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Certain people, [propounding] what they consider a more persuasive view ... supposed
the heavens to remain motionless, and the Earth to revolve from west to east about the
same axis [as the heavens].... However, they do not realize that, although there is perhaps
nothing in the celestial phenomena that would count against that hypothesis, at least
from simpler considerations, nevertheless from what would occur here on earth and in
the air, one can see that such a notion is quite ridiculous.!

Ptolemy

INTRODUCTION

It is always interesting to read the analysis of rival viewpoints in the same text. But
it is particularly intriguing when the author of the text happens to be championing
one of the two rival viewpoints. To understand the status of ideas that advocated a
non-stationary earth through the bible of geocentrism, the Almagest, may, perhaps,
be asking too much. Yet Ptolemy appears to be a gracious adversary. He explicitly
states that though on observational grounds there can be no objection to such an
idea (even, perhaps, implicitly including heliocentrism), they should be denied
on physical criteria. Elaborating in Book 1 of the Almagest all the physical rea-
sons as to why the geocentric viewpoint is to be preferred, Ptolemy never again
becomes involved in such ontological considerations while he unfolds the almost
mesmerizing interactions among the motions of the epicycles on the deferents,
which may be moving in eccentric circles, while having regular motions around
the equants. But reading this passage there is a sense of déja vu: “from simpler
considerations”, that is, on empirical grounds a(ny) motion of the Earth, is, of
course, unacceptable. And trivially so. Hence, if any ideas involving the motion of
the earth had been entertained by some for sometime, it should have been part of
an overall context where the empirical or the philosophical considerations would
not have been as constraining a factor, as they are required to be in the Almagest.
What, then, were the characteristics of this context? Within what discourse was
such a ludicrous notion as the motion of the earth entertained? How did such a
manifestly anti-empirical and obviously counterintuitive notion become a legitimate
alternative to geocentrism?

“There is not the slightest doubt that Aristarchus was the first to put forward
the heliocentric hypothesis. Ancient testimony is unanimous on this point.” This
is how Sir Thomas L. Heath starts his principal chapter on Aristarchus of Samos
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in his classic work of the same title.? Is this really the main conclusion that can
be arrived at? Ancient testimony is indeed unanimous on this point. But does
such unanimity lead necessarily to the fact that Aristarchus was the first to have
claimed the heliocentric hypothesis? We think not. Aristarchus, it appears, was one
of the prominent astronomers and mathematicians who had further elaborated the
implications of a non-geocentric and non-geostatic view — itself a view with a
long tradition — by explicitly considering a particular version of this view that was
the heliocentric view. In this paper we argue that the unanimity of the sources is a
concurrence reflecting the legitimacy of such a version and its legitimation through
the establishment of a new mathematical practice which led to the coming-to-be
of trigonometry and the emergence of the processes for ‘arithmetizing’ geometry.?
We argue that during the Hellenistic period and for a relatively short period, the
description of the cosmos appears to have been relatively free of philosophical
constraints.

There has been an impressive corpus of scholarship concerning Archimedes’s
famous passage from the Sand-reckoner where we receive the main information
about Aristarchus’s heliocentrism.* As a result there has been a deep insight
into what Aristarchus may have claimed. But no one seems to have examined
Archimedes’s views about Aristarchus’s heliocentrism, which may be implied
through Archimedes’s description of Aristarchus’s heliocentrism. For example, it
is quite remarkable that Archimedes uses the geocentric viewpoint interchange-
ably with the heliocentric and that such a use has not been noted by those who
discussed Aristarchus’s heliocentrism. It can also be argued that both Aristarchus’s
heliocentrism and the lack of its criticism not only by Archimedes but also in the
passages we have from much later,’ is suggestive of the possibilities provided by
a new mathematical culture in the making, during a period from the publication
of Euclid’s Elements (c. 300 B.C.) to the middle of the second century B.C. when
Hipparchus was active. With Aristarchus and Archimedes we have the beginnings
of a new mathematical practice differentiating itself from the Euclidean style. The
quantitative dimension began to be essential in mathematical manipulations. It
now became possible to pose geometrical problems in such a way that they were
amenable to numerical solutions, and it also became possible in astronomy to esti-
mate quantities by using geometrical methods in conjunction with data provided by
direct observations — even though we do not know the exact details of how they
made the observations. Such a new practice was accompanied by changes in the
intellectual milieu whereby the ontological commitments related to these quantities
were becoming progressively less important as a criterion for the soundness of the
hypotheses used and the validity of the results derived by using these hypotheses.
It is within such a framework of a new practice and a new intellectual milieu that,
we believe, a space was created for discussing and elaborating a non-intuitive
hypothesis such as heliocentrism. Aristarchus appears to have been among the most
prestigious defenders of heliocentrism, and, perhaps, also among the last defenders
of a long tradition in which the motion of the earth was advocated and different
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scenarios were advanced concerning the centre around which the earth moved. In
other words, from all the available sources it seems that on the whole the alternatives
to geocentrism, far from being considered as heretical and downright wrong, were
entertained as viable alternative mathematical modes for understanding astronomi-
cal phenomena. It is only when physical and philosophical considerations became
the almost exclusive criterion for the legitimacy of the mathematical description,
that geocentrism was preferred to heliocentrism, despite the latter’s advantages in
astronomical terms as Ptolemy, the geocentrist par excellence, is ready to admit.
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AN OLD IDEA: THE MOTION OF THE EARTH

Until the circulation of the Almagest in the second century A.D., the geocentric
and geostatic view with the concentric spheres, though the dominant model for
the universe, was not the only one. The very fact that there was more than one
alternative to what appeared intuitively natural is, in itself, a thought-provoking
issue. That these alternatives had to be taken seriously by their adversaries and
were scrutinized not with respect to astronomical data but with respect to criteria
based purely on intuitive considerations is an indication that they comprised a
framework of ideas that for a certain audience were rather persuasive. Those
who did not agree with them continued to devise counterarguments, refusing to
accept that the case had been closed. It is difficult to suppose that philosophers
and astronomers would continue to be preoccupied for such a long period with
ideas that did not have a following, and corroborating astronomical evidence of
some form.

