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Huygens and Mathematics

Henk J.M. Bos
Utrecht University

1 Drawings

The drawing in the first figure is by Christiaan Huygens. You may still find
some spots quite like it not far from here at ESTEC in Noordwijk. As you
see, Huygens was a creditable amateur draftsman. He was also a professional
draftsman in as far as his professional work involved drawing many
mathematical figures.

Drawings, especially those appearing in early notes and drafts of arguments,  Figure 1: Drawing by

have a special status in the process of mathematical research: they often are ~ Christiaan Huygens, 1657

the first materialisations of the thoughts in the brain of the mathematician. (0.C. Vol 22, p78-79)

And even if they are redrawn later, and finally printed, these drawings retain
a nearness to mathematical thought which written words and formulas often
lack.
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Figure 2: Sketches of
rolling figures, 1678
(O.C. Vol 18, p402)

Figure 3: Approximating

68

the catenary, 1646
O.C. Vol 11 pp37-40

With this in mind, I decided to deal with my subject, Huygens and
Mathematics, via Huygens’ mathematical drawings, and I begin with a very
brief, even somewhat hasty tour through the gallery of these drawings and
figures.

2 Tour of the gallery

In Figure 2 we have Huygens thinking about rolling.

In the middle a hexagon is rolling along a line. He draws a rather bumpy
approximation of the process of a circle rolling smoothly: a series of
successive turns of the hexagon around a corner. Below a pentagon is
rolling, above again a hexagon, now rolling along a curve. Huygens used
these sketches to understand the rolling process. Obviously there is a limit
process involved: regular polygons with more and more sides are less and
less bumpy; real rolling is when the polygons transform into a circle.

The drawings in Figure 3 illustrate a similar approach. They are from the
beginning of Huygens’ career, when he studied the catenary, the form of a
free hanging cord or chain.

Y

© European Space Agency ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/2004ESASP1278...67B

r004ESASPIZ7B. - 678!

Huygens and Mathematics

Again he uses an approximation. He considers a weightless cord, with equal
weights hanging at equal distances. What happens along the successive
weights can be exactly determined by statics; the drawing suggests
extrapolating this knowledge to the continuous case where the weights are,
as it were, spread out all along the chain or the cord. Again, a limit process.
In 1646 Huygens managed to prove by such an extrapolation that the
catenary could not be a parabola (as Galileo had suggested), but only much
later was he able to determine the true form of the curve.

Then another drawing (Figure 4), from October 27th, 1657, and marked (in
Greek) Heureka, so Huygens had found something. What that was I'll tell
later. For now we’ll just look at the elements of the drawing.

K

f \ \H ¢

2. Ot (57

M F

There are curves and axes. Along the curve to the right we see a sequence of
tangents. Near the point where they touch the curve they almost coincide
with it. The curve is approximated by a polygon of tangent pieces along it.

In the middle there is another curve. Over an area between this curve and the
vertical axis narrow strips are drawn; together they form a rectilinear area
approximating the area to the right of the curve.

Small strips under a curve and small straight tangent segments along a curve;
they are perpetually recurring themes in Huygens’ drawings; we will see
more of them. Huygens saw them as very small, or becoming ever smaller,
or infinitely small; I will use the term infinitesimals for these elements. And
of course you sense their relation to what we know as differentiation and
integration.

Another recurring theme in the drawings is curves. Figure 5 shows an
example taken from a letter Huygens wrote in 1694.

Figure 4: Curves:

Bos

tangents and areas, 1657

(0.C. Vol 14 p234)
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Figure 5: Curves: the
‘paracentric isochrone’,
1694

(O.C. Vol 10 p668)

Huygens called the three curves ‘paracentric isochrones’; they had to do with
a complicated problem, actually at the very edge of research at the time,
about motion in a vertical plane along curved trajectories.

Another pair of isochronic curves drawn by Huygens is in Figure 6. I show
them mainly because I like the spiralling effect.

Figure 6: Curves: a
spiralling isochrone, 1694
(O.C. Vol 10 p668)

Figure 7 shows a curve whose nature is more easily explained. It concerns
what was at the time called an ‘inverse tangent problem’.

2

Figure 7: Curves:
solution of an ‘inverse

tangent problem’, 1694 5 X o SN —
(0.C. Vol 10 p475) & £

The usual tangent problem was: given a curve, determine its tangents. The
inverse one was: given a property of tangents, determine a curve whose

tangents have that property. Here the property is that at any point A on the
© European Space Agency ¢ Provided by the NASA Astrophysics Data System
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curve, the subtangent, i.e. the segment along the axis below the tangent,
should be equal to the sum of the coordinates x and y (Huygens takes x and y
positive):

GE=x+y

You will realise that such problems are equivalent to differential equations.
In the case of figure 7 the corresponding differential equation is:

dy_
dx x+y

These inverse tangent problems were difficult, indeed often very difficult.

