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EXAMPLES OF PERIPLEGMATIC ORBITS, 
By G. W. HILL. 

In the motion of material points it is well known that 
the determination of the orbits may be considered quite 
apart from the question what positions upon the orbits the 
points have at a given time. When the first portion of 
the problem has been completely investigated, the second 
is reduced in general to a mere matter of quadratures. 
GrYLDÉi'ds later investigations in this line have rendered 
this division of procedure familiar. Our illustration will 
be confined to the motion of two points in the same plane. 

In this plane, having adopted a pole, let v denote the 
longitude and r and r' the radii of two orbits in the plane. 
The line of departure, from which v is measured, may be 
chosen arbitrarily, but, as r and rf are not in general 
periodic functions of ?/, it is not allowable to subtract an 
integral number of circumferences from the latter, which 
must be permitted to extend from — oo to -fco . Then if 
•p and p} are two constants, and we put 

the differential equations 

'W -0 
W2+p-° 

V 

d2p> 
diï2 + p' = 0 

rPp 
dv^ 

d) V 
9p 

dy 
dv2 

are, as is well known, those of two conics having a focus 
at the pole. If, more generally, the differential equations 
are such that they can be written in the form 

V may be called the orbital potential. The present dis- 
cussion will be limited to the case where V does not 
explicitly involve v. In the foregoing simple case we 
have 

-i(P
2V2) 

A more general form for this function would be 

^ = /(p)+/,(pO 

and then the orbits may be said to be independent of each 
other, and their determination is evidently a mere matter 
of quadratures. But, if the differential equations have 
not this form, nor can be given it through a transforma- 
tion of variables, the orbits may be said to be entangled¡ it 
being impossible to determine one of them without the 
virtual, at least, determination of the other. It is the 
latter case which demands the employment of Lindstedt’s 
series. 

In the simple case adduced V was rational, integral and 
of two dimensions in p and pi In order to construct a 
very simple case for the application of these series, sup- 
pose that V still remains rational and integral, but nowT 

involves terms of three dimensions in p and pi Were these 
terms proportional to ps and p/s, the resulting orbits would 
be independent, and there would be no occasion for the 
employment of Liivdstedt’s series. But let the new terms 
be proportional to p2p' and pp/2, and the occasion for their 
use may arise. 

Let us suppose that, p, being a constant, 

2F= -P-^-Wp'(p+p') 
Then the differential equations will be 

d'2p 
dv2 

d2p‘ 

2 + p 4- p (ppAI p/2) — 0 

dv'2 + p'+/Vf>p'+2 p3) =0 

It is desirable to limit as far as possible the number of 
constant parameters appearing in the equations, and that 
whether they were there originally or have been intro- 
duced by integration. In this connection it will be seen 
that p, is an unnecessary parameter, for it can be got 
rid of by multiplying both equations by it, and then re- 
placing p,p and p.p1 by p and pi Thus, representing the 
radii by the equations 

pt+p P+P 
p and p' will be determined by the equations 

(9) 
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—t-p'+pp'+ip2 ^ 0 

^2 +p + pp'+ip^ = 0 

¿V 
dv* 

whicli differ from the former only in that /x is replaced by 
unity. 

These equations have the integral 

¿+¿+p2+p,2+w,(p+p,) = ^ 
we write (72 instead of C in order to avoid a radical sign 
in some of the following relations. When p and p’ are in- 
terchanged, the equations remain the same ; thus the 
relation p = p1 constitutes a particular integral of the sys- 
tem of differential equations. 