Many of the historians who have discussed Aristarchus’s heliocentrism have
repeatedly expressed the view that any idea other than the geocentric and geostatic
views of the universe must somehow have been a marginal consideration that was
not taken seriously.® There is no supporting evidence from the extant sources for
such an assessment. If anything, it appears that for two or three centuries the idea
of a moving earth was an alternative that could not easily be dismissed. Belief in
a moving earth was usual among the Pythagoreans. Philolaus (last decades of the
fifth century), one of their better known figures, had asserted that both the sun and
the earth moved around a central fire, though we are not sure of the exact details
of these motions. This system could account for the apparent rotation of the heav-
ens, but it could not account for the apparent irregularities among the planetary
motions, though this was not regarded as a defect as these irregularities had not
yet been systematically observed. Interestingly, it was the inability to observe the
central fire that was deemed to be its weak point, rather than the movement of the
earth. Extant sources refer to Hicetas, another Pythagorean from Syracuse, who
“holds that the heaven, the sun, the moon, the stars, and in fact things in the sky
remain still, and nothing else in the universe moves except the earth; but, as the
earth turns and twists about its axis with extreme swiftness, all the same results
follow as if the earth were still and the heaven moved”.” Hicetas did not include
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the central fire in his system and his conception was based on there being one
moving body, the earth, while all the other bodies, including the sun, stood still.
Another Pythagorean, Ecphantus of Syracuse (fifth century B.C.), is said to have
promoted the same idea of a moving-rotating earth. Hence, by the first half of the
fourth century, some members of the Pythagorean School had already abandoned
the doctrine of a central fire and had proposed cosmic systems based on the idea of
a moving and/or rotating earth. It appears that a certain type of motion of the earth
was sufficient for them to provide a qualitative description of the cosmos. Never-
theless one should also bear in mind that the Pythagorean views on the possible
motion of the earth were formed within a context in which, as Goldstein and Bowen
note, “the explanandum in their theories is not so much a physical phenomenon as
the ethical and aesthetic order it supposedly exhibits”.®

Historians, on the whole, agree that Heraclides of Pontus (c. 388 — ¢. 310 B.C.)
was the first to have formulated the doctrine that the earth rotates on its axis from
west to east. He was born at Heraclea in Pontus, and emigrated to Athens where
he became a pupil of Speusippus, and afterwards possibly of Plato himself. He is
said to have attended the Pythagorean School and he also seems to have received
instruction from Aristotle. Furthermore, we read in Simplicius:
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Hence we actually find a certain person, Heraclides of Pontus, coming forward
(taperdadv) and saying that, even on the assumption that the earth moves in a
certain way, while the sun is in a certain way at rest, the apparent irregularity
with reference to the sun can be saved.’

This passage has presented a number of philological problems that do not concern
us here.'” What is important for us is that Simplicius makes it clear that Heraclides
(or whoever had defended this view) had elaborated a radically different way of
saving the phenomena by abandoning the usual idea of the earth being at rest. But
we note another aspect of this passage. The word napeA8dv implies that Heraclides
(or whoever had defended this view) came forward and spoke to some kind of an
assembly. It indicates that there was an audience, and we know that in Athens at
the time of Heraclides the audiences were neither passive nor did they gather for
formalistic reasons. The role of the audiences in legitimizing new ideas does not
appear to be a characteristic confined to modern times.

The issue of the earth’s movement has been the subject of a number of studies
on Plato and Aristotle. Although it is definitely the case that both argued for a
geocentric and geostatic cosmos, it is equally true that in part their arguments were
also aimed at counteracting contemporary views that were sympathetic towards
some kind of a motion of the earth. Plato himself does not appear to have been
unambiguous on the question of the motion of the earth, and we have mentioned
that it is said that in his old age he had become sympathetic towards the view that
assumed a moving earth. It is not important for our argument to see whether this
was actually the case. It is, however, important to note that the testimony comes
from Plutarch, the biographer and philosopher of the first century A.D. who was
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particularly sympathetic towards Platonic views. Plutarch writes: “Theophrastus
also adds that Plato in his old age regretted that he had given the earth the middle
place in the universe, which was not appropriate to it.”!' This is a sentence coming
immediately after a detailed reference to Aristarchus’s heliocentrism, starting with
the question of whether “Plato put the earth in motion”.'> And the testimony is
expressed in a straightforward way without any hint of embarrassment that Plato
may have entertained such views. Furthermore, Aristotle notes that “many others
too agree that the place in the centre should not be assigned to the earth”.!* There
are convincing arguments that the persons to whom Aristotle refers were not
Pythagoreans but some of his own contemporaries.'* It should be emphasized
that Aristotle’s criticism of the ideas referring to a motion of the earth are based
on the intuitive considerations of an observer whose criterion is the “physics” of
earthly phenomena. Certainly, he does not choose to measure these ideas against
heavenly phenomena.

