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KINEMATICS AND WORLD-STRUCTURE 

By H. P. ROBERTSON 

ABSTRACT 
The idealized cosmological problem, in which the nebulae are considered as particles in 

homogeneous flow, is analyzed from the standpoint of the operational methodology, 
allowing the fundamental observers the use only of clocks, theodolites, and light-signals. 
It is found, as an extension of the Helmholtz-Lie solution of the problem of physical 
space, that such a space-time necessarily admits the introduction of an invariant Rie- 
mannian metric of precisely the form and generality of that on which the general rela- 
tivistic theory of cosmology is based, and in terms of which all given elements can be 
interpreted in the same way as in the relativistic theory. 

INTRODUCTION 

The increased knowledge of the structure, distribution, and radial 

motion of extra-galactic nebulae, which has been amassed during the 

past decade, has brought about a renewed interest in cosmological 

speculations. Perhaps the least ad hoc of these is that offshoot of 

Einstein’s relativistic theory of gravitation most often referred to 

by the somewhat misleading designation “theory of the expanding 

universe.” It seeks to develop from the general theory of relativity 

—which has other more firmly established successes to its credit in 

explaining phenomena within the solar system and within the galaxy 

—an idealized universe suitable for the gross description of the 

observed nebular phenomena. This it accomplishes with the aid of a 

general a priori uniformity postulate suggested by the observations 

themselves, which may or may not survive the test of further obser- 

vation; the solution which it offers is by no means unique, nor does 

it seem possible to predict the extent to which the choice it offers 

will be restricted by further data.1 

More recently E. A. Milne has put forward a theory, which is 

based on purely kinematical considerations, eschewing any and all 

theories of gravitation, although leaving open the possibility of the 

subsequent imposition of any gravitational theory consonant with 

the kinematics.2 In the present form of this theory Milne attempts 
1 For a unified account of this theory see the writer’s report, “Relativistic Cosmol- 

ogy,” Rev. Mod. Phys., 5, 62-90, 1933. 
2 A complete account of the present stage of this theory is to be found in Milne’s 

Relativity, Gravitation and World-Structure (Oxford, 1935); to be reviewed in an early 
issue of this Journal. 

284 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
35

A
p J
 

 8
2.

 . 
2 8

 4R
 

KINEMATICS AND WORLD-STRUCTURE 285 

to go beyond his earlier considerations and to derive, in terms of the 

purely operational methodology, the most general kinematics suit- 

able for a cosmological theory based on a uniformity postulate of the 

kind suggested by the observational material. In this idealization 

individual nebulae are to be replaced by “fundamental particle- 

observers^ A, A', , each equipped with a clock, a theodolite, 

and apparatus for sending and receiving light-signals—these latter 

considered as corpuscular impulses in order to avoid an indeter- 

minacy foreign to the problem. Briefly stated, the operational view- 

point restricts the observations of each of these fundamental ob- 

servers to such as can be made on events on his own world-line with 

the aid of these instruments. The uniformity postulate, which Milne 

fittingly calls “the cosmological principle,” asserts that the descrip- 

tion of the whole system, as given by A in terms of his immediate 

measurements, is to be identical with the description given by any 

other fundamental observer A' in terms of his own measurements; 

as such it is equivalent to that uniformity requirement on which the 

general relativistic theory is based (although this is denied by 

Milne). Actually Milne imposes the further restriction that the 

world-lines of all fundamental observers concurred at a given event 

O (“creation”), which is then taken as the zero of all their clocks; 

although (as Milne himself recognizes) this is not a necessary condi- 

tion, we shall adopt it temporarily in order to avoid circumlocution, 

and indicate in due time what change will result from its surrender. 

Now in spite of the apparent similarity of initial viewpoint be- 

tween this theory and the kinematical aspects of the general rela- 

tivistic theory, their conclusions seem quite at variance. The rela- 

tivistic theory finds that the cosmological speculations may, on as- 

signing appropriate co-ordinates r, rja (a = i, 2, 3), to each event E, 

be based on any Riemannian map whose invariant metric ds2 is of 

the form 

(0.1) 

(0.2) 

ds2=dT2-^^- du1, 
c2 ’ 

where R{r)/c is an arbitrary function of r and 

du2 = haß(ri7)dr)adiiiß 
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286 H. P. ROBERTSON 

defines any three-space of constant Riemannian curvature k (which 

may, without loss of generality, be restricted to the values k = —i, 

o, +1). We thus have here a wide range of possibilities, correspond- 

ing to the three possible values of k and the choice of the arbitrary 

function R{t)—although the condition adopted temporarily above 

requires that R(o) =o. The world-lines of the fundamental observ- 

ers are given by 77a = const., and the relations between the co-ordinate 

(r, 77a) of an event E, as obtained by different observers, are given 

by transformations of a six-parameter continuous group G6 on the 

rja which leave the auxiliary fine-element (0.2) invariant in form as 

well as in fact, the value of r being the same for all observers. This 

Riemannian map has, among others, the following properties of 

particular interest in the present investigation : 

a) The world-line of each fundamental observer is a geodesic of the 

metric ds2, and his clock-time along it is measured by this metric. 

b) The world-fine of every light-signal is a null-geodesic of the 

metric ds2. 

