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Abstract. Model selection (and the related issue of model uncertainty) arises in
many astronomical problems, and, in particular, has been one of the focal areas of
the Exoplanet working group under the SAMSI (Statistics and Applied Mathematical
Sciences Institute) Astrostatistcs Exoplanet program. We provide an overview of the
Bayesian approach to model selection and highlight the challenges involved in imple-
menting Bayesian model choice in four stylized problems. We review some of the
current methods used by statisticians and astronomers and present recent developments
in the area. We discuss the applicability, computational challenges, and performance of
suggested methods and conclude with recommendations and open questions.

1. Introduction

Model selection (and the related issue of model uncertainty) arises in many astronomi-
cal problems. In this paper, we provide an overview of some of the recent developments
in the Bayesian approach to model selection. One of the advantages of the Bayesian
paradigm with regards to model choice is its conceptual simplicity. For the observable
data Y, we entertain M models, M1, . . . ,MM , each defined by a density function
fm(· | θm) indexed by a model-specific parameter vector θm ∈ Θm, m = 1, . . . , M .
The parameter spaces Θm may be of differing dimensions, however, there is no need
to restrict attention to nested models where Θk ⊂ Θk′ , as in likelihood ratio tests. For
the goal of making inference about models, the index Mm is no different from any
other parameter; hence in the Bayesian paradigm, we express prior uncertainty regard-
ing the collection of all unknowns {θm,Mm, m = 1, . . . M} through a joint prior
distribution:

θm | Mm ∼ p(θm | Mm) Mm ∼ p(Mm). (1)

These priors serve to embed the separate models within one large hierarchical mixture
model for the data.

Bayes theorem leads to a joint posterior distribution for θm,Mm, which, as with
the prior distributions, is conveniently expressed through the conditional distribution
for model specific parameters p(θm | Mm,Y) and the marginal posterior distribution
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of models p(Mm | Y):

p(Mm | Y) =
m(Y | Mm)p(Mm)

∑

k m(Y | Mk)p(Mk)
(2)

where

m(Y | Mm) =

∫

fm(Y | θm)p(θm | Mm)dθk, (3)

is the marginal distribution of the data under model Mm. This is also known as the
prior predictive distribution of the data or is referred to as the integrated likelihood or
marginal likelihood of the model (up to any common constants of proportionality).

Based on these posterior probabilities of models, pairwise comparison of any two
models is given by the posterior odds

p(Mk | Y)

p(Mj | Y)
=

m(Y | Mk)

m(Y | Mj)
×

p(Mk)

p(Mj)
(4)

which is a function of the prior odds, O[Mk : Mj ] ≡
p(Mk)
p(Mj)

, and the Bayes factor

B[Mk : Mj ] ≡
m(Y | Mk)

m(Y | Mj)
(5)

which summarizes the relative support for Mk versus Mj provided by the data. The
posterior model probabilities (2) may be expressed entirely in terms of Bayes factors
and prior odds as

p(Mm | Y) =



1 +
∑

Mk �=Mm

O[Mk : Mm] B[Mk : Mm]





−1

. (6)

In many cases, the prior odds are taken to be equal, so that the posterior odds simplify to
the Bayes factor. The posterior probabilities of models captures model uncertainty and
can be used for a variety of inferences and decisions. In this setting, model selection is
conceptually no different from inference on the “parameter” Mm. If a zero-one loss
function is assumed, the ‘best’ model is the one with highest posterior probability, i.e.,
model Mm⋆ with m⋆ satisfying

m⋆ = argmax
m∈{1,...,M}

p(Mm | Y),

the modal model for which p(Mm | Y) is largest. Model selection may be useful
for testing a theory represented by one of a set of carefully studied models, or it may
simply serve to reduce attention from many speculative models to a single useful model.
In problems where no single model stands out, it may be preferable to report a set
of high posterior models along with their probabilities to convey model uncertainty
given the available information. Bayesian model averaging (BMA) is an alternative
to Bayesian model selection that incorporates rather than ignores model uncertainty.
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The distribution of Yf , future observations generated from the same process as Y is
obtained using BMA as

p(Yf | Y) =
∑

m

p(Yf | Mm,Y)p(Mm | Y), (7)

a posterior weighted mixture of the conditional predictive distributions

p(Yf | Mk,Y) =

∫

p(Yf | θm,Mm)p(θm | Mm,Y)dθm. (8)

The mixture model under model averaging may be more appropriate, for example, in
design problems for selecting the next set of observations (Loredo & Chernoff 2003).
For an overview of Bayesian model averaging, see the review articles by Hoeting et al.
(1999) and Clyde & George (2004).

Despite its apparent simplicity, model selection is often nontrivial to implement.
Although different contexts reveal unique challenges, one that is always present is spec-
ifying prior distributions on the model-specific parameters θm. We discuss this aspect
briefly, before turning to the challenge of obtaining posterior model probabilities.

1.1. Prior Specification

Specifying subjective priors is often infeasible due to either a lack of substantive prior
information regarding joint distributions or the large number of models involved. We
provide a view words of warning about prior specifications.
Caution 1: Although one might use the same symbol to denote a particular parameter
across models, say a regression coefficient associated with a particular covariate, that
parameter will have a different interpretation — and hence will need its own prior
distribution — across distinct models. Subjective elicitation of the full joint distribution
being precluded, in most circumstances one has to resort to specification of the priors
by means of some formal method.
Caution 2: In general, the use of improper priors is not permitted in the context of
model selection, as Bayes factors and posterior model probabilities are indeterminate
in this circumstance. To make this point clear, note that improper priors are determined
only up to an arbitrary multiplicative constant. As a consequence, recalling (3), so
are marginal distributions and hence Bayes factors. In inference given a model, these
arbitrary multiplicative constants cancel in the formula for the posterior distribution of
the model-specific parameters; but remain in the expressions for marginal likelihoods.
Once model uncertainty is included in the analysis, those constants are important and
have a high impact on the final results.