Though Aristotle’s considerations were philosophically consistent, the alterna-
tives could not be dismissed on astronomical grounds. Scholars who have studied
Plato systematically have not reached a consensus over whether or not Plato may
have entertained views sympathetic to some motion of the earth. Furthermore, it
is agreed that Heraclides formulated his viewpoint after Aristotle wrote On the
heavens. To have such a viewpoint propounded immediately after On the heavens
is not necessarily a tribute to the ingenuity of an isolated scholar, but rather an
indication of the existence of a receptive audience for such ideas. The possibility of
the motion of the earth is an idea that simply would not go away, quite apart from
philosophical considerations. Whether it was because astronomical observations
were more readily accommodated within such an idea, or whether, later, it was
because there was an audience with a critical attitude towards Aristotelian doctrines,
is a secondary issue. What is important is to realize that the persistence of this
particular viewpoint for so long a period could not have been the result of zealous
behaviour on the part of some, but rather it was the result of the persuasiveness of
the arguments, coupled with the existence of some kind of corroborating evidence
and of a receptive audience. A number of not insignificant writers continued to
be intrigued with the issues surrounding the motion of the earth. Until the time of
Ptolemy, it appears that geocentrism was far from commanding a general consen-
sus. Seneca’s view on the matter, when he said that they should clarify whether
God moves the heavens or the earth, is particularly significant since he lived in a
period so close to that of Ptolemy. '

It should therefore be noted that by the time of Aristarchus and Archimedes, there
seems to have been a decline in belief in, and an intense questioning of, the only
mathematical model for the cosmos. Nevertheless, and this is most important, what
became well established was “the turning of astronomy into a mathematical science,
that is, a deductive mathematical explanation of physical phenomena”.'® Any new
ideas would continue to be formulated within this mathematical framework, but also
within a conceptual framework with many more degrees of freedom compared to
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the constraints of Aristotelian physics, since in this transitory period there was no
convincing model of the cosmos and no compelling reasons to adhere exclusively
to Eudoxus’s concentric sphere model.

ARCHIMEDES THROUGH ARISTARCHUS

We would like to read the extant source material on the assumption that what is
extant is also a reflection of what is not extant. This is not to say that extant works
tell us about the specific content of lost works — though this may, indeed, happen
in a number of instances. The point we are making is that the extant sources express
to a certain degree the ambience of the corpus that existed and has been lost and
whose specific content we do not know; and, yet, we know that this corpus reflected
the way people chose to state their opinions and construct their arguments. Existing
works can be read in order to discern the context formed by both what has survived
and what has been lost. To conjecture the content of what has been lost through an
analysis of what is extant has been part of the standard analysis. But such a search
for absences should also be complemented by an attempt to assess the status of
what exists within the context determined by what has been lost inasfar as this can
be surmized and inferred through what exists. This is how we intend to read our
sources.

By far the most important information about Aristarchus’s heliocentrism comes
from the passage in the Sand-reckoner where Archimedes gives his own account
of Aristarchus’s ideas. This is a short tract where Archimedes, addressing King
Gelon,!” proceeds to calculate the number of specks of sand that could fill the uni-
verse in his attempt to calculate and express a very large number (109, much larger
than 10* (myriad), the largest number for which the Greeks had a distinct symbol).
Traditionally, the Sand-reckoner was considered to be among the very late works
of Archimedes, a composition of his mature age. But in his meticulous study on the
chronological ordering of the entire Archimedean corpus, W. R. Knorr has argued
persuasively for an early dating of the Sand-reckoner on the ground that it seems
better associated with the science of the earlier part of the third century than with
that of the later part.'® It might therefore be that Archimedes wrote his account of
Aristarchus’s heliocentric views at a date much closer to when Aristarchus may
have defended his heliocentrism.! Commonly, Aristarchus’s lifetime is placed in
the last decades of the fourth and the first decades of the third century B.C., given
that he was a pupil of Strato of Lampsakos, presumably at Alexandria, before the
latter’s assumption of the headship of the Peripatetic School in Athens, in 287 B.C.,
and that he had, according to Ptolemy, observed the summer solstice in 280 B.C.?
Let us quote the relevant passage.!
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You know [King Gelon] that most astronomers designate by the word ‘cosmos’
the sphere whose centre coincides with the centre of the earth and whose radius
is equal to the straight line connecting the centre of the sun and the centre of the
earth; for you have gathered such information from the representations in their
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writings. But Aristarchus of Samos published in writing certain hypotheses, in
which it follows, from the assumptions made, that the cosmos must be many
times greater than the one mentioned before. He assumes namely that the
fixed stars and the sun remain unmoved, while the earth moves round the sun
through the circumference of a circle, which lies in the midst of the course;
and that the sphere of the fixed stars, situated about the same centre as the
sun, is so great that the circle in which the earth is supposed to revolve, has
the same ratio to the distance of the fixed stars as the centre of a sphere to its
surface. Quite obviously, this is impossible; for since the centre of a sphere
has no magnitude, it cannot be conceived to bear any ratio to the surface of the
sphere. We must, however, take Aristarchus to mean this: since we conceive
the earth to be, as it were, the centre of the world, the ratio that the earth bears
to what we call the cosmos is the same as the ratio that the sphere containing
the circle in which the earth is conceived to revolve bears to the sphere of the
fixed stars. For he adapts the proofs of the phenomena to an hypothesis of
this kind, and in particular he appears to suppose the magnitude of the sphere
in which he makes the earth move to be equal to what we call the cosmos....
Aristarchus tried to prove that the diameter of the sun is greater than 18 times,
but less than 20 times, the diameter of the moon. But I go even further than
Aristarchus, in order that the truth of my proposition may be established
beyond dispute, and I suppose that the diameter of the sun to be about 30
times that of the moon and not greater.?
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What Archimedes does, in the more technical sense, is the following. The
proportion suggested by Aristarchus is

radius of the earth’s orbit : radius of the sphere of fixed stars = centre : surface,
and Archimedes substitutes for the problematic second ratio,
radius of the earth’s body : radius of the sun’s orbit.

All historians of science who have discussed this passage have concentrated
on understanding through Archimedes’s account, the details of Aristarchus’s
heliocentrism. But none has raised what amounts to a complementary question:
What do we understand to be Archimedes’s assessment of Aristarchus’s views?
What further insights can we derive about Aristarchus’s heliocentrism, by trying
to understand what Archimedes ‘feels’ about it, concentrating on the way he
chose to narrate it? Attempting to answer these questions, we are led to some
interesting answers.

