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MONTHLY NOTICES 

OF THE 

ROYAL ASTRONOMICAL SOCIETY. 

Yol. XLIIL December 8, 1882. No. 2. 

E. J. Stone, M.A., E.R.S., President, in the Chair. 

John Wilson Appleton, 12 Amberley Street, Toxteth Park, 
Liverpool ; and 

The Hon. Cecil Duncombe, Nawton Grange, Nawton, North 
Yorkshire, 

were balloted for, and duly elected Fellows of the Society. 

On Neiutorís Solution of Kepler's Problem. By Professor 
J. C. Âdams, M.A., F.B.S. 

Of all the methods which have been proposed for the solution 
of this problem, that which leads most rapidly to a result having 
any required degree of precision may be briefly explained as 
follows — 

The equation to be solved by successive approximations is 

æ-e sin æ = z, 

where 2 is the known mean anomaly, e the eccentricity, and % 
the eccentric anomaly to be determined. 

Suppose x0 to be an approximate value of 2*, found whether by 
estimation, by graphical construction, or by a previous rough 
calculation, and let 

œQ-e sin .t0 = zq. 

Then if 

1 — e cOS 
F 
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44 Prof. Adams, On Newton's xlïii. 2, 

and 

#' = ^0 + ^0» 

it' will be a much more approximate value of x than x0. 
Similarly, if we put 

æF — e sin a/ = 

and if 

and 

8æ' = . Z'—Z’ 
\ — e cos x 

x" — x' -r 5 

xn will be a much more approximate value of x than of ; and so 
on, to any required degree of approximation. 

If the error of the assumed value x0 be supposed to be of the 
order i, when e is taken as a small quantity of the first order, 
then the error of the value %’ will be of the order 2 i + 1 = 
suppose, similarly the error of the value xn will be of the order 
2 i! +1 = 4¿ + 3, and so on, so that the order of the error is more 
than doubled at each successive approximation. 

The above explains the immense advantage of this process 
over the use of series proceeding according to powers of e, when 
great precision is required in the result ; since, in this latter 
method, the addition of a new term only increases the order of 
the error by unity. 

The degree of rapidity of the approximation may be still 
further increased by the following slight modification of the 
above process. 

Starting, as before, with the value x0, and calling 2—£0=Sz0, 
we should obtain a much more accurate value than before of the 
correction Sæ0 to be applied to x0, by putting 

W 1 _ I I - I ■ . -     - . -    £ 
I — e cos (x0 + Tr ö #0) I — ß cos (^0 + ¿ 5 x0) 

Now, e being supposed to be small, §z0 is an approximate value 
of 8íc0, and may be written for it in the small term, in the de- 
nominator. 

Hence, if we put 

§ r ^ ^0 

Ï — ß COS (iTq "T ^ § ^0) 

lxF^x0 + dx0, 

xf will be a nearer approximation to the true value of x than was 
obtained before by the corresponding operation. 

Similarly, if I 
xf ~ e sin xJ = 

and 
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Dec. 1882. Solution oj Kepler’s Problem. 

and if 

then 

dz' 
l—e cos (æ,/+£ 

X’" =* æ' + 5 A7 

45 

will be the next approximate value of x, and the process may be 
continued as far as we please. 

If the error of x0 be of the order i, that of x( will now be of 
the order 2 ¿ + 2, that of xlr will be of the order 2 (21 + 2) + 2 
= 4^ + 6, and so on, so that the degree of rapidity of the ap- 
proximation is still greater than before. 

If we chose to take the mean anomaly itself as the first 
approximate value of the eccentric anomaly—that is, if we put 

we should have 

zQ — z — e sin z, 

and the value of S xQ given by the first method would be 

S æ o ~ 
e sin z 

i — e cos z’ 

while that given by the second and more accurate method would 
be 

* e sîn g (5^ ^  -   , f. 0 I — e cos (z + jjr e sin z)’ 

and the error of xf = xQ + SxQ would be of the 3rd order in the 
former case, and of the 4th order in the latter. 

In practice, however, a much nearer first approximate value 
of x may be always found by inspection, and of course the 
smaller the error of this value is, the more rapid will be the rate 
of the subsequent approximations. 

The methods above explained have been long known. The 
first method is given at p. 41 of Thomas Simpson’s “ Essays on 
several Subjects in Speculative and Mixed Mathematics,” pub- 
lished in 1740; and Gauss’ method given at pp. 10-12 of the 
“ Theoria Motus,” published in 1809, is essentially the same. 

The second method, or rather the modification of the first, is 
given by Cagnoli in his “ Trigonométrie,” at pp. 377, 378 of the 
first edition, published in 1786, and at pp. 418-420 of the second 
edition, published in 1808. 