There are a few circumstances under which the use of the same arbitrary constant
across models is justifiable (see Berger & Pericchi 2001; Berger et al. 1998, for discus-
sion and examples). Many objective Bayesian model selection techniques, the Intrinsic
Bayes Factor (IBF) (Berger & Pericchi 1996b,a, 1998), Fractional Bayes Factors (FBF)
(O’Hagan 1995), and Expected Posterior (EP) Prior (Pérez & Berger 2000) are ways of
‘calibrating’ these arbitrary multiplicative constants by means of some argument that
guarantees that the resulting (formal) Bayes factor is a sensible quantity to base infer-
ence upon. IBFs and FBFs use the idea of “training” samples to convert an improper
prior (reference priors Bernardo 1979, are recommended) into a proper “posterior”
distribution for θm that serves as a proper prior for updating using the remaining data.
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In the case of IBFs, a subset of the data is used as a training sample, while with FBFs
a fraction of the likelihood is used. Berger (1997) provides illustrations from astron-
omy while Berger & Pericchi (2001) review and contrast these methods with BIC and
conventional prior specifications.
Caution 3: Another approach is to derive priors on a case-by-case basis, based on
arguments that are specific to the problem at hand. Since improper priors are in general
prohibited, one might consider the use of diffuse proper as a reasonable solution. This
is still problematic as conclusions are essentially a function of the (arbitrary) degree of
vagueness in the prior. Consider a parameter θ1 that is uniform on some finite interval,
where the normalizing constant is the length of the interval. As this quantity is present
in the model with θ1, but not others, the length of the interval acts as a penalty, hence if
it is taken to be arbitrarily large, we may inadvertently over-penalize the more complex
model with θ1. Inference given a model is in general relatively insensitive to small
changes in the prior; for inferential problems that incorporate model uncertainty that is
usually not the case, so that extra care is needed for prior specification.

We now describe four general scenarios for model selection that highlight some of
the computational challenges that arise.

2. Scenarios for Model Selection

Whether one chooses to select a model or incorporate uncertainty regarding models,
posterior model probabilities are a key component for posterior inferences and provide
several computation challenges. These challenges for model selection depend on the
class of problem under consideration, but may be broadly broken down based on the
number of models under consideration and the availability of tractability of marginal
likelihood calculations.

Enumerable Model Space and Tractable Marginals: In this scenario, the space
of models is small enough that enumeration of all possible models is feasible and
marginal likelihoods may be easily computed in closed form. This arises in a limited
number of exponential family models with conjugate priors on the coefficients θm in
each model, such as linear regression with Gaussian errors or decomposable graphical
models (discrete multinomial or continuous multivariate normal) where the normalizing
constants required to compute the marginal likelihoods are readily available. In these
problems, no sampling is required as all distributions are available in closed form. In
general, these are also models for which objective Bayes factors are easy to compute.

Innumerable Model Space, but Tractable Marginals: This scenario is the same
as the above, but the number of models is too large to enumerate. Examples include
nonparametric regression models with Gaussian errors using Fourier, wavelet, or spline
bases. With a conjugate framework the posterior distributions of θm given Mm are
known, thus one may bypass sampling model specific parameters. Stochastic search al-
gorithms base on constructing a Markov chain on the space of model, such as the SSVS
algorithm of George & McCulloch (1993, 1997) or the MC3 algorithm of Madigan &
York (1995), may be used to explore the posterior distribution over models. Because the
marginal likelihoods for sampled models are readily obtainable once a model is sam-
pled, exact comparisons between any two sample models may be made through Bayes
factors (5). For calculation of posterior model probabilities, it is common to replace the
summation in the denominator of (2) with a sum over the collection of sampled models.



228 Clyde et al.

The primary challenge here is that of searching over a large discrete space (an NP hard
problem).

Innumerable Model Space and Intractable Marginal Likelihoods: Because
neither the marginal likelihoods or posterior distributions of model specific parame-
ters are available, posterior inference is typically based on creating a trans-dimensional
Markov chain for exploring the joint parameter and model spaces. The recent re-
view paper of Sisson (2005) provides an excellent summary of many current trans-
dimensional methods. References of the latter include the reversible jump Markov
Chain Monte Carlo (MCMC) sampler of Green (1995), the product space search of
Carlin & Chib (1995), the metropolized Carlin and Chib method of Dellaportas et al.
(2002) and the composite model space approach of Godsill (2001), which are variations
on Metropolis-Hastings algorithms over the joint model and parameter space.

Enumerable Model Space, but Intractable Marginal Likelihoods: In this sce-
nario, one may create a trans-dimensional MCMC algorithm to traverse both model
and parameter spaces as above. Because the number of models is limited, one may
alternatively choose to calculate (approximately) all marginal likelihoods or Bayes fac-
tors and use (2) or (6) to calculate posterior model probabilities. In this group, there
is perhaps the widest variety of algorithms (stochastic and deterministic) that provide
approximate marginal likelihoods or ratios of marginal likelihoods. The models for de-
tecting exoplanets using radial velocity measurements is an excellent example of this
type of problem (see Ford, this volume).