I noted that the seventeenth-century infinitesimals involved in tangents and
areas of curves relate to what soon after became differentiation and
integration. Similarly, curves in the seventeenth century had the role that was
later taken over by the concept of function. Actually, that transition came
later, roughly by the middle of the eighteenth century. For Huygens, curves,
not functions, were the natural means to represent mathematical
relationships.

Finally three drawings (Figure 8) showing Huygens at work on a curve
called the conchoid,; it is the one from A to D in the left-hand drawing, in
which Huygens first roughly sketched the curve.

You note the infinitesimals he was interested in here: they are the small
triangular strips. In the middle drawing he added some details and apparently
decided that the drawing was still too sketchy for clarity about the
infinitesimals, so for the right-hand drawing Huygens turned to tools of the
trade, ruler and compass, to get a better result.

'/
RN/

Figure 8: At work on the
conchoid, 1657
(O.C. Vol 14 pp309-311)
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Figure 9: Arc lengths and

72

areas, 1657
(O.C. Vol 14 p234)

3 Seeing through the drawings

So far some glimpses from the gallery of Huygens’ mathematical drawings.
How did they function in Huygens’ research?

Obviously they helped him, first of all to order complex spatial information.
But they also showed him something that is not on them. He could, as it
were, see through the drawings to what cannot be represented in a static
drawing, notably motion and the infinitely small. He could see motion of
objects along curves, and he could see limits when rolling polygons turned
into a rolling circle and when curves temporarily took the form of a polygon
of tangent lines.

I shall now turn to a few examples in which Huygens used his drawings in
this way to represent the unrepresentable. I divide them according to the
following three themes: infinitesimals and limits, motion, and the modelling
of processes of movement and change.

3.1 Infinitesimals and limits

For the infinitesimals and limits I return to a drawing shown earlier (Figure
9), the one with the ‘heureka’, which 1 used as an illustration of
infinitesimals, the small tangent parts along a curve and the small strips
approximating the area under a curve. The curve to the right in the drawing
is a parabola; the one in the middle is a hyperbola.

K

What Huygens found — “heureka!” — was a relationship between two
problems that were famously difficult at the time. The one was to determine
the arc length of a parabola between two given points on it: the so-called
‘rectification of the parabola’. The other problem was to determine the area
under a hyperbola between two given ordinates: the ‘quadrature of the
hyperbola’. Around 1657, when Huygens made the drawing, a few
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mathematicians had seen that the quadrature of the hyperbola depended on
logarithms.

Huygens noticed that the small tangent pieces along the parabola are equal to
the corresponding strips under the hyperbola. To see that requires an
intimate familiarity with the properties of both curves. Huygens concluded
that the sum of all the tangent pieces along the parabola is equal to the sum
of the strips under the hyperbola. In the limit, when the corresponding pieces
and strips are ‘infinitely small’, the sums become equal to the arc length of
the parabola and the area under the hyperbola, respectively. Hence the two
problems were strictly related: if the quadrature of the hyperbola was found,
then the rectification of the parabola was found as well, and vice versa. And
thus Huygens had found that for determining the lengths of parabolic arcs
one needed logarithms in the same way as for the quadrature of the
hyperbola.

The drawing, then, illustrates how Huygens used a sketch of curves and
infinitesimals to see and understand the limit processes involved in
measuring curvilinear lengths and areas.

It is instructive to compare this visual understanding of rectification with the
modern, analytic, standard formula for the arc length of a curve with

equation y = f(x):

S=I‘/1+(%)2dx

Huygens’ drawing, as it were, carries the proof that this formula indeed
provides the arc lengths, as well as the fact that in the case of the parabola
the function to be integrated is a hyperbola. Both the proof and the fact are
implied in the formula, but they are much less visible than in the drawing.