We shall on occasion have need of a more specific form for the 

auxiliary metric du2; we may then, without serious limitation of the 

astronomical applicability, choose co-ordinates 77a = (77, 6, <p) in terms 

of which 

where 

du2 = dr)2-j-a2(7))[dd2-}-sin2 6d(p2] , 

<v) = 

sinh 77, (o<77), 

Vj (o<77), 

sin 77, ( o<?7< ^ ; , 

► for k = 

— i 

o 

+ 1 

(o-3) 

(04) 

In each case o<0<7r, o<(p< 2ir. 

Milne, on the other hand, obtains a solution of the full three- 

dimensional problem (i.e., with three spatial dimensions) only for the 

case interpreted by him to mean that the fundamental observers are 

relatively unaccelerated. His results may be expressed in terms of 

the Minkowski map, whose metric 

dS> = dT>-d-X^±^ 
c2 (o-S) 

I 

I 

! 
! 
I 
i 
! i 

i 

i 

i 
I 
I 
I 
! 
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I I 
I I 
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KINEMATICS AND WORLD-STRUCTURE 287 

satisfies the conditions (a) and (b) above. The relations between 

privileged observers are here given by that six-parameter group Lö 

of Lorentz transformations which have the unique event 0 as fixed 

point and which preserve the direction of time. We remark in pass- 

ing that the quantity 

^2 _ 2^ X2+Y2+Z2 

(o.6) 

is invariant under this group, and that on performing the trans- 

formation 

r= T cosh 7j j X = cT sinh 77 sin 0 cos <p , 

F=cT sinh 77 sin 0 sin , Z=cT sinh 77 cos 0 

the map (0.5) is seen to be contained in (0.1) as the special case 

R(T) =cT, k= — i. Only on restricting himself to “collinear” events 

and observers does Milne’s attack on the problem of relatively ac- 

celerated observers yield some prospect of success; in this case he 

finds that their mutual relations must be given by transformations 

of the form 

r'-?=K-f) ■ r'+T^'(r+f) - M> 

I 

I 

! 
! 
I 
i 
! i 

i 

i 

where p~x is the inverse of the arbitrary function p. A discrete linear 

system of fundamental observers satisfying the cosmological prin- 

ciple is in fact obtained on requiring that the transformation between 

each two consecutive observers of the set be given by the same func- 

tions p7 p~x, but Milne does not extend this result to the case in 

which there exists a one-parameter family of such collinear observ- 

ers—the only one which could offer a starting-point for the solution 

of the full three-dimensional problem of accelerated observers.3 

We propose here to analyze the general problem ab initio, using 

the operational methodology throughout and avoiding what Milne 

chooses to call the “conceptual terms” of the general theory of rela- 

tivity. We shall be led to the conclusion that, although none of the 

postulates characteristic of this latter theory are introduced, any 

3 Cf. ibid., p. 357, n. 8. 
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288 H. P. ROBERTSON 

such attack necessarily leads to the existence of a quadratic differ- 

ential metric of precisely the form and generality of (o.i), and which 

furthermore satisfies the conditions {a) and (&) imposed in general 

relativity. 

I. ONE-DIMENSIONAL KINEMATICS 

We begin, then, with an analysis and a completion of Milne’s 

solution of the problem of collinear observers and events. We adopt 

Milne’s tacit assumptions that if two events are connected by a light- 

path, that light-path is unique, and that the contracting and opening 

light-cones with vertices at any event other than O each cut the 

world-line of each fundamental observer in one, and only one, point.4 

A light-signal sent out by a given observer A at time tx by his clock 

is received by a second observer A' at time by his, where is as- 

sumed to be a continuous function of The locus of these light- 

paths for all ¿i>o, extended backward from A as far as possible and 

forward from A', is a certain surface which we denote by AA7. Now 

if the cosmological principle is to be satisfied, this surface AA7 must 

coincide with the locus A7A of light-paths leaving A7 at times t'2 and 

arriving at A at times /2, as otherwise there would exist a one-param- 

eter family of light-paths from any event on the world-line of A to 

a corresponding event on that of A7—as may be seen by considering 

the situation as observed by some appropriate intermediate observer 

A77. Similarly, if any point (other than the common event O) on 

the world-line of another fundamental observer A77 is on the surface 

AA7, then his entire world-line is also, and the three observers A, 

A7, A77 are said to be “collinear.” 