There are three main approaches for estimating normalizing constants: analytic
approximation (often requiring large samples), such as the Bayes Information Crite-
rion (Kass & Raftery 1995) or Laplace approximations (Tierney et al. 1989; DiCiccio
et al. 1997), quadrature (see Evans & Swartz 1995), and Monte Carlo methods, which
provide the only general approach in complex, high dimensional problems. In the re-
mainder of this paper, we highlight some of the most popular and important methods
and provide recommendations for their implementation. Many have been implemented
during the SAMSI 2006 Astrostatistics Program in the Exoplanets working group (see
Ford, this volume for the application to discovery of exoplanets). We begin with a dis-
cussion of methods for evaluating the marginal likelihood for a single model. We next
move to approaches that aim to estimate a ratio of normalizing constants, namely, a
Bayes factor, and then follow up with a discussion of trans-dimensional methods. We
conclude with a section that summarizes our findings and provides recommendations
based on our experience.

3. Estimating Marginals

The methods that we will discuss in this section are designed to approximate the integral
in (3) for a given model, and are best suited for model spaces that can be enumerated,
although may be used to refine estimates from the trans-dimensional methods discussed
in Section 5. To simplify notation, we will drop the conditioning on Mm.

For low dimensional parameter spaces, fixed and adaptive quadrature rules, per-
haps after suitable transformations of variables, can provide highly accurate numerical
estimates of the required integrals. Product quadrature rules, (repeated application of
a one-dimensional integration rule), however, are well known to suffer from the curse
of dimensionality, as the number of points needed to evaluate the integral for a desired
degree of accuracy increases exponentially as dimension increases. For example, in a
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seven dimensional space, to achieve an accuracy of O(1/T ), we will need on the order
of T 7 function evaluations. Monte Carlo and quasi-Monte Carlo are typically viewed
as being superior, as they require fewer function evaluations for the same degree of
accuracy.

3.1. Monte Carlo Estimates

The simplest stochastic integration rule is to draw an iid sample of size T , (θ(1), . . . ,

θ(T )), from the prior p(θ), and approximate the integral by the Monte Carlo (MC) sum

m̂(Y)MC =
1

T

∑

t

f(Y | θ(t)). (9)

Unfortunately, when the prior is diffuse relative to the likelihood, many of the prior
draws will fall in areas of low probability; in higher dimensions, finding regions of
high likelihood is even more difficult due to the curse of dimensionality, which leads
to a larger variance and, hence, a slower rate of convergence. For vague prior distribu-
tions, the Monte Carlo estimate will generally under-estimate the marginal likelihood,
as highly peaked areas are typically under-sampled.

3.2. Harmonic Mean

Using the relation

1

m(Y)
=

∫

1

f(Y | θ)
p(θ | Y)dθ (10)

Newton & Raftery (1994) proposed the harmonic mean of the likelihood

m̂(Y)HM =

[

1

T

T
∑

t=1

1/f(Y | θ(t))

]−1

(11)

evaluated at the posterior draws (θ(1), . . . ,θ(T )) as an estimator of the marginal like-
lihood. While Newton & Raftery (1994) show that this converges almost surely to the

required marginal, the partial sums of 1/f(Y | θ(t)) do not always obey a Gaussian
central limit theorem, hence the rate of convergence may be extremely slow. Wolpert
(2002) shows that the limiting distribution is a positive Stable law with index α, (1 <
α ≤ 2). While there are cases where the Gaussian CLT applies (α = 2), in general

the rate of convergence will be extremely slow (T (1/α−1)) when α is near one, as is the
case with vague prior information and informative likelihoods. Unfortunately, the slow
convergence make diagnosing problems with the estimator all the more difficult!

Weighted Harmonic Mean Since the inverse likelihood in the harmonic mean estima-
tor may not have finite variance, multiplying the inverse likelihood by a density with
thinner tails provides a ratio with finite variance. Gelfand & Dey (1994) suggest a
generalization of the Newton & Raftery (1994) estimator based on the integral,

1

m(Y)
=

∫

q(θ | Y)

f(Y | θ)p(θ)
p(θ | Y)dθ (12)
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where q plays the role of an importance sampling density (with known normalizing
constant) leading to the weighted harmonic mean estimator:

m̂(Y)WHM =

[

1

T

∑ q(θ(t))

f(Y | θ(t))p(θ(t)

]−1

. (13)

Note that unlike a typical importance sampling scheme where q should have heavier
tails than the product of likelihood and prior, here the importance distribution q is in
the numerator, so that usual roles have been reversed. This estimator also converges to
m(Y) and will have finite variance avoiding the instability problems of the Newton-
Raftery harmonic mean estimator when the thinness condition is met. Unfortunately,
as Chib (1995) notes, the tuning function q is quite difficult to determine, particularly
in high dimensional problem; he found that choices such as multivariate normals with
mean and covariance equal to their posterior counterparts do not appear to satisfy the
thinness requirements.

Partial Marginalization In some problems, it is possible to integrate out a subset
of the parameters and then apply the harmonic mean estimator using the partially
marginalized likelihood (Raftery et al. 2000). While there is no guarantee that this will
lead to a finite variance, partial marginalization in the examples of Raftery et al. (2000)
leads to heavier tailed distributions, with finite variance for the inverse likelihood and
acceleration of convergence. This is a promising direction for problems where a subset
of the parameters may be integrated analytically.

