= +2, and the solutions 
£» and will not terminate. However, as our condition (13) has to be applied at a point 
0 < # < 1, we need not be concerned with the possible divergence of the series we have 
referred to above. 

Computing the numerical values of the coefficients a2k and bk for this particular case 
and introducing the corresponding solutions (17) and (20) into equation (13), we obtain 
the following values of xc or rc/R: 

(xc) 2 = 0.575 , (xc) 4 = 0.717 , (*c) 6 = 0.725 , (*c) 8 = 0.727 , 

which correspond, respectively, to approximations limited to terms of degree 2, 4, 6, 
and 8. These values converge so very rapidly that we may adopt the last value as 
precise enough for our purpose. 

Comparing this value 

-£ = 0.727 or -tt= 0.384 or £= 0.47 
R M To 

with those given by our first approximation, we see that the instability is somewhat 
greater than is disclosed by equation (6). This corresponds to the fact, illustrated in 
Figure 1, that ? increases slightly from the center to the surface, dÇ/dr experiencing á 
discontinuity when the compressibility changes. 

b) The standard model.—The case of the standard model can be treated in the same 
way, except that we cannot obtain series converging all over the interior of the star. But, 
before discussing this problem, we shall first determine whether in this case also the gen- 
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340 P. LEDOUX 

eral proposition on the stability of the star toward its different modes is satisfied. The 
exact verification would require numerical integrations. However, we can avail our- 
selves of the method developed in a previous paper.8 It was shown there that successive 
approximations for o-2 can be obtained by solving determinants of order 2, 4, 6, etc. Be- 
cause of the form given there to those determinants it is evident that in a given approxi- 
mation (determinant of rank 2j) the condition for one or more of the roots a2 to be zero 
is that the minor of rank 7 in the lower left corner be zero. This provides an equation 
in a = (3 — 4/P), which enables us to find successive approximations for the critical PJ. 

In this way we obtain for the first harmonic the critical value PJ = 0.891 in a first ap- 
proximation and PJ = 0.922 in a second approximation. For the second harmonic, the 
first approximation gives P2 = 0.537. Of course, this does not provide upper limits for 
the critical rc; but, as the method converges fairly rapidly as far as the values of a3, are 

Fig. 1.—^Variation of the amplitude with the radius in the homogeneous model for a discontinuity 
of T as indicated. 

concerned, we can assume that the same is true of the rc and that their order at least is 
correct: f > PJ > P2. In the case of PJ it is even safe to assume that its réal value 
will be smaller than 1. 

Returning to equation (2), we can re-write it in terms of Emden^ variables for the 
case o-2 = 0 in the form 

r!+i ^l-t- í T—1—1 = 0 
dz2'dzLz'~u dzj ** V z u dz\ ’ 

where a has the value = 0.6 for z < zc and ae = —1 for z > zc. With the help of 
well-known series for u, we can obtain series for and in the neighborhood of r = 0 
and r = R, satisfying conditions (3) and (4), respectively. With these we can start our 
numerical integrations, one at the center and one at the surface. 

The necessary calculations'are rather light, as it turns out that the solution which we 
have to extend furthest is £e. This is the simplest, too, as and d£e/dz vary very slowly 
in a large part of the star. The simplest way to solve equation (13) in this case seems to 
be to compute its value at different points and then interpolate between its positive and 
negative values. This shows that the critical value of zc is of the order of 2.45. 

Figure 2 represents the corresponding solution £, which exhibits the same peculiari- 
ties as the ones discussed in the case of the homogeneous model. However, here £ in- 

8 P. Ledoux and C. L. Pekeris, Ap. J., 94, 124, 1941. 
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STABILITY OF STARS 341 

creases more rapidly, as should have been expected from the greater central condensa- 
tion of the standard model. And, owing to this, the correct values, 

-£^0.36, ^^0.66, and ^0.47, 
R M i o 

deviate more from the first approximation than in the case of the homogeneous model. 
Of course, a varying T may mean also a varying mean molecular weight, /!, which 

would result in a slightly different distribution of density. Also the small value of T 
adopted in the external layers would lead to convection, which would again affect the 
distribution of mass. However, the results just obtained for two models with widely dif- 
ferent central condensations show that small deviations, such as those referred to above, 

Fig. 2.—^Variation of the amplitude with the radius in the standard model for a discontinuity of F as 
indicated. 

would affect very little the critical values, especially the critical temperature Tc. Thus 
we can conclude that, even if Te has its smallest possible value Fe = 1 in the external 
layers, these layers have to extend to a depth at which the temperature is approximate- 
ly half the central temperature before the star becomes unstable. 