3.2 Motion

Infinitesimals, such as in the previous example, occur in Huygens’ work
especially in connection with motion and dynamics. My second example is
about a special kind of motion, namely the unrolling or ‘evolution’ of
curves. Figure 10, taken from Huygens’ book on pendulum motion from
1673, illustrates the process. The pendulum consists of a weight P,
connected via a thread to a fixed point K, in a vertical plane in which two
curved strips (of metal, for instance) KM and KT are fixed.
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Figure 10: Unrolling a
curve and the radius of

curvature, 1673 (O.C. Vol

T4

18 p105)

N

At rest, the weight hangs vertically under the point K and the thread is
straight. If the weight is moved to the left, the thread will wind up along the
curve MK; when the weight is at P, as drawn in the figure, the thread is
partly straight (the part PN) and partly wound up along the curve (the part
NK). If the weight is released from position M it will swing down, pass the
lowest point, and move up towards /, and then return along the same path to
M, then back down again, and so on. During this motion the thread first
unwinds from the curve MK and then winds up along K/, and then winds off
KI again and so on. Huygens was fascinated by this process of threads
winding, or rolling up or from curves. In the case illustrated in the figure the
two curves KM and K7 are symmetrically placed halves of a special curve
called the ‘cycloid’; in that case the path MPI of the weight turns out to be a
full cycloid. This phenomenon was crucial in Huygens’ theory of oscillation.
But the process of unrolling can be generalised to apply for any curve MK
producing ‘evolutes’ of KM such as the curve described by P. Huygens
derived various properties of curves and their evolutes, such as the fact that
the curvature of the evolute at P is equal to the curvature of a circle with
centre N and radius NP. This length is therefore called the ‘radius of
curvature’ of the evolute at P.

Figure 11 shows some of the drawings through which Huygens ‘saw’ the
process of unrolling along curves with varying curvatures, a process
involving infinitely small line segments along the curve and even doubly
infinitely small ones perpendicular to the curve.
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In the drawing to the left (the other two are variants or details of it) we
recognise the tangent pieces AL, BM, CN, DO, etc., touching the curve AS.
They are infinitesimals in the sense that in the limit, when the arc A4S is
divided in more and more (infinitely many) pieces, their number becomes
(is) infinite, and the sum of their lengths becomes (is) equal to the total
length of the arc AS. Now consider the small sides BL, CM, DN, EO, etc. of
the triangles ABL, BCM CDB, DEQ etc. They are perpendicular to the curve.
In the limit process these perpendiculars will of course become zero, but the
drawing suggests that they will also become very (infinitely) small with
respect to AB, BC, etc. along the curve, which themselves also become
infinitely small. Huygens made precise what this meant: unlike the ‘first
order’ infinitesimals AB, BC, etc. which become zero but whose sum
becomes equal to a finite value (namely the length of the curve), these
perpendiculars are ‘second order’ infinitesimals; they will become zero and
their sum will become zero as well. Huygens even provided an explicit proof
of this phenomenon, which formed the basis of his further theory of the
evolutes of curves.

Again it is instructive to compare Huygens’ infinitesimal geometric
arguments based on drawings with a modern formula for one of his results.
Let p be the radius of curvature of a curve y = f(x) . Then

d2y
2
o= dx

N
47

One notes that the formula implies the same ingredients as Huygens’
. . .
drawings: the tangents to the given curve (the derivative Ey)’ and the

2
second order infinitesimals (the second order derivative = Z ).
x

Figure 11: Evolutes and
second-order
infinitesimals, 1659 (O.C.
Vol 14 pp400-402)
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3.3 Models

Before I turn to my third and last example of Huygens’ use of drawings, I
owe the reader a remark about the mathematical technicalities in my
discussion of Huygens’ drawings (the example below has even more). I am
aware that I may well lose some readers for the good reason of lack of time
for, or affinity with, the details of the material. I hope however that the text
can still be used as a guideline in taking some time to look at the drawings,
note their charm and aesthetics, and imagine Huygens making them and
pondering natural phenomena by means of the art of scientific drawing.
These aspects, 1 feel, are in fact more important than the technical
mathematical details.

The remaining example concerns the motion of a body, falling under the
influence of gravity through a medium with resistance proportional to the
velocity of the moving body. Figure 12 shows Huygens’ drawing in which
he incorporated the four variables involved in the process, velocity,
acceleration, time and resistance, as well as their mutual relations.