3.3. Chib’s method

Chib’s method (and others) are based on the following trivial but fundamental identity
based on manipulating Bayes’ Theorem:

m(Y) =
p(θ) f(Y | θ)

p(θ | Y)
(14)

which is valid for all θ. The expression is often evaluated at a point of high posterior
density θ⋆, such as the posterior mode, posterior mean, or even the maximum likeli-
hood estimate, depending on what is readily available. Since usually the likelihood and
prior are available in closed form, as long as one can estimate the posterior at a par-
ticular point, p(θ⋆ | Y), one immediately has an estimate of the marginal likelihood
m(Y). Chib (1995), together with Chib & Jeliazkov (2001), provide a framework un-
der which virtually any model that can be fit using MCMC techniques can have its
marginal likelihood estimated. We summarize the estimators in the simplest possible
frameworks.

Chib: Two-block Gibbs Sampler Suppose θ = (θ1, θ2) and that both full condition-
als are available in closed form, including normalizing constants. The joint distribution
may be factored as p(θ⋆ | Y) = p(θ⋆

1 | Y) p(θ⋆
2 | θ⋆

1,Y) where the second term of the
right-hand side is available by assumption, whereas the first term can be estimated us-
ing a Rao-Blackwellized estimate of the density as in the conditional marginal density
estimate (CMDE) of Gelfand et al. (1992),

p̂(θ⋆
1 | Y) =

1

T

T
∑

t=1

p(θ⋆
1 | θ

(t)
2 ,Y)
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where {θ
(t)
2 } is a sample from the posterior distribution of θ2. The method can be

extended to a k-block Gibbs sampler, but requires the introduction of a “reduced run” of
the Gibbs sampler (see Chib 1995, for details). The algorithm becomes more elaborate,
with significant bookkeeping involved.

Chib & Jeliazkov: One Block Metropolis-Hastings Chib & Jeliazkov (2001) extend
Chib’s method to situations where Metropolis-Hastings algorithms are used for sam-
pling from the posterior. Suppose θ is sampled in one block using a Metropolis-
Hastings algorithm. Let q(θ, θ′ | Y) denote the proposal density for the transition
from θ to θ′, and let

α(θ, θ′ | Y) = min

{

1,
f(Y | θ′) π(θ′)

f(Y | θ) π(θ)

q(θ′, θ | Y)

q(θ, θ′ | Y)

}

denote the corresponding transition probability. From the detailed balance condition,
for any pair (θ, θ⋆), α(θ, θ⋆ | Y) q(θ, θ⋆ | Y) p(θ | Y) = p(θ⋆ | Y) α(θ⋆, θ |
Y) q(θ⋆, θ | Y), which after some manipulation and integration over θ leads to

p(θ⋆ | Y) =
Ep α(θ, θ⋆ | Y)q(θ, θ⋆ | Y)

Eq α(θ⋆, θ | Y)
, (15)

where Ep stands for expectation with respect to the posterior distribution p(θ | Y),
whereas Eq denotes expectation with respect to q(θ⋆, θ | Y) (interpreted as a density
on θ for a fixed θ⋆). The resulting estimate is then

p̂(θ⋆ | Y) =
1
T

∑T
t=1 α(θ(t), θ⋆ | Y) q(θ(t), θ⋆ | Y)

1
J

∑J
j=1 α(θ⋆, θ̃

(j)
| Y)

,

where {θ(t), t = 1, . . . , T} is a sample from the posterior and {θ̃
(j)

, j = 1, . . . , J} is a
supplemental iid sample from q(θ⋆, · | Y). While the method of Chib & Jeliazkov may
be extended to multiple parameter-blocks, the bookkeeping in the algorithm becomes
much more involved!

3.4. Importance Sampling

As a variation on Monte Carlo methods, importance sampling (IS) replaces draws from
the prior distribution by draws instead from an importance function q(θ) whose support
contains that of the posterior and places more mass in the “important” regions of the
parameter space Θm. The integral in (3) may be rewritten as

m(Y) =

∫

f(Y | θ)p(θ)

q(θ)
q(θ) dθ

m̂IS(Y) =
1

T

T
∑

t=1

p(θ(t))f(Y | θ(t))

q(θ(t))
=

1

T

T
∑

t=1

wt (16)

where {θ(t), t = 1, . . . , T} is a sample (often iid, but not necessarily) from q(·) and

w1 . . . , wT are the importance weights wt ≡ f(Y | θ(t))p(θ(t))/q(θ(t)).
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Importance sampling has a long and rich history for estimating normalizing con-
stants or ratios of normalizing constants, however, the efficiency depends critically on
the choice of proposal distributions. Simple importance sampling with multivariate t
densities (four degrees of freedom is one default choice) with location equal to MLE
estimates and scale matrix based on the inverse Fisher information are easy to construct.
Alternatively, location and scale parameters may be estimated from MCMC output, if it
is available. In practice, these choices tend to perform reasonably whenever the poste-
rior is unimodal and reasonably well approximated by a normal density (perhaps after
suitable transformations of parameters).

It is well-known that the IS approach will be as good as the importance function
chosen; ideally, q(θ) = p(θ | Y) ∝ f(Y | θ)p(θ), so that the weights are constant.
Since the target p(θ | Y) is known only up to the normalizing constant m(Y), the
effective sample size (ESS) based on the normalized weights w̃t = wt/w̄,

ESS ≡
T

1 + varq(w̃t)
(17)

provides a rule of thumb for judging how different the proposal distribution q is from
the target p(θ | Y) (Liu 2001, page 34). Other diagnostics such as histograms and
boxplots, provide effective tools to judge the importance proposal q.