Firstly, and in contrast to what is the received view, we argue that Archimedes
is in no way critical of the heliocentric hypothesis itself.

Secondly, Archimedes appears to be using the geocentric view and the helio-
centric view interchangeably.

Thirdly, what Archimedes does is properly to correct Aristarchus’s proportions,
without undermining the latter’s heliocentrism and almost wishing to save it!
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The first point we are making is almost self-evident. There is not a single word
to imply criticism by Archimedes of Aristarchus’s sun-centred hypothesis. In
fact, Archimedes wants an arbitrarily large but finite universe. Aristarchus had
almost provided him with one, but it was, alas, in strict mathematical terms, an
indeterminate one. Why should Archimedes have become involved with the arbi-
trary task of transforming Aristarchus’s indeterminate universe into one which
could be measurable, when the easiest and mathematically most expedient step
would have been the denial of the heliocentric hypothesis that led to the rather
ludicrous expression for the size of the universe in the first place? Why did he
proceed to the transformation, when by rejecting heliocentrism, he could have
guaranteed that the universe was indeed finite and that the indeterminacy of the
expression was but the outcome of the un-naturalness of heliocentrism? Why does
he proceed, instead, to commit himself to an expression that is mathematically
well-defined but whose derivation leaves a lot to be desired? Why does he, after
correcting Aristarchus’s estimate, not make use of the new result, but proceed
to make it larger in an arbitrary way, when he could have proposed the arbitrary
size in the first place? Archimedes’s unwillingness to touch the heliocentric
hypothesis itself is not to be interpreted as an indication of Archimedes’s belief
in heliocentrism. Such a strong assertion is not warranted by the text and it needs
further corroborating evidence, which we do not think can be found in other parts
of the Sand-reckoner or in Archimedes’s other texts. In fact, Archimedes seems
to be indifferent over the issue of geocentrism or heliocentrism. Our point, then,
is that Archimedes’s unwillingness to deal in any manner with the heliocentric
hypothesis could be an indication of his acceptance of heliocentrism as a legiti-
mate (mathematical) hypothesis whose use can facilitate the understanding of
the celestial phenomena, almost on a par with geocentrism.

Our first point, then, is this. Reading the key passage in Archimedes (whose
significance outweighs all the other references to Aristarchus’s heliocentrism??),
there is nothing even remotely to suggest that Aristarchus’s heliocentrism as
such was either objected to or considered as a particularly daring proposal. In
fact, Archimedes does not criticize heliocentrism itself, but, instead, he attempts
to correct a rather technical point which, one may think, Archimedes feels may
be undermining the original heliocentric hypothesis! Let us not forget that
Archimedes was not only the mathematical genius he was, but also an astronomi-
cally sophisticated mathematician. He was the son of the astronomer Pheidias,
the Sand-reckoner includes a lot of arithmetic and a lot of astronomy, Cicero
tells us that he had constructed a planetarium, Hipparchus (through Ptolemy)
mentions his determination of the length of the year, Macrobius reports on his
theory concerning the mutual distances of the sun, the moon, and the planets,
and, finally, the Sand-reckoner bears witness to his astronomical observations.
Has it not been the case throughout the ages that the best choose as their discus-
sants the most prestigious? And may not the decision to correct Aristarchus be
an indication of the latter’s prestige?
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Why should Archimedes have troubled to bring in the geocentric hypothesis
in order to make the implications of the heliocentric hypothesis more accessible
to King Gelon, if the two hypotheses were antagonistic and contradictory to
each other? And this is our second point: the particular words Archimedes uses
in order to communicate to King Gelon some of the intricacies of the heliocen-
tric hypothesis, aim at explaining something that is less well known in terms of
something more familiar: “We must, however, take Aristarchus to mean this: since
we conceive the earth to be, as it were, the centre of the world....” The words
and phrasing used in the original passage are rather non-committal as to what
Archimedes believes. Archimedes uses a didactic trick and his reference to geo-
centrism within the overall context of the passage is by no means to be taken as
expressing Archimedes’s ontological commitment. It is merely a methodological
preference to help Archimedes make mathematically respectable Aristarchus’s
expression for the size of the universe. Our assessment that Archimedes is at ease
with such an equivalence between the two hypotheses is further strengthened by
what he actually does a little further on in the passage. He proposes to substitute
the problematic proportion of Aristarchus
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radius of the earth’s orbit : radius of the sphere of fixed stars = centre : surface
by

radius of the earth’s orbit : radius of the sphere of fixed stars =
radius of the earth’s body : radius of the sun’s orbit.

Archimedes changes the second ratio while the first ratio is left unaltered. In
other words, what Archimedes does is to take a proportion that had been derived
by Aristarchus through his heliocentrism, and to change one side of it by substitut-
ing an expression derived from the geocentric hypothesis, leaving the other side
intact. In fact, the new proportion is one that involves measurable quantities, one
belonging to the heliocentric system and the other to the geocentric. But in addi-
tion the proportion itself is the product of the heliocentric hypothesis. This, to our
mind, is neither sloppy mathematics nor handwaving, but rather the expression
of a new mathematical culture in the making during this period, of which more
later. Far from being aggressive, Archimedes resembles a referee of an article who
is particularly sympathetic to the author’s agenda and suggests how to correct a
“blunder” in the text!