Adopt for exhibiting graphically the simultaneous values 
of p and p! (simultaneous with reference to the independent 
variable v) a system of rectangular coordinates, x exhibit- 
ing the value of p, and y the value of pf. Then the repre- 
sentative point P must lie on the negative side of the 
curve whose equation is 

x2 + y2 + xy (x-\-y) — C2 = 0 

in order that ^ and may be real. This cubic /V /I # /Y /n * will dv dv 
have a closed branch surrounding the origin if C2 falls be- 
low a certain limit. It crosses the axes of x and y on both 
sides of the origin at distances therefrom, equal in all four 
cases, to C. Its intersections with the right line whose 
equation is ic + y = 0, and which bisects two of the angles 
made by the axes, are also at a distance C from the origin. 
On the other hand, its intersections with the line bisecting 
the remaining angles, whose equation is íe —y = 0, are 
given by the roots of the equation 

-b 2^3 - (72 = 0 

But this cubic cannot have more than one real root unless 
G2 does not exceed ^8

T. This is the condition necessary 
and sufficient that the original cubic should have a closed 
branch including the origin. As we wish to confine our 
attention to the case where the radii are restricted to finite 
limits, we suppose that G fulfils the mentioned condition, 
and that the representative point P is always within the 
closed branch. 

When x is at a maximum or minimum in the original 
cubic, the equation 

2 (1 + æ) y + ce2 = 0 

must be satisfied. Multiply this by -J-y and subtract the 
product from the cubic ; the result is 

x2 -f x2y — G2 = 0 

But the previous equation yields 
, x2 

Hence the quartic 

— 4- 
l+ÍC = G2 

by its roots, which immediately embrace 0 between them, 
furnishes the limits of both the variables p and p1. How- 
ever, we are not under the necessity of solving the quartic 
for the purpose of obtaining these limits; evidently, for 
(7 we may substitute a function of another constant render- 
ing the solution easy. 

The quartic, in a developed form, is 

x* — 4æ3 — Ax2 + 4 G2x + 4 C2 = 0 

To remove the second term from this put x = z + 1, and 
we have 

^4 _ 10^2 _ 4 (4_ G2)z - 7 + 8G2 = 0 

We can adopt indeterminates q, q!, R, such that the 
roots of this quartic are 

% = V-K \/q-\-q’\lR 
z2 = — \/~R + \/q—q'\jR 
zo = IÎ — V 2+ç'Vï? 

— — V-ñ — V q—q1V R 

Then q, q1, R are determined by the equations 

q + R = 5 , qlR = 4,-C2 

Æ3-5Æ2+2(4- C2) R- 0 

Put, for simplicity, 4 — C2 = m, then 

= VR+ VS—B-bmP-i 
Z2 = —\Jb + 
«3 = VB — Vs—R-bm^-i 

— — V R — V S—R—mR~* 
Rs-5R2+2mR-im2=0 

The solution of the last equation, regarding m as the 
unknown, is 

m = 4 A ± 2R a/A—] 

whence it follows that 

C2 = 4 (1 — A) T 2AVa—Ï 

In order that C may be real A should exceed unity, and 
the cubic in A has always at least one root greater than 1 ; 
for, if we make A = 1, the left member becomes —^ £74, 
while, for A = + oo , the result is -fi oo . 

If we make V ^—1 — we have 

G2 = 2c (l-c)2 

If we adopt the right member of this as a substitute for 
(72, it is plain that the roots of the quartic will be expres- 
sible without the intervention of cubic radicals. While 
G2 goes from 0 to > e goes from 0 to i. In terms of c 
we have 
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Xl = 1 + V4—c2-J-(4—2c) 
a-2 = 1 — VH-^ + V 4—c2—(4—2c) VLR2 

iCg — 1 “f* a/1-}-c2 V 4—c2+(4—2c)'\/i4-c2 

x4 = 1 — Vl+c2 — V 4—c2—(4—2 c) Vi-fc^ 

Then x4 is evidently the lower limit of the values 
of p and pf and x2 the upper limit of the same. The 
values of these limits are tabulated below for every 0.01 
in c. 