For multi-modal or posteriors exhibiting strong nonlinear structure, a single multi-
variate t distribution is not adequate. It becomes more difficult to find good importance
functions as the dimensionality grows, and a common problem is that a few extreme
weights (due to large values of likelihood and prior relative to the importance function)
will dominate the estimate. Instead better approximations to p(θ | Y) may be con-
structed using mixtures of parametric densities (such as a t with 4 degrees of freedom)

q(·) =
∑

k

ωjt4(·; µj , αΣj), (18)

where ωj are mixture weights, µj is a location parameter and αΣj is the scale matrix
for the jth mixture component. A “defensive mixture” may be obtained by including
the prior density as one of the mixture components (Hesterberg 1995). Owen & Zhou
(2000) suggest the use of mixtures and control variates to reduce the infinite variance
that may arise when q is a close match to the target, but decreases to zero faster than
the target. Another issue with IS is that there may be an overabundance of very small
weights (q may be too over-dispersed relative to the posterior or just a poor match
in some regions). Liu (2001) suggests rejection control as a way of avoiding small
weights. As samples from q are obtained, adaptive refinement of the IS proposal q to
match the target p(θ | Y) is possible, leading to adaptive important sampling (AIS);
such adaptive importance sampling schemes using mixtures have been proposed by
West (1993); Oh & Berger (1992); Givens & Raftery (1996); Raghavan & Cox (1998)
and more recently by Douc et al. (2006), among others.

As MCMC algorithms may be preferable for exploring the posterior distribution,
it is possible to utilize information from the MCMC output in constructing an impor-
tance sampler with the purpose of calculating the marginal likelihood. Using a subset

of the MCMC draws MT , we take µj = θ(j), j ∈ MT and estimate a local covariance

Σj using a proportion of the neighboring points of θ(j) (distance may be measured
using a scaled Mahalanobis distance, for example). We have explored using weights
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ωt ∝ [f(θ)p(θ)/q(θ; α)]ρ, where q is based on the mixture model in (18). The values
of both α and ρ may be chosen to minimize the Kullback-Leibler divergence between
p(θ | Y) and q(θ; α, ρ) evaluated at the remaining MCMC draws. Using on the or-
der of 400 components, we have been able to accurately estimate marginal likelihoods
in complicated mixtures in up to 10 dimensions, before seeing degradation in the IS
weights. Using more components combined with adaptive refinement of the weights
and IS proposal distribution, should lead to a more robust procedure.

3.5. Thermodynamic Integration

Thermodynamic integration (TI), used in physics and chemistry for computing the free
energy difference (see the review article Frenkel (1986)), appears to have been inde-
pendently discovered by several communities. In the numerical analysis literature, it
is better known as Ogata’s method (Ogata 1989). Another version in the astronomy
literature appears in Gregory (2005), who uses TI in conjunction with parallel tem-
pering to obtain normalizing constants. In the statistics community, Gelman & Meng
(1998) show that thermodynamic integration is a special case of bridge sampling, and
generalize the method using the more flexible and efficient path sampling.

Given two un-normalized densities g0(θ) and g1(θ), both indexed by a common
parameter θ, Gelman & Meng (1998) use a scalar parameter φ ∈ [0, 1] to construct a
continuous “path” that links the two densities; for example a geometric path,

g(θ | φ) = g0(θ)1−φg1(θ)φ, (19)

where

m(φ) ≡

∫

Θ

g(θ | φ)dθ. (20)

Our interest, of course, is in the ratio of the normalizing constants m(0) and m(1).
When g0 and g1 correspond to two posterior distributions for θ under different models
with the same support, this will be the Bayes factor. In the case of models with different
supports, we may take g0(θ) to be the prior of θ and g1(θ) = f(θ | Y)p(θ), so
that m(1) is the desired marginal likelihood m(Y). The key identity to TI and path
sampling is

d

dφ
log(m(φ)) =

∫

1

m(φ)

d

dφ
g(θ | φ)dθ = Eφ

[

d

dφ
log[g(θ | φ)]

]

= Eφ [U(θ, φ)]

(21)
where the expectation is taken with respect to the distribution p(θ | φ). Integrating (21)
from 0 to 1, provides an estimate of the log ratio of the normalizing constants

log[m(1)] − log[m(0)] =

∫ 1

0
Eφ [U(θ, φ)] dφ (22)

If one introduces a prior density p(φ) on [0, 1], then (22) may be re-expressed as

log[m(1)] − log[m(0)] = E

[

U(θ, φ)

p(φ)

]

(23)

where the expectation is taken to the joint distribution of p(θ | φ)p(φ). This leads to
the estimator

log[m̂(1)] − log[m̂(0)] =
1

T

T
∑

t=1

U(θ(t), φ(t))

p(φ(t))
(24)
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where (θ(t), φ(t)) are draws from p(θ | φ)p(φ). Numerical integration may be used
in place of Monte Carlo integration of φ. (Gelman & Meng 1998) discuss the optimal
choice of priors for φ and optimal path functions; in particular, they suggest that the
geometric path in (19) is suboptimal and that a reduction in variance may be obtained
through alternative linking paths, although construction of optimal paths is an area that
needs more research. See (Gelman & Meng 1998) for more details and discussion of
the connections between bridge, path and importance sampling and thermodynamic
integration.