5. Extension of these results to cases in which re 1.—Of course, Ye in practice will 
not reach such a small value as = 1 ; and Figure 3 (full curve) shows how the critical 
ratio, rc/Ry as given by our approximate formula (10), varies with V€ for the standard 
model. 

We know the correct critical values for re = 1, and another integration in the case of 
Fe = 1.2 gives 

£=*0.22, 5-0.33, ^-0.71. 

On the other hand, as Fe tends toward £, rc/R tends toward zero, and £ tends to become 
a constant, so that the correct critical values will approach more and more the approxi- 
mate ones and their variation with Ye cannot differ very much from the representation 
given by the dashed curve. For Fe = 1.3, the external layers have to reach a depth at 
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342 P, LEDOUX 

which the temperature is of the order of 88 per cent of the central temperature (rc/i£ = 
0.13; mdM = 0.09) before the star becomes unstable. 

6. Extension to cases in which Pi 5^ f.—On the other hand, until now we have al- 
ways supposed that Ti = f, which corresponds to a negligible radiation pressure, 
[(M/M0)Ji2 ^ 1]. If the mass increases, rt- will decrease and tend toward f for very 
large masses. 

With Te = 1, our approximate equation (10) gives the results summarized in Table 1. 

Fig. 3.—^Variation of the critical ratio rc/R with Fe in the case of the standard model and F» = 5/3 

TABLE 1 

(M/MO)ß2 

1. . . 
9.14. 

18.63. 
47.69. 

Ti 

5/3 
1.538 
1.481 
1.429 

rc/R 

0.23 
.27 
.29 

0.33 

mc/M 

0.35 
.46 
.52 

0.60 

Fc/r0 

0.7 
.62 
.58 

0.51 

220.6. 
402.0. 

1705.9. 

r* 

1.379 
1.366 
1.350 

U/R 

0.41 
.43 

0.49 

mc/M 

0.78 
.82 

0.88 

Tc/To 

0.38 
.36 

0.30 

These results are also plotted in Figure 4 (full curve). Of course, the real critical values 
will be different; but we know the correct value for T» = f, and another integration for 
Ti = L363 gives 

-£=*0.49, 5^0.29, and ^^0.89. 
a ¿o M 

Again the correct and approximate curves should approach one another as tends 
toward f, so that we can again tentatively draw a dashed curve, as in Figure 4, to repre- 
sent the real variations of rc/R. 

Thus, even for large masses, the external layers, where re is as small as 1, must still 
be very extensive. For instance, if = 400, we find from the dashed curve in 
Figure 4 that Te must be equal to 1 as far as 

rc^¿0.481?, where Tc^OJlTo 

before the star reaches the limit of stability. 
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STABILITY OF STARS 343 

7. Small T’s in the vicinity of the center.—In contrast to our discussion in the previous 
sections, we can contemplate the opposite situation and suppose that I\- < £ and re > f. 
If we take IY= 1 and Ye = f, the two terms in equation (10) simply change sign, and 
thus in a first approximation we still get the critical values 

rc/Rc^0.23 , wc/M^0.35 , and rc/Zo^0.7 . 

As the integrand of the second term in equation (10) has a well-marked maximum 
around s = 1.4, the T’s corresponding to that region will have the greatest weight in 
the evaluation of T, and therefore it is in that region that a small T could have the greater 
effect. 

If we take T = 1 in an interval between Zi and 22, having z = 1.4 as its mid-point and 
T = f everywhere else, we find that the star is on the verge of instability in a first ap- 

Fig. 4.—^Variation of the critical ratio rc/R with r¿ in the case of the standard model and re = 1 

proximation, when Zi ^ 0.9 and z2 — 1.9. Thus for instability the region of T = 1 must 
extend from r/R^ 0.13 to r/R^ 0.28; accordingly, it occupies a spherical shell of 
thickness R/7 and has a mass of about 0.4 M; the temperatures at its boundaries are, 
respectively, 88 and 61 per cent of the central temperature. 