Consider now the traces on AA7 of all light-cones with vertices at 

all events E on AA7 (and contained within the light-cone opening 

out from 0, which is in fact the entire universe in Milne’s interpreta- 

tion); these traces, which are possible light-paths, fall into two 

families of non-intersecting lines such that through each event E 

there passes one, and only one, line of each family. Let each line 

4 At least within a sufficiently large domain containing the events in question. We 
concern ourselves mainly with differential geometrical properties, supplemented, as 
occasion demands, with remarks on the situation arising in case any of the spaces met 
later are or may be finite in extent. 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
35

A
p J
 

 8
2.

 . 
2 8

 4R
 

KINEMATICS AND WORLD-STRUCTURE 289 

of one of these families, say that representing light advancing in the 

direction A-> A', be assigned the parameter t1 by A, where, as above, 

¿X is the time, as measured by his clock, at which the path in question 

cuts his world-line, and let him similarly assign the parameter t2 to 

those of the other family. A' will then assign to any two such lines 

of parameters /x, t2 (as given by A) his clock-times ¿Í, t2, respectively, 

at which they cut his world-line. A may now assign the co-ordinates 

(¿x, /2) to any event E, where /i 

and t2 are the parameters of the 

two lines of the first and second 

families, respectively, which 

pass through E; similarly A' 

will assign to the same event 

the co-ordinates (¿í, Q obtained 

from his own clock readings, as 

illustrated in Figure i. In terms 

of these co-ordinates, the unique 

event O is (o, o), the world-line 

of A is given by the line /i = ¿2, 

that of A' by ¿í = ¿2, the light- 

paths of the first family by h = 

const, or /( = const., and those of the second family by ¿2 = const, or 

t2 = const. ; all light-paths on AA' are thus given in terms of differ- 

entials by the vanishing of either of the quadratic differential forms 

dtxdt2 or dt'idt^. 

The transformation ¿x, /2->¿í, t2 from the co-ordinates assigned E 

by A to those assigned by A' must clearly consist in a reparameter- 

ization of the two families of light-paths, i.e., it must be of the form 

tx = p{t^)^t2 = g(¿2), where p and q are some two (continuous) functions 

such that p{6) =o, q{6) =o. Further, if the cosmological principle is 

to be satisfied, this transformation must be such that on interchang- 

ing the observers A, A' and at the same time the two famihes of light- 

paths it is left completely unaltered—the interchange of the two 

famihes being occasioned by the fact that the parameter tj_ repre- 

sents a signal advancing in the direction A-^A', and hence must be 

replaced by a signal t2 advancing in the direction A'-^A. But this 

means that t2} h must be obtained from ¿2, ti by exactly the same 

Fig. i.—A assigns to E the co-ordinates 
(/i, k); T' the co-ordinates (¿'i, tr2). 
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H. P. ROBERTSON 290 

transformation as t'2 are obtained from i.e., t2 = p(t'2), t1 = 

q(Q. Hence the transformation in question must be of the form 

/i = ÿ(/i) , 12 = ft I(t2) , (i-i) 

where ftr1 is the inverse of the arbitrary function ft and ^(o)=o, 

ft~1{p)=o) this accomplishes at the same time the standardization 

of clocks. This result is completely equivalent to that of Milne cited 

above. 

We now complete this solution for the case in which there exists 

a one-parameter family of possible collinear observers. The trans- 

formation (1.1) between any two observers of the family must then 

be a member of a one-parameter continuous group ; hence the trans- 

formation ft of must be a member ^ of a one-parameter continuous 

group GI? and t2 must transform according to its inverse ü, which is 

also a member of Gx : 

u), t’2=f{t2\ u). (1.2) 

We may without restriction take u = o&s defining the identical trans- 

formation ¿í = ¿X, t'2 = t2. Now, it is well known that in order for such 

transformations to form a continuous group, % and t2, considered as 

functions of the parameter u, must satisfy a certain set of differential 

equations;5 these equations may here, on suitable choice of the pa- 

rameter u, be taken in the form 

dl=M> ^ 

where £(/z) is the generator of the infinitesimal transformation hu 

of Gx: 

(and t2 = t2—%(tft)bu) . (1.4) 

The parameter u is hereby determined only to within an arbitrary 

constant factor C and the generator £ to within the factor i/C; for 

convenience we limit the choice of this factor by the condition that 

s Lie's “first fundamental theorem”; cf. S. Lie and F. Engel, Theorie der Transforma- 
tions gruppen^ 3, Part VI, Leipzig, 1893, to which we shall have occasion to refer in the 
sequel. 
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KINEMATICS AND WORLD-STRUCTURE 291 

¿(¿) be positive for t>o (or in the range between t = o, at which 

£ = 0, and its next zero). 