3.6. Nested Sampling

Skilling (2006) develops a novel Monte Carlo method called nested sampling that pro-
vides an estimate of the marginal likelihood (evidence), but also generates samples of
θ. Nested sampling employs a change of variables from θ to the scalar L(θ) (the like-
lihood);

m(Y) =

∫

Θ

L(θ)p(θ) dθ =

∫ ∞

0
LF (dL) (25)

reducing the problem to a one dimensional integral with respect to the distribution of L.
Using a second change of variables, χ = F (L), the original multidimensional integral
is now represented as a one-dimensional integral

m(Y) =

∫ 1

0
L(χ)F (dχ) (26)

on [0, 1], which in principle, may be evaluated by standard quadrature rules. The in-
tegration to obtain the distribution of χ after the change of variables is of course in-
tractable, but is handled via Monte Carlo sampling. Nested sampling starts by drawing
N independent values of θ from the prior. At each iteration, the minimum likelihood

value, L(1)(θ
(t)), is recorded, and a subsequent N values of θ(t+1) are drawn from

the prior, but now constrained to be inside the likelihood contour of L(1)(θ
(t)), hence

the name “nested” sampling. At each iteration of the algorithm, the nested sampling

scheme forces the likelihood uphill. While L(1)(θ
(t)) ≡ L(χ

(t)
(1)) is the minimum of

N order statistics, we do not know the corresponding value of χ
(t)
(1) (except in special

cases). However, we can sample χ
(t)
(1) as the minimum of N uniform random variables.

Given an estimate of the density, an estimate of the marginal likelihood using numerical
integration is

mN (Y) =
∑

t

L(1)(θ
(t))wt (27)

where wt are the random weights, wt = .5(χ
(t−1)
(1) −χ

(t)
(1)) associated with the numerical

integration rule, (the trapezoid rule in this case). For more details see Skilling (2006).
The algorithm has two tuning parameters; T , the number of iterations, and N , the

number of samples from the prior. The choice of N determines how quickly the like-
lihood contours are traversed. The number of iterations T is also critical. For T = 1
nested sampling reduces to naive Monte Carlo sampling from the prior. In order for
the initial samples to be replaced with higher likelihood values, T must be much larger
than N . The difficulty with implementing nested sampling, particularly in multi-modal
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problems, is the replacement step. At each iteration, we need N draws from the prior
constrained to the current likelihood contour. As the previous N−1 (after removing the
minimum) are iid draws from the prior that satisfy the constraint, one needs to generate
one additional point in the nested region. Rejection sampling from the prior is too in-
efficient to use in practice. Because MCMC transitions retain the invariant distribution,
it is possible to create a new point by “splitting” an existing point (possibly the dis-
carded point), and allowing the new point (or entire population of N points) to evolve
according to the MCMC transition kernel. In practice, this requires carefully tuning
of the Markov chain and a large enough N to cover the possible modes. Based on our
experiences with model selection in exoplanet models, MCMC followed by importance
sampling is perhaps more efficient and easier to implement than nested sampling be-
cause of the multi-modal nature of the posterior distribution. Nested sampling has been
used successfully by Mukherjee et al. (2006), who apply the method to a cosmological
model selection problem.

3.7. Variational Methods

Variational methods, popular in the machine/statistical learning community, give a sim-
ple and efficient way of providing approximations and bounds on integrals that arise in
calculating normalizing constants (see http://www.variational-bayes.org for papers and
software). Graphical models and mixture models, with massive data, are particular
model selection problems where variational methods have been successful.

4. Estimating Bayes Factors

Bridge sampling (Meng & Wong 1996), path sampling (Gelman & Meng 1998), and
ratio importance sampling (RIS) (Chen & Shao 1997b) build on standard importance
sampling. While RIS, with the optimal choice of proposal distribution is theoretically
more efficient than bridge or path sampling, the optimal proposal distribution depends
on the unknown Bayes factor. The book by Chen et al. (2000) discuss relationships
among these methods, and extensions to models with differing dimensions.

4.1. Estimating Ratios via Importance Sampling

The Ratio Importance Sampling identity of Chen & Shao (1997b) provides a simple
method of evaluating the Bayes factor

B[M0 : M1] =
Eq f(Y | θ0,M0)p(θ0 | M0)/q(θ0)

Eqf(Y | θ1,M1)p(θ1 | M1)/q(θ1)
, (28)

where q is an IS density (possibly un-normalized) defined over Θ0∪Θ1, the union of the
supports of each of the densities. The paper provides several practical and theoretical
reasons why using the same importance function q for both denominator and numerator
is actually a very good idea.

However, as noted in Chen & Shao (1997a), if the parameters under the two
models have different dimensions (say θ0 under M0 and (θ1, ψ) under M1 with
dim(θ0) = dim(θ1)), then RIS is not directly applicable. Instead, they suggest in-
troducing an auxiliary distribution ω(ψ | θ), a completely known conditional density.
Then,

M0(Y) =

∫∫

f(Y | θ0,M0)p(θ0 | M0)ω(ψ | θ) dθ dψ
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and as a consequence of using RIS,

B[M0 : M1] =
Eq f(Y | θ0,M0)p(θ0 | M0) ω(ψ | θ0)/q(θ0, ψ)

Eq f(Y | θ1, ψ)p(θ1, ψ | M1)/q(θ1, ψ)
.