Hence — and we now come to our third point — Archimedes does not appear
to be aiming at undermining Aristarchus’s viewpoint, but rather at showing that
Aristarchus’s viewpoint could continue to be considered as legitimate, despite
a technical problem, for which Archimedes provides a solution. It appears as
if Archimedes is concerned with “saving Aristarchus”. If we do not take into
consideration this aspect of Archimedes, his whole approach appears to be rather
peculiar. Archimedes’s insistence on discussing in such detail the ensuing pro-
portion is an indication of his unwillingness to dismiss heliocentrism and his
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willingness to devise convincing arguments in order to derive a finite expression
for the size of the universe. The fact that Archimedes uses no derogatory expres-
sion against Aristarchus, and his mentioning of Aristarchus in other passages of
the Sand-reckoner, show a respect to one who is both the writer of the On the sizes
and the explorer of heliocentrism.

But, perhaps, such was Archimedes’s style when he was critical of others. In
other words, it could be the case that Archimedes does not explicitly criticize
people, but he intervenes in their results in such ways as to annul what others have
been arguing. To check whether he systematically used such a modus operandi, we
tried to see what the style of Archimedes’s criticism of others is. We could find no
explicit criticism by him of other people’s work. We then tried to see in what context
he mentions other persons’ names. And, there, we met with a pleasant surprise.
Archimedes, it appears, mentions names whenever he wants to praise someone’s
work, and he avoids criticism altogether. And the name most frequently mentioned
by him in all of his works is Aristarchus!

Archimedes mentions Aristarchus by name ten times. All references are in the
Sand-reckoner. He mentions him more times than Conon for whom he expresses his
admiration at every opportunity. The latter is mentioned eight times, three times in
the introduction of On spirals, twice in the introductions of the two books On the
sphere and the cylinder, and three times in the Measurement of a circle. Eudoxus
is mentioned four times: once in The method of mechanical theorems, once in the
Sand-reckoner, and twice in the introduction in On the sphere and cylinder I. Dem-
ocritus is mentioned once in The method of mechanical theorems. Eratosthenes is
mentioned once, in the introduction of The method of mechanical theorems. Euclid
is mentioned once in On the sphere and cylinder I, but it may, indeed, be the case
that it is a phrase inserted by a scholiast, since Archimedes uses often theorems
from Euclid’s Elements and other works without mentioning his name. And the
astronomer Pheidias, who was Archimedes’s father, is also mentioned once, in
the Sand-reckoner. Let us note that everyone who is mentioned is praised for his
achievements, or else through the context it becomes clear that Archimedes shares
the mathematical concerns and solicitudes of these people; and this is particularly
important if we have in mind what Reviel Netz notes about Archimedes’s being
particularly keen to follow the work of other mathematicians.** So his reference
to Aristarchus has an added significance.

To recapitulate, let us start from what Archimedes had achieved in the Sand-
reckoner. He showed that it is possible to calculate an extremely large number,
implying that is possible to construct an arbitrarily large number — for he chose
to base his calculation on a size of the universe that is arbitrary anyway. Now the
text is addressed to King Gelon and its tone is that of a work of popularization.
The method he uses is to find the specks of sand which could fill the universe. For
that, of course, he needs a finite universe — whether “small” or “large” does not
really matter, as long as it is finite. What would be more natural than to ignore
Aristarchus altogether and postulate a particularly large universe? Or take any of
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the existing estimates for finite universes? Why decide to start the story by choos-
ing a mathematically problematic expression and, then, propose a well-defined
expression in a mathematically sloppy way? One may even wonder why Archimedes
decided to choose among all the estimates for the size of the universe the only
available “infinite estimate” and decide to go through this roundabout way which
lacks mathematical rigour in order to make it finite?

One answer may be that the author of the Sand-reckoner is not Archimedes.
This is the easy way out, and not at all convincing. It is one of the reasons that led
Erchardt and Erchardt-Siebold to question the authorship of the Sand-reckoner.”
But if the authors felt that Archimedes is above such lack of economy or that he
could not have adopted such a roundabout way, why do they feel that the anony-
mous author had such an unnatural way of thinking and writing? You need not be
a mathematical genius to avoid handwaving. A conscientious mathematician has
all the prerequisites to behave ‘properly’. It may need talent to be strictly rigor-
ous, but it only needs common sense to avoid being sloppy. Alternatively, it can
be argued that Archimedes is very consciously following this particular approach
in order to underline the fact that he chooses to deal with quantities that have been
the result of calculations through this new discourse that Aristarchus must have
been the first to have elaborated. He is not interested in using the “estimates” that
have been derived as a result of rather metaphysical or muddled thinking. He is
not even interested in arbitrarily postulating himself a finite size for the universe.
It is to him much more preferable to start from an expression that is awkward for
his purposes and not easily manageable, but which is the outcome of this new way
of doing mathematics and astronomy. How justified are we in claiming that this
seemingly warped and twisted way is an indication of Archimedes’s commitment
to a particular mathematical practice? We think quite a lot.
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PRACTITIONERS OF A NEW DISCOURSE

From the above we are led to pose another question: Could it be the case that
Archimedes and Aristarchus were part of a common enterprise, wishing to establish
a new practice and sharing the conviction as to its strategic significance? Might it
have been the case that they both adhered to (creating) a particular tradition and
thus the common aims (and language) they shared was of far greater consequence
than the differences between geocentrism and heliocentrism as hypotheses to be
used for constructing mathematical theories? And might it have been the case that
the rapport between Archimedes and Aristarchus that we have noted above may
have been the expression of respect between a self-consciously great mathemati-
cian towards another of the same kind, independent of the (minor technical) dif-
ferences? We shall try to argue why an affirmative answer to these questions is
quite plausible.