The integration of the fundamental equations (1.3) yields the 

finite equations (1.2) of the group. Defining 

fwT!t <,'s) 

where a is any suitably chosen lower limit >0 (which never actually 

enters into the analysis), the finite equations of the group are im- 

mediately found to be 

F(ti) = F(tl)+u , F(t'2) = F(t2)—u. (1.6) 

Each observer A may now characterize each other privileged ob- 

server A' in the set by a fixed value of the continuous parameter u, 

i.e., by that value of the parameter which defines the transformation 

sending his measurements into those of A'; he of course assigns to 

himself the parameter w = o, defining the identity. The solution ob- 

tained by Milne for a discrete set of such observers is contained 

herein as the infinite cyclic subgroup u = nKy ±1, +2, . . . . , 

where /c is a fixed constant (which may, on suitable normalization, 

be taken as unity).6 Note that the group (1.6) admits as its only 

fundamental invariant F{t^)+F{t^)\ for convenience we choose in- 

stead of this quantity itself that solution r of the equation 

2F(r) = F(tI)+F(t2) (1.7) 

which reduces to r = ^ = /2 for events on the world-line of A. All first- 

order differential invariants are expressible in terms of r, dF(tz) = 

and dF(t2) =dt2/%(t2). 

These formal considerations must now be supplemented by an 
6 We have here tacitly assumed, with Milne, that there exists an infinite set of dis- 

tinct observers, i.e., that they may be thought of as equidistant points along an open 
straight. If, however, there are but a finite number N of distinct observers, as in the 
case of N points at equal distances on the circumference of a circle, this subgroup is a 
finite group of order N, and u must be taken modulo Nk. From the standpoint of the 
continuous group, this situation arises if there exists a value of u other than zero which 
also yields the identity; the significance of this alternative topology for the continuous 
group will become apparent in the following discussion. 
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appeal to the empirical in order to determine the hitherto arbitrary 

function £(/) from the given motions. To accomplish this we fix at- 

tention on two particular observers A, A', and complete the normal- 

ization of u and £(/) by assigning to the transformation A -> A' which- 

ever of the parameter values w = ± i leads to positive £, as agreed 

above. A signal sent out by A' at time t’x = ¿2 is received by A at the 

time /2 defined by the equation F{t¿) =F(t'2) ± 1 obtained from (1.6). 

We may now suppose that A' informs A of the time t2 at which the 

signal was sent, so that ¿2 is in principle an empirically determinable 

function of /2; the foregoing equation then determines implicitly the 

function F(t) and hence %(t) = i/Ff(t). We come much closer to 

actual practice, however, by relaxing our too stringent hypothesis 

concerning the nature of light-signals, and allowing A to determine 

the “Doppler shift-ratio” s(t2) =dt2/dt'2 = v/v+Av directly with the 

aid of a spectroscope;7 for that observer A' characterized by general 

u this Doppler shift-ratio is given by 

s{t2) = 
dt2 £(¿2) 

m ’ 
(1.8) 

where F(t2) =F(t'2)+u. Note that for the infinitesimal transforma- 

tion (1.4) the foregoing formula becomes s = i + £'(£2)ô^ and would 

be interpreted by an observer using the traditional formulae for 

Doppler effect8 as due to a radial velocity 

v=c^(t2)ôu . (1.9) 

Finally, we may say that, in principle at least, the whole develop- 

ment, including the determination of the generator £, is expressible 

in terms of the operational methodology, although we have, of 

course, not hesitated to use such purely mathematical tools as 

seemed most appropriate. 

We now ask whether in this general collinear case we can map 

space-time with the aid of an invariant Riemannian metric ds2, 

satisfying, if possible, the conditions (a) and (b) discussed in the 

introduction above; this is what is accomplished for the unaccele- 

rated case £(/)=/ by the Minkowski map. Condition (b) requires 

7 Cf. Milne, op. cit., p. 35. 8 Cf. ibid., p. 37. 
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KINEMATICS AND WORLD-STRUCTURE 293 

that such a metric be of the form/^x, t2)dt1dt2,
9 and the invariance 

requirement that it be reducible to the form/(r)¿F(/I)áF(í2). For 

an interval on the world-line of A (¿i = /2 = t), this latter expression 

becomes/(t)[¿t/^(t)]2, and if (a) is to be satisfied, it must be exactly 

(¿t)2, i.e., we must have/(t) = [£(t)]2. Hence a metric having the 

required properties must, if it exists, be of the form 

ds2=iQ'tit7)dtldk ’ ^•I0') 

i.e., it is uniquely determined by the function £ characterizing the 

given motions. That the world-line of A, and therefore of any funda- 

mental observer, is a geodesic of this metric is apparent from the 

symmetry of the latter in /x and t2 (or from the alternative form 

[1.12] derived below); hence both conditions (a) and (b) are in fact 

satisfied. 