Limitiistg Values of p and p! as Functions of c. 

c 
0.00 
0.01 
0.02 
0.03 
0.04 
0.05 
0.06 
0.07 
0.08 
0.09 
0.10 
0.11 

Lower 
0.0000 

-0.1404 
0.1972 
0.2399 
0.2751 
0.3056 
0.3326 
0.3569 
0.3791 
0.3996 
0.4186 

-0.4363 

Upper 
0.0000 

+ 0.1403 
0.1968 
0.2390 
0,2735 
0.3031 
0.3290 
0.3520 
0.3727 
0.3915 
0.4086 

+0.4242 

0.12 
0.13 
0.14 
0.15 
0.16 
0.17 
0.18 
0.19 
0.20 
0.21 
0.22 
0.23 

Lower 
-0.4529 
0.4684 
0.4832 
0.4971 
0.5103 
0.5229 
0.5348 
0.5462 
0.5571 
0.5675 
0.5775 

-0.5871 

Upper 
+ 0.4385 

0.4516 
0.4637 
0.4747 
0.4849 
0.4942 
0.5027 
0.5104 
0.5175 
0.5239 
0.5297 

+ 0.5348 

0.24 
0.25 
0.26 
0 27 
0.28 
0.29 
0.30 
0.31 
0.32 
0.33 

Lower 
-0.5962 
0.6050 
0.6135 
0.6216 
0.6295 
0.6370 
0.6443 
0.6513 
0.6580 
0.6645 

Upper 
+ 0.5394 

0.5435 
0.5470 
0.5500 
0.5526 
0.5546 
0.5562 
0.5574 
0.5581 
0.5585 

 2. + | (4- 
.'i MW ¿-¿íá 

•Vio) 

To illustrate the matter let us take a particular case, 
the radii being represented by the formulas 

fxp 
P-+p ? p.+p^ 

suppose that the values of the four constants involved are 

p = 1 , p' = 2 , pc = 2 , c = 0.2 _ 

The limiting values of r are 

2 
' - 2 + 0.5175 = °-794 

and those of r' double these 

V = 1.589 

2-0.5571 = 1.386 

rf = 2.772 

Here the upper limit of r is less than the lower limit of 
r' ; hence the orbits have no point in common, and do not 
interfere with each other. We shall call this the quality 
of noninterference. It will be seen at once that the values 
of p, pf, pc, c can be varied through a considerable range 
without the failure of this quality. But here is evidently 
an opportunity to apply Lindstedt’s series in integrating 
the differential equations determining p and p1. Thus the 
applicability of these series does not imply dynamical in- 
stability in the motions which can take place upon the two 
orbits. 

The form of the cubic circumscribing the values of p and 
p1 for the special case noted above, where C2 = 0.25*6, is 
shown in the adjacent figure (the scale is two inches to the 
unit). O is the origin, and the right line A OB, passing 
through that point and bisecting the angle between the 
axes of coordinates, is the path of the representative point 
P for the case where p’ = p, and the solution of the dif- 
ferential equations is a periodic one. It may be noted that 
this point in general never attains the closed branch of the 

cubic curve, as this cannot happen unless the values 

= 0 , = 0 are simultaneous.# 

dv dv 

It is interesting to know whether the orbits are peripleg- 
matic in the sense of Gylden. With his notation we 
should have 

d^- 
= 

dv2 pt 

dv2 

- 1 (pp'+IV2) = p 
pi 

--(pp'+n2) =p' pi 

* The infinite branch is not given in the diagram, as it is useless 
for our purposes. The curve is species 67, and is shown in Fig. 71 
of Newton’s Enumeratio linearum tertii ordinis, printed at the 
end of Dr. Samuel Claeke’s Latin translation of Newton’s 
Optics. 
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For the quality in question P and P1 must not fall 
below —1. As the greatest value of pp'+i p/2 or pp^ip2 

is if p, exceeds this, the orbits will be periplegmatic. 
The treatment of the differential equations is, in general, 

easier if we make the linear transformation 

U = k (p+p1) 
They then take the form 

d2u 
d^+u+-'‘ 

= i (p-p') 