'Now, my object in the present note is to point out that the 
first method explained above is exactly equivalent to that given by 
Newton in the “ Principia, ” at pp. 101, 102 of the second edition, 
and at pp. 109, no of the third edition, when Newton’s expres- 
sions are put into the modern analytical form. 

None of the subsequent authors, however, mentions this 
method as being Newton’s, the unusual form in which Newton’s 
solution is given having, no doubt, caused them to overlook it. 

F 2 
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46 Prof. Adams, On Newtoris xlïii. 2, 

In the first edition of the 44 Principia ” a modification of the 
method is given which was, I have no doubt, intended by 
Newton to be equivalent to the second method given above ; but 
by some inadvertence, instead of the denominator of 8xf being 

i—e cos (^r + J 5 

when expressed in the above notation, he takes it to be what is 
equivalent to 

,I — e cos (æf +1 e sin a/), 

which is only true for the first approximation when xQ is taken 

In the second and third editions this error is corrected, but 
Newton contents himself with the more simple expression given 
by the first method. 

We need not be surprised that Newton should have employed 
this method of solving the transcendental equation 

æ — e sin x — z, 

since the method is identical in principle with his well-known 
method of approximation to the roots of algebraic equations. 

For convenience of calculation, the approximate values 
x0, x', xlf, &c., should be so chosen that their sines msty be taken 
directly from the tables without interpolation ; and, since each 
approximation is independent of the preceding ones, this may 
always be done if x1 be taken equal, not to a30 + Sa?0 itself, but to 
the angle nearest to îî30 + Sæ0 which is contained in the tables, 
and if similarly x" be taken equal to the tabular angle which is 
nearest to af + Saf, and so on. In the first approximation it will 
be amply sufficient to use 5-figure logarithms, but in the sub- 
sequent ones tables with a larger number of decimal places 
should be employed. 

A first approximate value of the eccentric anomaly corre- 
sponding to any given mean anomaly may be found by a very 
simple graphical construction, provided we have traced, once for 
all, a curve in which the ordinates are proportional to the sines 
of the angles represented on any given scale by the abscissæ. 

This curve is commonly called 44 the curve of sines.” It 
will be sufficient to trace the portion of the curve for which the 
ordinates are positive. 
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Dec. 1882. 47 Solution of Kepler's Problem. 

Let A 0 B be tbe line of abscissæ, and let A 0 be taken equal 
to 0 B, and let each of them be divided into 90 equal parts 
representing degrees of angle. Let AN be any abscissa re- 
presenting the angle x, and let the corresponding ordinate N P 
= c sin x ; then the greatest ordinate will be 0 C = c, correspond- 
ing to the abscissa AO. 

Suppose the curve line A P C B to be divided into 180 parts 
which correspond to equal divisions on the line of abscissæ 
ANOB. 

Then if E be taken in A 0 so that £0 = 6X57*296 divisions, 
or if AE = 90 — 6 x $*¡'296 divisions, and if CE be joined and 
P M be drawn parallel to it through P meeting the line of 
abscissæ in M, then A M will represent the mean anomaly corre- 
sponding to the eccentric anomaly represented by A N. 

For, since the triangles PMN, CEO are similar, 

MN PN . 
EO ~ CO - 

and therefore MN = E 0 sin æ = 57■296 (e sin x). 
Hence MN represents the number of degrees in æ —z, and 

therefore A M represents the mean anomaly z. 
Conversely, if A M represents any given mean anomaly, then 

if M P be drawn parallel to E 0, it will cut the curve in the 
point P corresponding to the eccentric anomaly. 

By the employment of a parallel ruler we may find the 
eccentric anomaly corresponding to any given mean anomaly, 
or conversely, without actually drawing a line. Eor if we lay 
an edge of the ruler across the points E C and then make a 
parallel edge to pass through the point M it will cut the curve 
in the point P required. 

Thus we may always find a first approximate value of the 
eccentric anomaly, without making repeated trials, whether the 
eccentricity be large or small. 

I described this graphical method of solving Kepler’s 
problem at the Birmingham meeting of the British Association 
in 1849. It is referred to in a paper by Mr. Proctor in vol. 
xxxiii. of the Monthly Notices, p. 390. 

The construction is so simple that it has probably been pro- 
posed before, though I have nowhere met with it. 

Note on Professor ZengePs solution of the same problem given 
in Number 9 of the last volume of the u Monthly Notices.19 

The only peculiarity in this solution is in the mode of obtain- 
ing the first approximate value employed. The subsequent 
approximations are carried on by means of the first method given 
above. Professor Zenger’s process may be represented in a 
slightly different form as follows 

W e have 
.r — z — e si n x, 
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