8. Numerical applications.—No detailed application has been carried out, but often 
the results given in the preceding sections enable one to decide whether a star is stable 
or not. In general, it appears that the conclusions of L. Biermann and T. G. Cowling2 

will be confirmed. 
As an example we shall treat the case of the sun. R. H. Fowler and E. A. Guggen- 

heim4 have shown that, quite generally in the interior of a star, only two consecutive 
states of ionization of a given element need be considered at the same time. For a given 
temperature T and electron concentration Ae, there will be approximately as many 
atoms in one state as in the other if the difference of ionization energy between them is 
of the order of p, as defined by 

2J2™a7^ 
WNe 

(24) 

Under these circumstances we can also assume, following Biermann, that all the states 
with ionization potentials % ^ p — kT will be ionized and those with ionization poten- 
tial x ^ p kT will be un-ionized. 
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For the sun the standard model gives a fairly good representation, and, for an abun- 
dance of hydrogen by weight X of the order of it leads to a central temperature of 
2 X IQ7 degrees and a central density of the order of 75 gm/cm3. Under these conditions 
the ionization will already be well advanced, and in a first approximation one can write 

With this value of Ne, equation (24) gives for \f/ a value of the order of 4400 ev. at 
the center of the sun. Looking at a table of ionization potentials, one realizes immediately 
that no important ionization will set in here. Thus, near the center of the sun, the matter 
can be considered as behaving like a monatomic gas, and, as the radiation pressure can 
be neglected, we can take P = f. 

At the point where the temperature drops to half, its central value \f/ is still of the order 
of 3300 ev., and we can again take P = f. But we should require P to be equal to 1 here 
and in the rest of the star to bring it to the verge of instability, and this is obviously 
impossible. 

Even for a vanishing abundance of hydrogen, if we take the following mixture to 
represent the relative abundance by number of atoms of the other elements : 0 : Mg : Fe = 
8:3:1, the same considerations as before show that the sun would still be stable. 

These results can easily be extended to the other stars of the main sequence. However, 
for stars of very large masses the pressure of radiation becomes important; and, as that 
case was not considered by Biermann and Cowling, we shall treat an example. Let us 
take an extreme case—the Trumpler stars—and let us consider especially NGC 
6871.5, for which M ^ 400 M© and R ^ 16.6 R®. If we suppose that it is built on the 
standard model and composed of pure hydrogen, the central temperature, T0, is of the 
order of 108 degrees and the central density of the order of 6.6 gm/cm3. The ratio ß of 
the gas pressure to the total pressure is 0.375. Under these conditions, since hydrogen is 
very easily ionized, we can assume that, in an extensive region starting from the center, 
the adiabatic exponent for the gas is f and the combined exponent P for the matter and 
radiation will be 1.4. From Figure 4 we see, then, that for instability P should be equal 
to 1 in a region extending from the surface to r ^ 0.431?, where T ^ jT0. But at this 
temperature the hydrogen is still completely ionized, and the region where P is equal to 
1.4 will extend much farther toward the surface. Thus the star is stable. 

If the star does not contain any hydrogen, the central conditions remain more or less 
the same, as the increase of is practically compensated by the decrease of ß, which 
becomes /3 = 0.1. At the center the gas can again be considered as monatomic, and 
P = 1.35. With this value of P in the central part we see from Figure 4 that, for instabil- 
ity, P should be equal to 1 from the surface to a point r ^ 0.542?, where T ^ (i)7V 
But, for that temperature and the corresponding density, \p is still of the order of 
20,000 ev., and P will retain its value 1.35 much further, and the star is still stable. 

However, it is known from other evidence9 that the standard model gives a very poor 
representation of the internal structure of the Trumpler stars and a homogeneous model 
probably would be better. The problem is then a little complicated by the fact that, 
for such a model, ß varies with depth; but for pure hydrogen one can again determine 
that the star is stable. 

For vanishing hydrogen content, the central temperature is of the order of 3.2 X 107 

degrees, ß ^ 0.06, and \¡/ ^ 28,000 ev., so that we can still take for P the value cor- 
responding to a mixture of monatomic gas and radiation. We find P ^ 1.343. At the 
point where T = %Tq and r ^ 0.96Í?, ^ is still of the order of 12,500 ev., and for the 
mixture considered above we can still neglect ionization and P = 1.4. Computing P at 

9 Chandrasekhar, op. tit., p. 313. 
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different points inside that region, we find that it remains very close to its central 
rro 

value, as far as r ^ O.&R, so that the average taken with respect to / PdV cannot be 
%s Q 

very different from it, say T = 1.35. Using equation (6), we find that T must be smaller 
than 1 in the external region to reach instability. However, we know that the instability 
is somewhat greater than revealed by equation (6); and F, although greater than 1, 
will be fairly small in that external region, so that probably we could not have much 
greater masses built on such a model except if they contain an appreciable amount of 
hydrogen. 