1 <>2 2 S 

d2S 
dv2 + s — us 

= 0 

= 0 

The radii of the orbits are represented by the equations 

r = ^ ri == 
/A + lC-hs } [A + U — S 

The integral, in terms of the new variables, is 

d¿ + d¿+u> + s>+^l,S-us^iC> 

The adoption of the solution 5 = 0, satisfying the equa- 
tions, leads directly to a periodic solution of them. In 
this case we have the single differential equation 

rhP 
%C2-u2- u* 

dv2 2 

to be integrated. Make the substitution 
u = g gf cos 2ij/ 

g and gf being constants ; then 

4y/2(l —cos22^) ^2 = i + cos 2^)2—(p'+y'cos 2^)3 

Let g and gf be so chosen that the right member of this, 
equated to zero, may have the two roots cos2i/f = ±1. 
Then g and g’ are determined^by the equations 

ïC2-(g+g!)2-{g+g’y = 0 
\C2-{g-g^-{g-gJ = 0 

or by 
i C2 — g2 — gr2 — gs — 3gg12 — o 

2g + Sg2 + gl* = 0 

If we divide both members of the last differential equa- 
tion by 1 — cos2 2ij/ the result is 

• g3 + g18 cos 2^ 

But, eliminating C2, this becomes 

4 ^2 = 1 + 3y + y' cos2i/r = 1 + 3y + y' — 2gf sin2i^ 

If we put 
and 

If next 

we have 

a/3 g* = sin (9, then will 3y = cos 0 — 1, 

= [sin (04-60°)— sin 0 sin2^] 

sin 0 
k2 

sin (0+60°) 

di}/2 _ j 1 
dv2 ~ 4 Vl —+ 

and to u may be given the form 

l + Ä2 ^ 

(1 — k2 sin2 if/) 

Vi—fc24-^ 
k2 

Vi—fc24-fc5 sin2 if/ 

It will be seen that k takes the place of the arbitrary 
constant C2 which is attached to the integral. In the 
Gudermannian notation for elliptic functions, putting m 

^ and c being an arbitrary constant, for 
2</i—fcH-fc4 ’ 

sint/f = sn (mv-i-c) = snx 
and 

/l + ¿2 

— i V1—&2-j-&4: — k2sn2x 

The value of C is of interest ; we have 

¿;(72 = y2+y3 + y/2(H-3y) 
= Jy (3 — 6 cos 0+3 cos20—1 + 3 cos 0 — 3 cos20+cos80) 

+ i (1 —cos20) cos 0 
— 22t (H“3 cos 0—4cos30) = 22t (1 —cos 30) 

C2 = JV sin2 § 0 

If O2 is wanted in terms of k we have 

1-3 ¿2_3 + C2 = 1- 
(l-k2+k*)\ 

The argument on which u depends is 

77 1 : V -T C 
2K 

where K, as usual, denotes the period of the elliptic inte- 
gral ; or, it is 

1 1    , 
v'T^F+F i + (i)2&2 + (M)2^4 + (l:î:l)2^6+* • • • ^ 

= (i-ij^4-|-| ^8+83t9932 Ä10_h )v+c 

It is to be noted that the square of k is absent from the 
latter expression, hence this parameter must become quite 
a large fraction before a marked difference results in the 
period. 

An expression in terms of the nome y may be preferred. 
The period has the equivalent 

2AVF 4 177^ 
7T \ + k'2 

where W = But the first factor has the value 

2K^Jk> = 1 + 4 
1++ l + g 

y12 y20 

T+?+ï+? 

and the second can be derived from 

k A [l + 22+2ä+2lä+. • .]2 

Vf _ [l+2g'4+2g'w+. . ,]2- [22 + 2g9+22!!5+. . ,]2 
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The series for the period or its reciprocal in powers of c[ 
is tardily convergent, and it seems better to retain the 
foregoing expressions where the law of progression is 
obvions. 