The choice q(θ, ψ) = p(θ, ψ | Y,M1) ≡ p1 is particularly interesting in that the
Bayes factor simplifies to

B[M0 : M1] = Ep1

f(Y | θ,M0)p(θ | M0) ω(ψ | θ)

f(Y | θ, ψ)p(θ, ψ | M1)
. (29)

Note that, according to (29), we only need a sample from the posterior under M1 in
order to estimate the ratio of the two normalizing constants. Of course, Θ0 ⊂ Θ1

for the method to make any sense, but in principle M0 does not need to be nested
inside M1. However, in the context of model selection in nested models, RIS may be
simplified even more.

4.2. RIS and Nested models

Consider a series of models, where there is one model, ME, with parameters θ, that
encompasses all other models (the other models are nested in ME). For any model
MS with parameter θS , we may partition the parameter vector in the encompassing
model as θ = (θS , θ(−S)), where θ(−S) denotes the parameters in ME that are not
included in MS, i.e. θ(−s) ≡ 0 under MS. In principle, using only a sample from
ME, one can estimate the Bayes factor for every model to ME using (29), and as a
consequence one can compute every posterior model probability (Ibrahim et al. 1999;
Chen et al. 1999).

If the priors on the model-specific parameters are compatible by conditioning, i.e.,
if

p(θS | MS) = p(θS | θ(−S) = 0,ME)

then Bayes factor simplifies to the Savage-Dickey density ratio,

B[MS : ME] =
p(θ(−S) = 0 | Y,ME)

p(θ(−S) = 0 | ME)
, (30)

where p(θ(−S) = 0 | Y,ME) and p(θ(−S) = 0 | ME) are the marginal posterior
and prior densities, respectively, of θ(−S) under ME evaluated at zero, and as such,
the RIS estimator in (29) may be viewed as an IS estimate of the generalized Savage-
Dickey density ratio (Verdinelli & Wasserman 1995) for Bayes factors.

Alternatively, the marginal distribution evaluated at p(θ(−S) = 0 | Y,ME) in the
numerator of (30) may be estimated using the importance weighted marginal density
estimate of Chen (1994),

p̂(θ(−S) = 0 | Y,ME) =
1

T

T
∑

t=1

p(θ(−S) = 0, θ
(t)
S | Y,ME)

p(θ
(t)
(−S), θ

(t)
S | Y)

ω(θ
(t)
(−S) | θ

(t)
S ) ,

where {θ(t) t = 1, . . . , T} is a (possibly dependent) sample from p(θ | Y,ME).
The choice p(θ(−S) | θS ,Y,ME) for ω results in the conditional marginal den-

sity estimator (CMDE) of Gelfand et al. (1992), which is optimal among all IWMDE
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(Chen 1994). As this is typically not available, the empirical method of Chen (1994)
approximates the posterior for θ by a multivariate Gaussian with mean and variance
equal to the estimated posterior mean and variance; the density ω is then given by the
conditional Gaussian for θS obtained by conditioning on θ(−S) = 0 (Chen 1994).

The key feature to using RIS in nested models is that the method only requires
MCMC output from the posterior distribution for the encompassing model to estimate
all Bayes Factors, but does not require knowledge of the MCMC sampler as with Chib
(1995) or Chib & Jeliazkov (2001) or generation of additional samples as in other IS
approaches. In practice, RIS using the posterior of the larger model may be unstable,
however, if the values of parameters in the simpler model have very little support under
the posterior of the more complex model, i.e. the point θ(−S) = 0 is in the tails of the
posterior distribution of the encompassing model.

5. Trans-Dimensional Methods

Reversible jump MCMC (RJ-MCMC) (Green 1995) and variations that sample the
model space and parameter space jointly do not require exhaustive enumeration of
the model space, and can be used in moderate to infinite dimensional problems, such
as sparse nonparametric regression models for mass spectroscopy (Clyde & Wolpert
2006). Steps in the RJ-MCMC algorithm may be divided into within model steps (the
usual MCMC transitions) or across model steps, in which case one proposes a jump
to a new model and new parameter values for the model. With the model viewed as
just another parameter, the basic model jumping step in a RJ-MCMC algorithm is no
different than the usual Metropolis-Hastings transitions. The model jumping step can
be described as follows and applies to extremely general model selection problems.

Given the current state (θk,Mk), propose a jump to a new model Mj q(Mj |Mk,
θk,Y) given the current model Mk. Given the new model, generate θj from distribu-
tion q(θj | θk,Mk,Mj ,Y). Accept the proposed move to (θj ,Mj) with probability

α
(

(θk,Mk), (θj ,Mj)
)

= min
{

1, H
(

(θk,Mk), (θj ,Mj)
)}

where the Hastings ratio H
(

(θk,Mk), (θj ,Mj)
)

is

p(Y | θj ,Mj)p(θj |Mj)p(Mj)

p(Y | θk,Mk)p(θk|Mk)p(Mk)

q(θk,Mk | θj ,Mj,Y)

q(θj ,Mj | θk,Mk,Y)
.

The key to implementing efficient RJ-MCMC algorithms involves constructing model
jumping proposals and efficient proposals for θ under the new model. Ideally the pro-
posal for θk | Mk is the posterior distribution for θk under model Mk. Often, the
proposals have to be tailored to each specific class of problems and may require signif-
icant tuning. Relationships between RJ-MCMC and MH/Gibbs sampling in the linear
model setting are discussed in Clyde (1999) and Godsill (2001). Recent papers by Del-
laportas et al. (2002), Brooks et al. (2003), Godsill (2001) and Green (2003) discuss
variations of RJ-MCMC algorithms and construction of efficient/automatic proposal
distributions.