Before doing so, however, we would like to note that in the period of Aristarchus
and Archimedes favourable conditions began to form for such an enterprise. We
have it from Simplicius that Sosigenes (second century A.D.) had analytically
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discussed the reasons as to what caused the model of Eudoxus (and its modifica-
tions by Callippus) progressively to lose the prestige it enjoyed.?® The observation
of the apparent brightness and/or the apparent diameter of the planets, especially
of Venus, Mars and the moon, in addition to the systematic observations of the
solar eclipses which are sometimes total and sometimes annular, led to the tenta-
tive conclusion about the change in the distances of the planets with respect to the
earth. To these difficulties were added the change of the apparent velocity of the
planets since they traverse different distances on the celestial sphere in equal times.
In fact, according to Sosigenes, Aristotle, during the last years of his life, had in
his Physical problems (which has been lost) expressed reservations concerning the
model of the concentric spheres, since, it seems, the problem of the variation of
the distances of the planets with respect to the earth could not be treated within the
framework of Eudoxus’s mathematical model and Aristotle’s cosmological views.
Sosigenes further asserts that the first doubts about the correctness of the model
of concentric spheres were due to a student of Eudoxus, Polemarchus of Cyzikus
(fourth century B.C.), who nevertheless tried to defend the model. The first person
who appears to have tried — unsuccessfully — to propose an alternative solution
was Autolycus of Pitane (c. 320 B.C.). Goldstein and Bowen consider his criticisms
as the most influential and, as a result, they note that “there is no evidence of any
adherence to homocentric models by ancient astronomers after him”.?’

Let us be reminded of some of the dates: Aristarchus c¢. 280, Archimedes c.
250, Eratosthenes c. 230, Apollonius c. 200, Seleucus c¢. 180, Hipparchus c. 130
B.C. These men form a continuity without any large gaps among themselves and,
hence, what each knows of what someone before him claimed or did is quite reli-
able. It is, furthermore, the period that starts right after the Elements of Euclid.
There has already been a systemization of the skies. There appear mathematicians
who, having already mastered Euclidean geometry, attempt to approach the various
problems by trying to devise and incorporate quantitative-arithmetical treatments
into the geometry. It appears to be a period when mathematicians venture to draw
up the framework for the application of Euclidean geometry. One way was the use
of observationally measured quantities in order to calculate other astronomical
quantities and proceed to the first quantitative models of the cosmos. Eudoxus’s
and Callippus’s spheres were ingenious constructions, yet unable to respond to the
quantitative needs of the new period. The first such work we know that is a sample
of a quantitative model is Aristarchus’s On the sizes and distances of the sun and
moon. Itis a treatise where distances and sizes are shown to be derivable as a result
of geometrical methods and astronomical observations.

During this early Hellenistic period many strategies are framed and suggested.
From earlier times, as is amply attested by Heraclides’s assertions, there is the gradual
emergence of the autonomy of the proposed hypotheses with respect to their physi-
cal meaning, if their implications could provide an additional insight into the phe-
nomena. This autonomy is further entrenched in the newly formed context by the
attempts at quantification. And hypotheses are legitimized by their effectiveness in the
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enterprise of quantification, whereas their questionable ontological implications do
not necessarily undermine them. Furthermore, all the men we have mentioned are
in geographical locations far removed from Athens, and so Aristotle’s philosophi-
cal dominance may not have been as intense. It is also the period when Aristotle’s
successors at the Lyceum are rather critical of many aspects of Aristotelianism,
and Aristarchus was the student of Strato — perhaps the most scathing critic of
Aristotle before the Stoics.

So we are speaking of a period where the task of further quantification and
arithmetization of geometry is gradually becoming one of the salient character-
istics of mathematics. Greek geometry up to Euclid’s time was not arithmetized
to any remarkable extent. The issues concerning the notion of arithmetization in
ancient Greek mathematics are particularly intriguing and rather intricate. David
Fowler has systematically studied these issues, especially for the mathematics of
the pre-Hellenistic period, and his analysis has led him to the conclusion that arith-
metized mathematics considered, in effect, as the manipulation of fractions, were
not developed before the second century B.C. and, significantly, cannot be found in
the works of Archimedes. Our emphasis on the beginnings of a style inaugurated
by Aristarchus and Archimedes and based on quantification and arithmetization of
geometry, is by no means an alternative to Fowler’s conclusions, but some comments
may be useful. Firstly, the transition from the non-arithmetized to arithmetized
mathematics could have not been a well-defined and abrupt transition either in
intellectual terms or in terms of the time period when this new mathematical culture
appeared. It is certainly the case that the period we are examining displays a host of
particularities characteristic of such transition periods. Secondly, although Fowler
considers Aristarchus’s On the sizes and distances to be an “excellent illustration
of what I have called ‘non-arithmetized’ mathematics”, he finds in the same treatise
“two mild exceptions to the statement I made”.?® Another exception, according to
Fowler, is Archimedes’s On the measurement of a circle. It is such fluctuations in
style or ambivalent attitudes concerning the commitment to a particular way of
dealing with ratios that are quite indicative of the transition period. Thirdly, if in
Aristarchus’s treatise we find evidence of those “techniques” whose further elabo-
ration will, eventually, lead to the emergence of trigonometry, then it may not be
surprising to find statements and approximations expressing differentiations from
the dominant problématique of the treatise concerning the possible manipulation
of ratios. Thus, the study of Aristarchus’s On the sizes and distances appears to
be absolutely critical in the discussion concerning the process of arithmetization,
since it may be the first text whose genre cannot be unambiguously defined. It is,
certainly, a mathematical tract, it is definitely a book of applied geometry, but,
equally significantly, it is also a text of astronomy. It is, furthermore, the case
that the issues surrounding arithmetization can be further clarified by including
the discussion of computational as well as theoretical astronomy, especially since
astronomy provides a more flexible framework of constraints when compared to
other fields of applied geometry, and, hence, permits bolder manipulations. But the
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study of astronomy in clarifying issues of arithmetization is further strengthened
by the acknowledged importance of Babylonian astronomy for the understanding
of the later mathematics, especially in the convincing arguments of Babylonian
influence in Aristarchus,” and even of Meton of the fifth century.*