Milne has defined two quantities, the epoch T and the distance X 

of any event E(/x, ¿2) relative to A, in terms of the quantities t2, 

which are the results of immediate judgments by A;10 we propose 
9 Thus, in the first instance the fact that the metric is to be quadratic is but an ex- 

pression of the existence of exactly two families of light-paths; in general, as has been 
remarked by H. Bateman and by R. Courant in discussing the foundations of the gen- 
eral theory of relativity, a quartic or higher-order metric would imply double refraction 
or worse (or the introduction of imaginary elements foreign to the problem). This argu- 
ment, arising from the consideration of light-paths alone, is but supplementary to those 
adduced by Helmholtz and Lie for the case in which space is considered as given a priori 
and by Weyl for the case in which it is considered as contingent (cf. references in sec. 2 
below) ; the present investigations are based on an interfusion of these two standpoints. 
Altogether these arguments should allay the querulous skepticism expressed by Milne 
(op. ciL), p. 342. 

10 Ibid., p. 29; explicitly, T=(t2-\-ti)/2, X=c(t2—ti)/2. Note that our r satisfies all 
Milne’s requirements for an “epoch” except the quite inappropriate one that on adding 
a constant to the graduations of the clock carried by A, the epoch be increased by the 
same amount—inappropriate, because we are here dealing with a situation in which, as 
previously agreed by Milne (p. 26), the unique event O offers a natural origin for the 
measurement of time. Note also that for the case of unaccelerated motion our epoch 
r=(tit2Ÿ, i.e., we have merely used the geometrical in place of Milne’s arithmetical 
mean—surely no great deviation from his methodology! It is hoped that these remarks 
will serve to dispel the prejudice against “cosmic” time r, as opposed to “the time [T] 
used in timing a race, stating athletic records, or arranging a railway time-table” (ibid., 
p. 44)—incidentally, over here the officials at such experiments usually carry their own 
watches! 
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similarly to define two quantities r, rj, which will also serve as the 

co-ordinates of any event E, but we shall be more noncommittal in 1 

naming the second. First, the epoch r of £(/!, t2) is defined by (1.7) ; j 

it does coincide with the clock time of that fundamental observer A' | 

whose world-line passes through E, but A has no need of calling ¡ 

upon A' to determine it. Second, we use in place of distance the | 

^-interval 1771 between A and the event E in question; 77 itself is the ' 

value of the parameter u of that transformation (1.6) which sends ! 

the measurements obtained by A into those obtained by that unique ! 

observer A' whose world-line contains the event E, and is accordingly ! 

defined in terms of ^ and t2 by the equation ! 
i 

2rJ = F(t2)-F(tI) (1.11) ; 

obtained from (1.6) upon setting ti = t'2 = r and subtracting. In ! 

terms of these co-ordinates (r, 77) the invariant metric (1.10) of the ! 

space-time map is readily found to be I 
i 
i 

ds2 = dT2—%2(T)dr)2, (1*12) j 

and upon setting £(r) =R(t)/c, this is seen to be identical with the ¡ 

“one-dimensional” form of the line-element (0.1) upon which the j 

relativistic theory of cosmology is based. We have precisely as much ! 

or as little right to assert that its measurement R(j)ií] of the “dis- ; 

tance” between “simultaneous” events coincides with that obtained ! 

with rigid rods as Milne has to identify his co-ordinate X with such ¡ 

measurements in the unaccelerated case. Note that in case we do ¡ 

so, the admittedly conventional assignment (1.9) of a velocity v to ¡ 

the observed Doppler effect in light from that fundamental particle ¡ 

of constant ^-interval 77 would, understandably enough, be con- ¡ 

sistent with this interpretation only in the first approximation. We | 

choose, however, not to introduce this additional hypothesis or I 

“law,” in order to retain the kinematical and general character of I 

the analysis and to avoid premature resort to the empirical. I 

2. THREE-DIMENSIONAL KINEMATICS 

In order to extend these results to the three-dimensional case, con- 

sider any pair B, B' of fundamental observers in the given three- 
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KINEMATICS AND WORLD-STRUCTURE 295 