If we put h = sin r¡, q may be derived by tentation 
from the equation 

sin2 £ t) g + g9+^25+. . . 
(1+ Vcosvj)2 lJc2qAJr2qUJr. . . 

When k = 1, the numerator and denominator of the 
second member become divergent series, but the proper 
value of q, in this case, is unity. K may be derived from 

— = l + 2q + 2qi-*-2,(f+2q™+. . . 
IT 

Thus, if from the double of one of the dependent variables 
we subtract the other, and on the remainder operate with 
D, the result is the same as if we squared the latter vari- 
able. Simple as are these equations, no completely satis- 
factory general expressions of the unknowns for an infinite 
range in longitude have been found. 

In applying Lindstedt’s series to the integration of 
these equations we should assume 

A. e^+w) » , u1 = ,, A'. * 

where the A and A1 are constants as well as k and 7r;, and 
i and if are integers reaching from — oo to -f oo . The sub- 
stitution of these values in the equations shows that A, A1, 
k, k1 must satisfy, for each combination i, A the conditions 

To have u expressed as a periodic function of its argu- 
ment substitute for the transcendental function cn2x its 
equivalent 

2^2 

k2K‘ 
2q* + 3?

3 

1 — q2 1 —Ç4 1—S' 

+ 
q ( K \ I 2q~ f Tr ^cos^q+^cos v2zx 

3q8 

+ l_26COS(3-^) + . . 

There is still another linear transformation of the differ- 
ential equations worthy of notice. In order to remove 
from the potential the terms of three dimensions which 
are products, let us put 

p — a + hii1 , p' — u'^rhu 

where h is either of the complex cube roots of unity, or 
such that 

&2 + Ä + 1 = 0 
Then 

x dp2Jrdpn du2—4zduduIJrdu12 

^ diF~ = dtf 
V = \ h (ii2—4,uufu1'2^ -h 

Hence it is seen that the differential equations take the 
form 

ÇZu’ — u) — J h%u2 

(2U — U1) = I hhi’2 

or, if, as a symbol of operation, we put 

d2 

dv2 

dv2 

-h 1 

+ 1 

D = t h 
' d2 

dv2 + 1 

the simple form 

D [2u' — u'\ ~ u2 , Ü [_2u — u,~\ = u12 

¥ For these formulas in elliptic functions consult Broch, Traité 
Elémentaire des Fonctions Elliptiques, p. 207, Eq. (124) ; pp. 210-211, 
Eqs. (5) and (6); p. 210, Eq. (3); p. 172, Eq. (17). 

[(ik+i'k'y+l-] (24,„-AO = ! A,/ Ai,f 
[(Æ+î^O^l] = I h2 Sj t y A'i-j, i'-f -Ajf 

These equations should suffice for determining the A and 
AJ as well as k and k’ in terms of the four arbitrary con- 
stants introduced by the integration. But two of these 
constants are involved in the expressions only through 
addition to the two elementary arguments kv and k’v ; thus 
the mentioned quantities involve only two arbitrary para- 
meters. Since u and u1 as periodic functions of v involve 
only cosines, we have the conditions 

If, besides k and kf, either of the two groups of coef- 
ficients A and Af is known, the other is deducible. 

The differential equations may be reduced to a system 
in which all are of the first order; employing for this pur- 
pose those in terms of the variables u and 5, the closed 
curve enveloping the area in which the differential coef- 
ficients are real has the equation 

i C2-u2-u8 

s =.  1 —u 

The maximum value of \u\ is then and the maximum 
of I s I corresponds to the value of ti given by the smaller 
positive root of 

u8—u2—u + i (72 = 0 

Thus, if we put 

1C2 = Ail + c'-c'2) 

it will be found that 

H = a/Sc'+Sc'”2 

And if C2 — 28
t we shall have approximately | s | = 0.392 

In place of the two variables u and 5 we employ the four 
u, y, e1, V such that 

du . j. ds . . 7/ — = — ?/ , s — e! cos V , -— == —e' sm V 
dvJ dv 
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The integral equation will then be expressed in the 
form 