The strengthening of the quantifying mathematical techniques gives for the first
time the opportunity for the construction of a new discourse: this discourse involves
mathematical modelling, and the insertion of parameters that could be measured
or calculated. The development of such an activity becomes necessarily interwo-
ven with the plurality of physical or other hypotheses. As in all cases the issue of
the legitimacy of such an enterprise needs time and the training of persons who
would adopt the new practice. Above all, the establishment of such a new culture
needs persuasiveness; it needs social consent and concurrence. Underlining one
particular conclusion of Reviel Netz, its pioneers must have relied less on proofs
than on rhetoric.>! And, if we judge by the names of the people involved in this
period of less than 150 years, the results are most impressive. But there is an addi-
tional aspect worth noting. It is the question of the varying character of the specific
demands we have from theories and models. The metamorphoses of our demands
are in effect the changing relationship among the hypotheses, the mathematical
constructs and the observed quantities. This changing relationship is reflected in
the answers to questions like: How real are the mathematics being used? How close
to reality are the mechanisms suggested by the proposed models? Which are the
observables with which the calculations will have to agree? What, in fact, is meant
by agreement with observations? How close should the agreement be in order to be
considered as corroborating evidence? Though these are questions that have been
raised throughout the ages, neither their relative significance for theory building
nor the answers being formulated in one period could be considered as valid in
another. This means that modes for the explanation of the phenomena have gone
through deep changes themselves.

Surely what is extant from Aristarchus and what we learn about his heliocentrism
from Archimedes, in addition to how Archimedes uses this hypothesis, was not the
development of methods akin to quantitative predictions concerning the planetary
motions. Aristarchus and Archimedes tried to quantify parameters of the cosmos:
the distance of the moon, the distance of the sun, the sizes of the earth, the sun
and the moon, and so on. The new program they were inaugurating appears to
be a metric one for the cosmos and not a program preoccupied with (predictive)
planetary astronomy. And it appears that their methods could not, in any discern-
ible way, be adapted to the needs of such a predictive astronomy. Such an agenda
would become strongly entrenched with Hipparchus whereby Greek astronomy
appears to have assimilated the Babylonian culture of quantitatively predicting
planetary positions as a function of time.**

In this period, then, a new culture is being formed concerning the construction
of (astronomical) theories, which, however, is not unaffected by an already exist-
ing culture of observations that itself is being influenced by this new culture. It
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should be emphasized that the rise of such an enterprise of quantification has not
been independent of changes occurring in what was being measured. Starting from
plain qualitative observations of phenomena, astronomers proceeded initially to
the measurement of apparent diameters, continued to the determination of relative
distances and, finally, to gauging planetary motions. Hence, there was first a kind
of positional astronomy, in other words, the measurement of (relative) magnitudes
and brightness. Then there came the measurements of the distances of the moon,
sun, the cosmos and the sky. Aristarchus and Archimedes were fully involved in
these. By the time of Hipparchus, however, we have the measurements of orbits
and velocities, in ways that are more understandable in terms of dynamics.

rZ002HisSC,-. 407 “147C!

PHYSICISTS VERSUS ASTRONOMERS

There are two additional considerations that provide further evidence concerning
this new culture. The first is based on a particularly revealing passage of Geminus,
the other on the characteristics of the work of the mathematicians who lived in
this period and which frame the constitutive features of the new discourse.

Geminus (first century A.D.) in a famous passage of his summary of the Mete-
orologica of Posidonius, quoted by Simplicius through Alexander of Aphrodisias,
writes:

As it [astronomy] is connected with the investigation of quantity, size, and
quality of form or shape, it naturally stood in need, in this way, of arithmetic
and geometry. The things, then, of which alone astronomy claims to give an
account, it is able to establish by means of arithmetic and geometry. Now in
many cases the astronomer and the physicist will propose to prove the same
point, e.g., that the sun is of great size or that the earth is spherical, but they
will not proceed by the same road. The physicist will prove each fact by con-
siderations of essence or substance, of force, of its being better that things
should be as they are, or of coming into being and change; the astronomer
will prove them by the properties of figures or magnitudes, or by the amount
of movement and the time that is appropriate to it. Again, the physicist will in
many cases reach the cause by looking to creative force; but the astronomer,
when he proves facts from external conditions, is not qualified to judge of the
cause, as when, for instance, he declares the earth or the stars to be spheri-
cal; sometimes he does not even desire to ascertain the cause, as when he
discourses about an eclipse; at other times he invents by way of hypothesis,
and states certain expedients by the assumption of which the phenomena will
be saved.... For it is no part of the business of an astronomer to know what is
by nature suited to a position of rest, and what sort of bodies are apt to move,
but he introduces hypotheses under which some bodies remain fixed, while
others move, and then considers to which hypotheses the phenomena actually
observed in the heaven will correspond.®

The importance of this passage for the kinds and the features of the ideas that
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were formulated, has been emphasized by Dreyer.** Others have also commented
on this passage as characteristic of the different ideas that were being proposed
in ancient times. Interestingly, there is a complementary reading of this passage.
Geminus is, of course, speaking of ideas, but he is even more insistent about people
and their behaviours. Geminus is referring to two kinds of communities, he is
telling us about different audiences, and he delineates the two different cultures
of these communities. Geminus writes about the different kinds of things people
were doing. It is only because the traditional historiography of science was empha-
sizing almost exclusively the primacy of ideas over the practice of people, that
Geminus’s unambiguous and straightforward reference to people has been read as
a testimonial only to their ideas! In fact, Geminus writes about astronomers and
physicists, and it is the almost exclusive emphasis on ideas that has distracted from
the significance of this passage. And, of course, when we have communities with
different constitutive characteristics it is quite justifiable to assume that people test
out their views, they propose hypotheses which they then retract, give hints of how
they plan to deal with a particular problem, impart information they have about
what others of similar dispositions do, and, generally, try to strengthen and enhance
those characteristics that give them their individual identity compared to other
communities. The new discourse we have been referring to above and the ensuing
new practices formed the distinguishing discourse of those whom Geminus refers
to as the astronomers. Talking of communities is talking about attitudes, mentali-
ties, disputes and practices. Talking only of ideas, isolated from the practices that
they induce to those who either propose or adapt them, is talking, basically, about
their logical structure.