parameter family, and let BB' denote the surface containing all 

events and observers collinear with them. The cosmological prin- 

ciple requires that all that can be said concerning the family AA' of 

collinear observers can also be said of the family BB'; thus, in par- 

ticular, the relations between the various observers in BB' are given 

by the same transformation group (1.2), and its infinitesimal genera- 

tor is therefore the same function £(¿) to within a constant factor 

i/C. We now normalize the parameter u for this new family by 

requiring that this factor C be unity; there then exists a unique non- 

negative ^-interval \u\ between each pair B, B' of fundamental 

observers, which can be determined operationally as described in 

section i above and which vanishes only if B and B' coincide. Hence 

there exists a three-dimensional positive-definite metric “2¿-space” 

of observers (not to be confused with aphysical space”) which, in 

virtue of the cosmological principle, must be homogeneous and 

isotropic. Now the fundamental Helmholtz-Lie investigations con- 

cerning such a space show that this u-space must admit a positive- 

definite quadratic metric du2, of constant Riemannian curvature.^ The 

curvature k of this three-space may, without loss of generality, be 

restricted to one of the three distinct possibilities & = — 1, o, +1 by 

renormalizing the parameter u (in case k^o) with the aid of the 

constant factor C = \k\h. On introducing co-ordinates ?7a(a = i, 2, 3), 

the metric du2 of this auxiliary ¿¿-space of observers assumes the 

form (0.2), and each event E in the complete space-time map may 

be assigned the co-ordinates (r, 771, rf, t?3). Furthermore, the con- 

siderations at the end of the last section and the beginning of this 

show that we may associate with each pair of ^neighboring” events 

(r, 77a), (r+dr, 77a+d?7a) the invariant interval 

ds2 = dT2—%-{j)du2 ; (2.1) 

11 Lie-Engel, op. cit., 3, Part V. For a more direct account of this remarkable theorem 
(and for further more general results on the uniqueness of the quadratic form in physical 
geometry) see H. Weyl’s Barcelona lectures, Mathematische Analyse des Raumproblems 
(Berlin, 1923). The group of congruences in terms of which the uniformity is expressed 
(Weyl, op. cit., p. 30) consists here of the transformations from the measurements of 
any observer A, with arbitrarily oriented theodolite, to those of any other such observer 
A', and is described in more detail below. 
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296 H. P. ROBERTSON 

hence our kinematical space-time map admits an invariant metric of 

the same form and generality as that which is at the basis of the general 

relativistic treatment of the cosmological problem. The relations be- 

tween the fundamental observers A (77“ = const.) are given by the 

group Gö of automorphisms of du2, and r is invariant. The world- 

lines of these observers A are clearly geodesics, and the light-paths 

are null-geodesics, as shown below; hence the conditions {a) and {b) 

are again fully satisfied. 

We return to the operational definition of the co-ordinates r¡a and 

of the group relating the observations of different fundamental ob- 

servers, the definition of r having been discussed in section 1 above; 

with this in mind, we consider first the light-paths in terms of the 

metric (2.1). A signal sent out by an observer A, whose world-line 

is given by r]* const., and received by another observer A', tj“ const., 

traces out a certain path in the auxiliary w-space between the points 

rj* and 77J. Now, by the cosmological principle and the assumption 

that the light-path between two events is unique, this projection on 

the w-space must be a geodesic of the auxiliary metric du2, as other- 

wise there would exist a one-parameter family of such paths; the 

considerations of the previous section show that the light-path itself 

must be a null-line of the metric ds2. It is readily shown that these 

two facts together imply that the light-path in the space-time map 

is necessarily a null-geodesic of the metric ds2,'2 thus proving for the 

present case the condition (&) which is one of the cardinal assump- 

tions of the general theory of relativity. Each observer A may now 

supplement the epoch r and the ^-interval 'n' = y]{>6) of a distant 

event E by two further co-ordinates r¡2 = 6, rj3 = (p defined as follows. 

Let him set up his theodolite, once and for all, in any arbitrary way, 

i.e., by choosing a zenith and a base meridian. He then assigns to 

E the co-ordinates 6, <p obtained immediately from the altitude 

7r/2-0 and the azimuth <p of the theodolite when it is set in position 

to receive light from E. These operationally defined geodesic polar 

co-ordinates (77,6, <p) are in fact those employed in the canonical form 

(0.3) of du2, and enable A to obtain from immediate judgments alone 

12 This fact may be established by a reversal of the analysis employed in the relativ- 
istic theory, for which see Appendix E, p. 87, of the report referred to in footnote 1 
above. 
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KINEMATICS AND WORLD-STRUCTURE 297 

the co-ordinates of any event E in his observable universe.13 Any 

two of the six-parameter family of co-ordinate systems thus ob- 

tained—the choice of an origin (three parameters), of an equatorial 

plane-element (two), and of a meridian (one)—are related by a 

transformation of the fundamental group Gô, which is hereby 

brought into canonical form. 