A
r

Figure 12: Huygens’
geometrical model for fall
in a medium with
resistance proportional to
velocity, 1668

(0.C. Vol 19 p102)

I will use the letters v, a, t, and r respectively for these, but note that
Huygens did not use these letters in his drawing. His drawing served the
function of a ‘mathematical model’, be it that at present we expect such a
model to consist of a set of formulas giving the equations and/or differential
equations, which describe the process. Huygens’ model was a geometrical
one.
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In Figure 13 I have indicated the elements of his drawing corresponding to
the four variables mentioned (I have added the letter Z for a point which in
Huygens’ drawing was not lettered):

* time 7 is represented along a vertical axis AZ (or equivalently along
CN)

* velocity v by an area under an as yet unknown curve AFDO with
respect to the axes C4 and CN

* acceleration @ by the ordinate NO of the unknown curve (whereby

. dv . . . .
the relation a = ;l" 1s incorporated in the drawing)
t

* resistance r turns out to be represented by the segment OZ

The problem, then, is to determine the nature of the curve 4FDO from the
given that the resistance r is proportional to the velocity v.

Here is how Huygens argued on the basis of his drawing: If there were no
resistance the velocity would be proportional to the time, according to
Galileo’s law of fall. Thus the area v would be proportional to the time ¢,
which implies that the curve from 4 coincides with the axis 4Z We
conclude that, because there is resistance, the unknown curve must extend
from A to the left of the axis, and that CA represents the acceleration if
resistance is absent, that is the gravitational acceleration (modern: g).
Moreover the curve cannot extend to the left of the axis CS because then the
acceleration would be negative and the body would rise again. Thus the
geometrical model directly provides a global insight in the process of fall
with resistance.

Then Huygens incorporates the given that the resistance is proportional to
the velocity. NO represents the acceleration of the body, which is the sum of
the gravitational acceleration represented by C4 and the (negative)

Figure 13: Fall in a
medium with resistance,
the variables redrawn
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acceleration caused by the resistance. Thus the resistance is represented by
CA — NO, that is, by OZ. Hence the curve has the property that the difference
CA—-NO between any of its ordinates and the first ordinate CA is
proportional to the area between these two ordinates. Note that the argument
until now corresponds to the derivation of the differential equation

d
?‘;= g—fv from the Newtonian law F =mxXa and the given

proportionality # o< fv. (The correspondence, however, is less
straightforward than it may seem because the drawing models
proportionalities rather than equalities.)

But a differential equation is no solution of the problem it describes; it has to
be solved. Similarly Huygens’ result about the unknown curve is not the
answer to which curve it is. He did determine the curve however, because in
earlier studies he had encountered a curve with the same property, namely
the ‘Logarithmica’, which was the seventeenth-century name of what now is

called the exponential curve with equation y=e". Huygens’ solution

corresponds to the solution v(¢) = %(l—e_ﬂ’)of the differential equation

above.

Finally, Figure 14 illustrates how Huygens could adapt his geometrical
model with the four variable quantities involved in fall with resistance, to
other assumptions about the relation between the resistance and the velocity.
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In this case he assumed the resistance to be proportional to the square of the
velocity, and succeeded in determining the required curve. Thus the drawing
illustrates the power of geometrical modelling in the hands of the master
who pioneered this approach.

4 Conclusion

After this brief survey, how to characterise Huygens’ mathematics? It was
geometrical infinitesimal analysis of curves and of motion. As to inspiration
and imagery it was inseparable from mechanics; in style it was pure
mathematics. It was geometrical because it was essentially dependent on
drawings for handling infinitesimals, limit processes, and motion.

Huygens brought this kind of mathematics to great heights. But this
mathematics passed. The next generations changed the style: the drawings
were replaced by formulas; the infinitesimal lines and strips were replaced

Figure 14: Fall in medium
with resistance
proportional to the square
of the velocity, 1668 (O.C.
Vol 19 p159)
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a
by differential quotients a’_y and integrals '[ydx; drawing figures was
X

replaced by manipulation of formulas.

Newton and Leibniz set this transformation in motion. Huygens was the
grand master of the previous style. In the long run, this style could not
compete with the new, formula-based, differential calculus in solving the
problems that confronted mathematicians and mechanicists.

So Huygens was no longer the solution, and, as the saying goes, if you’re not
part of the solution, you’re part of the problem. Something like this has
indeed happened to him. Historians of science and modern scientists often
experience Huygens’ mathematics as problematical and they sometimes see
the stylistic aspect of his mathematics as a deplorable detour from how it
should have been. This is understandable, because his mathematics is indeed
difficult; it takes time, and lack of time is a valid excuse for a historian to
take a short cut in the telling. But the idea that Huygens took a detour is
nonsense. Geometrical analysis and physics was an essential and necessary
phase in the development of mathematics.

Huygens’ mathematics, then, was, and still is, authentic, brilliant
mathematics; it can speak to us (given time) and bring us near to a powerful
mode of thinking, which we may value and enjoy as much as any modern
mathematical achievements.

>
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