The proposal for a new θ∗
j is often constructed by “reusing” part of the parameter

vector of the current model Mk. When moving up in dimension, one may generate
a vector u, and then construct a one-to-one mapping g : (θk, u) → (u∗, θ∗

j ); this
accounts for the Jacobian term in many descriptions of RJ-MCMC. Such a mapping
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may be difficult to construct, particularly for non-nested models, although Green (2003)
describes an automatic procedure. Ideally, the proposal distribution for θ∗ should be
as close to the posterior distribution p(θj | Mj,Y) as possible. If MLEs are available
for each model, one may construct an independent proposal distribution based on a t
density centered at the MLE and with a scale matrix proportional to the inverse of the
Fisher information at the MLE. For nested models, another possible strategy is to fit the
full model by maximum likelihood and use that information to specify the parameters
of all conditional distribution’s proposals, so that one does not have to fit a model every
time a new model is proposed.

The relative frequencies of each model provide a Monte Carlo estimate of the
posterior model probabilities,

p̂RJ(Mm | Y) =
fm

T

where fm is the number of times the Markov chain visited model Mm out of the T
iterations. In the case of the models with very small posterior probabilities, one will
need to run the Markov chain for a very large number of iterations in order to be able
to accurately estimate their posterior probabilities using the Monte Carlo frequencies.
This does not appear to be a problem if one is interested in model averaging rather
than model selection. An alternative, is to “bias” the prior model probabilities so that
low probability models are more likely to be visited, and then correct the results by an
importance re-weighting. (This is practical only in low dimensional model spaces).

Recently, Bartolucci, Scaccia, & Mira (2006) proposed a class of estimators of the
Bayes factor using the output of the reversible jump algorithm, based on an extension
of the bridge sampling identity of Meng & Wong (1996). The simplest estimator is of
the form

B̂BSM [Mk : Mj] =
fk

fj

∑fj

i=1 α
(

(θ
(i)
j ,Mj

(i)), (θ
(i)
k ,Mk

(i))
)

∑fk

i=1 α
(

(θ
(i)
k ,Mk

(i)), (θ
(i)
j ,Mj

(i))
)

(31)

and may be easily computed using the RJ-MCMC output. Note that the estimator is
restricted to RJ-MCMC algorithms where the jumps from Mk are limited to “neigh-
boring” models Mk − 1 and Mk+1 (with wrapping or reflection at k = 1 or k = M ),
however, Bayes factors B[Mk : Ml] for non-sequential models Ml may be obtained
by the recursive property of Bayes factors, B[Mk : Ml] = B[Mk : Mk+1]B[Mk+1 :
Mk+2] . . . B[Ml−1 : Ml]. Bartolucci, Scaccia, & Mira (2006) discuss other estima-
tors and show that these may lead to a substantial gain of efficiency in estimating the
Bayes factor over the naive Monte Carlo frequencies.

6. Conclusions/Recommendations

The recent review paper by Han & Carlin (2001) uses several examples to compare
MCMC approaches for computing Bayes Factors, such as Chib’s marginal likelihood
approach, the product space search of Carlin & Chib (1995), the Metropolized product
space method from Dellaportas et al. (2002) (a RJ variation of Carlin and Chib), and
the Composite Model search of Godsill (2001) (a RJ algorithm that takes advantage
of common parameters in the context of variables selection). Han and Carlin found
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that joint model/parameter space methods worked adequately, but could be difficult to
tune, particularly the RJ formulations. The marginal likelihood methods were easi-
est to program and tune, although they note the blocking structure required may limit
applications.

Chib’s method has performed reasonably well in the cases where we have im-
plemented it, but as we mentioned before if the sampling mechanisms become more
involved (eg. multiple parameter blocks), the associated algorithms become harder to
implement and possibly less stable. We have found the method of Chib & Jeliazkov
(2001) to be much more unstable. Contrary to Han & Carlin (2001), we have been able
to implement RJ-MCMC in a several applications (in particular infinite dimensional
problems), but do agree that Monte Carlo frequencies can result in poor estimates of
the posterior model probabilities. It will be interesting to see if the Rao-Blackwellized
estimates of Bartolucci, Scaccia, & Mira (2006) provide significant improvements for
estimating Bayes Factors.

In a variety of low dimensional problems (up to 15 dimensions), running MCMC
within a model followed by importance sampling using the MCMC output to construct
a mixture proposal distribution has turned out to be the easiest to implement and has
performed better than other methods in comparisons. While we have found cases where
the integrated harmonic mean is reliable, IS is still more accurate.

It is important to try to implement more than one method and test code on exam-
ples with known marginals, if nothing else because it is very easy to make mistakes
in coding! In the case of methods based on the MCMC output, it is often necessary
to run the Markov chains for a much larger number of iterations than what would be
needed for parameter estimation only. Failure to do so, especially when using only one
computing method, may result in severe errors. Finally, if the Bayes factors or model
probabilities are at odds with the data, do not forget prior distributions on model specific
parameters may have a huge influence on the resulting inferences about models.

This material is based upon work supported by the National Science Foundation
under Grants 0112069, 0422400, and 0507481. Any opinions, findings, and conclu-
sions or recommendations expressed in this material are those of the author(s) and do
not necessarily reflect the views of the National Science Foundation.
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