We have thus shown that any space-time satisfying the cosmo- 

logical principle admits ipso facto an invariant quadratic metric ds2 

of the form (2.1) and having the properties (a) and (&); this result 

goes beyond the general relativistic treatment, for there a quadratic 

metric with these latter properties is assumed and is then shown to 

be necessarily of the form (2.1). No treatment of the cosmological 

problem, in which the uniformity principle is adopted, can be based 

on a more general kinematical background than that offered by the 

relativistic theory; on the other hand, any treatment in which no 

undue restrictions are imposed must lead to exactly the same general 

range of possible backgrounds. With regard to this last point, we 

remark that the assumption that the world-lines of all fundamental 

observers concurred at r = 0 (i.e., £(o) =0) is clearly not a necessary 

restriction, and an examination of our analysis shows that it may 

be dropped, i.e., no restriction of this nature need be placed on £(r). 

Further, while we have tacitly assumed “elliptical” rather than 

“spherical” space in introducing co-ordinates in the auxiliary w-space 

for the case & = +1, we are still free to restore this second possibility 

—but the decision on observational ground is presumably far 

beyond our present resources. Finally, we emphasize the fact that 

the geometry of the three-dimensional w-space is in no sense a matter 

of convention; whether it is one of (constant) negative, zero, or posi- 

tive curvature is a purely empirical matter, as is the determination 

of £(t). 

It follows from eq. (1.6) that light emitted at times r0 and reaching A at time r 
traverses a «-interval F(t) —F(t0) ; hence A can at time r have cognizance only of those 
fundamental particles whose «-interval does not exceed [F(t) —F(o)]/2, and he can never 
be aware of an event E(r0, «) whose «-interval exceeds [F(oo ) —F(t0)]/2. Unless the in- 
tegral F(a) is divergent, the first of these anomalies will always be found in the open 
models k= — i, o, and in the closed ones k = -\-i for sufficiently small r; this has led 
Milne (op. cit., chap, xvii) to reject, on methodological ground, all Friedmann universes, 
for in them 
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298 H. P. ROBERTSON 

3. INTERPRETATION OE MILNE’S SOLUTION 

In our treatment no mention has been made of the ¿ Velocity of 

light”; much less has any question been raised as to its constancy. 

Indeed, we have not allowed ourselves to identify any property of 

the metric as giving rise to a “distance” as measured by “rigid rods,” 

as such a procedure would necessitate another, for the present pur- 

pose unnecessary, appeal to the empirical. In Milne’s attempt to 

deal with these points is to be found the reason for his failure to ob- 

tain the general solution of the problem. Milne has defined co- 

ordinates X, F, Z in addition to a time T, has allowed his observers 

to employ Euclidean geometry with these co-ordinates as a rectangu- 

lar Cartesian system, and has demanded 

c) that the velocity of light c be constant and the same for all ob- 

servers. 

As a result of these assumptions he has of course obtained the well- 

known result that the differential form (0.5) must be invariant and 

that the relations between fundamental observers are accordingly 

given by Lorentz transformations, the linearity of which implies that 

the observers are in relatively unaccelerated motion; the further re- 

quirement that 0 be fixed restricts the full Lorentz group to that six- 

parameter subgroup L6 mentioned in the introduction above, which 

leaves invariant the quantity T defined by (0.6).14 He thus obtains 

the special case £(r) = t, & = — 1 of (2.1) as the only metric satisfying 

the conditions (a) and (b) in addition to his condition (c), and is led 

to the conclusion that (c) must be altered.15 Our treatment avoids 

this impasse by making no use of (c), but it is also a fact that we 

could adopt it in certain cases if we are willing to surrender the 

identification of T with clock time. This procedure, which is based 

*4 For the requirement that the vanishing of dS2 implies the vanishing of dS'2 means 
that the transformations between fundamental observers are conformal, and the only 
conformal transformations in four dimensions are composed of (i) dilatations, (ii) transla- 
tions, (iii) rotations (here including Lorentz transformations), and (iv) inversions, cf. 
Lie-Engel, op. cit., 3, Part IV, or G. Darboux, Systèmes orthogonaux (Paris, 1910). 
The physical requirements throw out (i) and (iv), and the requirement that O be fixed 
leaves only rotations about this event. 