2/2 + + iâ + en (1 — u cos2 V) — ^ C2 

which gives 

* e.. _ * i£!=!!=í=i'_ w 
1—u cos2 V 

And the differential equations are 

du 

dy 
dv 

u + ^u2—^ e'2 cos2 V 

die10,0^1') . . 7/ ^ = — e'sm^ 
dv 

d (e! sin lf) 
dv 

= (1 — u) e’ cosZ7 

The third and fourth are equivalent to 

d. log e' 
dv 

— —^usu\2V 
dV 
dv 

■ a cos2 V 

From the latter it is plain that V and v advance together ; 
thus V will serve equally well as v for the independent 
variable. By division and elimination of e/2

? the first and 
second equations become 

du 
dl1 

dy 
dV 

y 
1—%cos2 V 

u + -I u2 ^ C2—u2—uz 97/ - i 4 COS21' l — ucos‘2lf (l — ucos2^)' 

or, as they may be written 

du 
W 

dW 
àÿ 

dy 
dl’ 

3W 
dii 

These equations may be still further varied by putting 

u — e cos l , y = e sin l 

Then if 

we have 

W 
i ^ Ci-e2-eBcosH 
^ 1 — e cos l cos2Z7 

d .\e2 

~~dÜ~ 
dW 
~W 

dl 
w 

dW 

After u and y or e and l have been determined in terms 
of V through the integration of these equations, v can be 
found by a quadrature from 

dv 1 
dV 1 —u cos2 V 

and thence, by inversion, V in terms of v, and thus the 
problem completely solved. 

W can be developed in an infinite series of the form 

Af cos ['ZZd- 2tfl/] 
For putting 

we have 

è £2-z/2- 

ß = 
2 — u — 2yj\- 

W = 
Vi—^ 

- [£+ßvos 2l/-j-ß2cos 4Z/-}-yß3cos ôl'-j-...] 

From this u and y may be eliminated by substituting their 
values in terms of e and l. 

The integrals of the two differential equations may then 
be approximated to by a series of Delaunay transforma- 
tions, as the function W is quite similar to Delaunay’s B 
in the lunar theory. The only noteworthy differences 
being that here there are only two unknowns in place of 
Delaunay’s six, and only one constant parameter C in- 
stead of Delaunay’s three n’y e7, a7. 

We may give here Delaunay’s rule for making a trans- 
formation. If we have integrated the differential equa- 
tions (L is put for ^ e2) 

dL 
dV 

dW 
~dl 

dl 
w 

dW 
'dL 

when W is limited to the terms involving one argument 
il+id’ (the constant term is included) and have found in 
this manner (0 designating the argument)" 

O^O^QJd-c) +01 sin(90(Z/+c)+^2 sin 2é^Z/+c)+08sin30o(Z/+c)+... 
L — LQ

JrL1 cos^0(Z/+c)+iy2 cos 2ö0(Z7+c) +Lg cos300(Z/+c)+... 

c being a constant, and 60 , 01 , 02, . . . . A0, A1, Z2, . . . . 
being known functions of another constant (e0 for instance), 
we can replace 

L by A0+Aj cos ('ZZ + ^Z7)^-A2 cos 2 (fZH-^'Z7) + . . . . 

Z by Z + sin (ZZH-AZ7) + ^r2 sin 2 (iZ + Z'Z7) -K . . . 

and we shall have, for determining the new variables e0, Z, 
precisely the same equations 

dL 
dV 

dW 
~dl 

dl 
dfr 

dW 
dL 

provided, first, that we put for W the function obtained 
by making the preceding substitutions in the old function 
W (complete) augmented by the quantity ^ 

- Í (L-L0)+~i (0A + 20A+30A+- . .) 

second, that we regard the new variables L as connected 
with e0 by the relation 

L = L0+Hd1L1 + 2e.2L2 + 36sL3 + . . .) 
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