In that respect it seems that the condition of vibrational stability is more restrictive. 
It has been shown,10 for example, that a star built on the standard model, for which 
Kramer’s law of opacity and Bethe’s law of generation of energy are valid, would be- 
come unstable when the quantity (M/Mq)]!2 is somewhat greater than 100. Since in 
the case of NGC 6871.5, M/M® is of the order of 400, we should have to take an ex- 
tremely large abundance of hydrogen to avoid instability. 

A change of model in the sense of a greater homogenêity would not help, since in that 
case the amplitude £ would increase less rapidly from the center to the surface and the 
stabilizing terms which arise near the surface would have less weight in the integral ex- 
pressing the condition of vibrational stability. 

For stars of very small masses falling in the region of low hydrogen content in the 
Hertzsprung-Russell diagram, it does not seem either that any instability of the kind 
considered here will appear. For instance, in the case considered by Biermann11 in connec- 
tion with his theory of the nova phenomena, M ^ 0.5Jfo, R — iR-o, the radiative 
equilibrium might become unstable from the surface to a point where the temperature is of 
the order of lO6,5 degrees to 107 degrees. But this is of the order of only one-tenth of the 
central temperature, which in this case is To — 108 degrees. From this point to the point 
where T = JTo, F is certainly greater than 1. Thus, although the radiative equilibrium 
can be unstable fairly deep, the star remains dynamically stable, at least for a radial 
perturbation. 

Of course, as Biermann and Cowling2 have shown, it is for large radius that dynamical 
instability appears most easily; and past a certain value of the radius (for a given mass) 
one,can determine the minimum abundance of hydrogen necessary to keep the con- 
figuration stable. Thè method developed here could be used to obtain more precise values 
of the critical radius or of the minimum amount of hydrogen, but it would require de- 
tailed computation. 

9. Special cases.—This discussion has left out some special cases, but it is doubtful 
whether they have any physical interest. For instance, we limited ourselves to real 
values of a2. But in the case of the Roche’s model, T. E. Sterne7 has shown that all modes 
are unstable for F < f, all the corresponding a2 then having an imaginary part. 

As the coefficients of equation (2) are essentially real, <j2 can have only an imaginary 
part if the same is true of £. But we can study £ in the vicinity of the singularities of 
equation (2) and see whether, for models having a physical meaning, the appearance of 
imaginary values is possible. For such models p, P, and F remain finite and different from 
zero for 0 ^ r < R. We can also suppose that dY/dr remains finite in the same interval. 

Then equation (2) can have singularities only at r = 0 and r = i?. Atr=0, p = 
Gm(r)p/Pr tends toward zero as r2 and (\/T)(dT/dr) remains finite. The coefificient of 
d%/dr will therefore tend toward infinity as 4/r. In the same way the coefficient of £ will 
tend toward infinity as 1/r. Thus r = 0 is a regular singularity, and the corresponding 
indicial equation, 0(0 — 1) + 40 = 0, has real roots only, and the solution will be 
essentially real near r = 0. At r = i£, the singularities of equation (2) will depend on 

10 P. Ledoux, Ap. 94, 537, 1941. 
n Op. cit.j p. 344. 
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the behavior of the ratio p/P and the quantity dT/dr. As long as we use equation (2), it 
seems natural in this connection to take the same point of view as the one adopted in the 
theories of the internal structure of stars, namely, that P, p, and T tend toward zero 
at r = P and that Kramer’s law of opacity is valid. 

We may then verify12 that p/P will tend toward infinity as 8/(1 — r/R) and that 
dT/dr, which ultimately varies as dß/dr, remains finite. Thus r = P is also a regular 
singularity, and the indicial equation, 6(6 — 1) + 80 = 0, can have only real roots. 
Thus £ will be real everywhere, and so will a2. 

Finally, if a star approaches dynamical instability (<r becomes small), there will be a 
point at which the usual method of perturbation used to obtain the condition of vibra- 
tional stability will cease to be applicable, since the perturbation o7 of <7 (due to the non- 
adiabatic processes) will no longer be small compared to a and the terms in </2 will not 
be negligible compared to aa or oA 

It would probably be interesting to study the interaction of these two types of instabil- 
ity and try to obtain a more general criterion of stability. 

12 S. Chandrasekhar, M.N., 96, 647, 1936; also J. Tuominen, Ann. Acad. Sei. Fenn., Ser. A, Vol. 48, 
No. 16, 1938. 
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