^Op. dt.., p. 51. 
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KINEMATICS AND WORLD-STRUCTURE 299 

on our remark made elsewhere that (o.i) is conformally flat,16 can 

of course be expected to lead only to the open models without the 

introduction of imaginary quantities. It may be of some interest to 

carry through this interpretation for the case k = —i, F(o) divergent, 

for here the group Gö becomes exactly that group L6 on which 

Milne’s considerations are based; if desired, one could then retain 

for this case, with suitable reinterpretation, much of the formal 

structure developed in Parts II and III of his book in dealing with 

accelerated observers. 

With this in view, we define a new time-like variable 

T = eW (3.1) 

in terms of cosmic time r, where F is the integral (1.5). The line- 

element (2.1) for the hyperbolic models k = —1 then becomes 

ds*=f(T)dS\ (3.2) 

where/(T) =£(t)/T, upon subjecting the co-ordinates (T, rj, 6, <p) 

to the transformation (0.7) and defining dS2 as in (0.5). For the 

cases mentioned above in which F(p) diverges (therefore to — c*0), 

the singular event 0 becomes the origin of the Cartesian co-ordinates 

T, X, F, Z, which is the fixed point 0 of the Lorentz group L6. The 

condition (b) is satisfied by the subsidiary line-element dS2 as well 

as by ds2, for a simple calculation shows that the null-geodesics of 

one are the null-geodesics of the other; hence Milne’s postulate (c) 

is formally satisfied in terms of the new space-time co-ordinates T, 

X, F, Z. However, condition (a) is not fully met by dS2, for al- 

though the world-line of the fundamental observer A is the straight 

X=F = Z = o radiating out from 0 toward the future, T is not a 

direct measure of clock time along it—except in the case £(t) =t of 

unaccelerated motion, in which the conformality factor/(T) may 

be taken as unity and all three conditions (a), (6), and (c) are met 

simultaneously. 

16 “On the Foundations of Relativistic Cosmology,” Proc. Nat. Acad. Sei., 15, 825, 
1929. Cf. also A. G. Walker, M.N., 95, 263, 1935. 
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300 H. P. ROBERTSON 

The parabolic case k = o lends itself to similar treatment. In this 

case it is only necessary to introduce Cartesian co-ordinates X, F, 

Z in place of the polar co-ordinates 77, 6, ip, for we may then write 

ds*=?{T)dS% (3.3) 

where T = F(t). The solution is then reduced to one in which the 

fundamental group Gô is the full group of Euchdean motions on 

X, Y, Z. In case F{6) is divergent, the fixed event O recedes to 
r=-oo, and we are dealing with the whole of the Newtonian uni- 

verse—the co-ordinate velocity of light being constant merely be- 

cause we are concerned only with fundamental observers whose 

mutual distances, as measured by the metric dS2, are constant. The 

anomaly stressed by Milne17 sets in whenever F ip) converges, as 

in the so-called Einstein-De Sitter universe, for in the parabolic 

cases “creation’’ occurred at the finite “time” T0 = F(o) in the past, 

and in the hyperbolic cases discussed above at “time” T0 = ^i?(o). 

CONCLUSION 

We have examined, from the operational standpoint, the problem 

of determining the most general kinematical background suitable for 

an idealized universe in which the cosmological principle holds. Al- 

lowing the fundamental observers the use only of clocks and theo- 

dolites, and granting them the possibility of sending and receiving 

light-signals, we have shown that for each given mode of motion 

£(t) there necessarily exists a quadratic line element (2.1) which is 

invariant, in form as well as in fact, under transformation from one 

fundamental observer to another. This metric is determined, apart 

from topological considerations, to within the sign of the Rieman- 

nian curvature of the “space” r = const., the determination of which 

requires a second contact with the given and is in no sense conven- 

tional. This intrinsically unique metric has the property (a) of 

measuring observers’ clock time along each member 77® = const, of 

the three-parameter family of fundamental observers’ world-lines, 

which are at the same time geodesics, and the property (b) of 

describing all light-paths as minimal geodesics. More it cannot do 

Cf. n. 13 in sec. 2 above. 
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without additional hypotheses, for we have with this accounted for 

all given elements—clocks, theodolites, all light-paths, and the j 

world-lines of the given observers. Thus, although this metric map , 

is identical with that to which the kinematical aspects of the general 

theory of.relativity lead on imposing the cosmological principle, it ■ 
cannot predict the motion of free particles other than the given ; 

fundamental particle-observers; it can only restrict their mode of ; 

motion by demanding consonance with the uniformity postulate. ; 

Any gravitational theory not in conflict with its basic assumptions ; 

may be imposed—but the existence of the dimensionless function : 

£(t)/t of r would appear an insuperable obstacle, even in the ideal- j 

ization here considered, to the development of a purely kinematical- | 

statistical theory of gravitation along the lines proposed by Milne. ! 

Princeton University i 
August 1935 ; 
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