Let us now discuss some characteristics of such a mathematical discourse.
Aristarchus’s On the sizes and distances of the sun and moon is the first example
in history where we have — in the language of what was later developed — the
derivation of trigonometric inequalities. It is claimed that Hipparchus had com-
posed a table of chords and we have no clues that others before him had attempted
anything similar, though it may be the case that Archimedes’s Measurement of a
circle is a work indicating that either Archimedes or others may have calculated
values of chords. In any case, we witness a ‘program’ for calculating tables of cords.
According to Eutocius, Apollonius in his work under the strange title Quick-deliv-
ery, had calculated 7 to a better approximation than the one given by Archimedes,
and, thus, we cannot rule out that Apollonius may have drawn up a table of chords.
The development of such calculational techniques guarantees results of adequate
accuracy. There was, of course, no consensus as to the criteria of when a quantity
was indeed accepted as being adequately accurate. Historically the emergence of
trigonometry was the outcome of this process which involved the measurement
of chords and arcs and the determination of the numerical relationships between
sides and angles of triangles.

Another characteristic has been the development of a methodology as well
as the technology of astronomical observations. The range of accuracy of these
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observations affected to some extent the demand for accuracy in the mathematical
treatment. Archimedes in the Sand-reckoner describes an instrument for measuring
the diameter of the sun and we also know that Aristarchus had invented a kind of
a sun-dial (cxGon) the exact details of which we do not have.* Furthermore, we
know that Hipparchus had extensively used the dioptra, and Ptolemy’s spherical
astrolabe is most probably due to Hipparchus. Let us also note the great significance
of Alexandria during this period, the fact that everyone mentioned in one way or
another had visited Alexandria and spent time there, and that the Museum would
have had the most sophisticated instrumentation for observations. In addition to
all this, astronomers started making critical use of the Babylonian observations.
The mathematicians of this period, in addition to their purely mathematical works,
also composed a number of texts dealing with practical matters. Some of the better
known are Euclid’s Optics and Phaenomena, Ps-Euclid’s Catoptrics, Archimedes’s
systematic studies in hydrostatics, and Apollonius’s works in astronomy.

It is not, then, unjustified to claim that we are in a period when we discern
the establishment and formation of a particular culture for the construction of
mathematical theories/models and, hence, a culture that is not unaffected by an
already existing yet changing attitude towards observations. The emphasis on
quantification and the development of the relevant mathematical methods are
intrinsically related to further adjustments, modifications and conformations of
the measuring and observational methods. What we are discussing, however, is
not so much a matter of new techniques per se, but rather of the rise of a new
mentality, of a new attitude and, above all, of a new style of thinking and a new
discourse. Showing that it is, indeed, possible to calculate what can be measured,
and measuring what can be calculated is new mentality. Systematizing and justi-
fying what can be observed is not the same as calculating what can be measured.
Geminus’s astronomers and physicists may not have had the same aims. But,
more importantly, they did not share the same overall culture of how to deal with
nature, they had diverging views on how specifically to construct their language,
and they developed different styles and mentalities.
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CONCLUSIONS

The main argument we have tried to advance in this paper is that the formulation
of Aristarchus’s heliocentric hypothesis was one of the legitimate alternatives in
the attempts to study the cosmos, within a context formed by the new mathematical
practice of the early Hellenistic period. This new practice, whose main character-
istic was the calculation of quantities by the combined use of geometrical methods
with hypotheses whose content was provided from astronomical observations, was
not only decisive in the coming-to-be of trigonometry, but it also brought about a
culture where the grip of philosophical considerations for the description of the
cosmos appears to have been (temporarily) lessened. Interestingly, this is a pattern
that we find repeated in other instances in the history of science. There are many
cases when the ‘rules of the game’ are reflected in the hypotheses being formulated,
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and these hypotheses in their specific form and content need a legitimation which
transcends the confines of the theory or model for which they had been formulated
in the first place. Aristarchus’s heliocentrism could be better understood within
a context formed by this new mathematical discourse, which was being formed
during the early Hellenistic period and practised by a specific community of
(applied) mathematicians. A person adopting such a practice was, in the words of
Geminus, “not qualified to judge of the cause — sometimes he does not even desire
to ascertain the cause, at other times he invents by way of hypothesis, and states
certain expedients by the assumption of which the phenomena will be saved”.*
Failure to bring in these considerations in assessing Aristarchus’s heliocentrism,
led to accounts by historians of science who express an admiration for how daring
Aristarchus’s hypothesis was along with their assumption that its formulation
was almost certainly accompanied by strong reactions. Apart from the fact that
nothing in the extant sources bears witness to such a view, there is no justification
whatsoever for transplanting the mentality of the Middle Ages and the Renaissance
into the heliocentrism of Antiquity. Of course, most of the objections expressed
against heliocentrism on empirical — and perhaps philosophical — grounds during
the Middle Ages and the Renaissance, were also raised in Antiquity as well. But
it is one thing to be aware of the empirical difficulties related to the heliocentric
hypothesis and another to consider them as having the same methodological,
ideological and social status in Antiquity as they had in the later centuries after
the appropriation of Aristotelianism by Christianity.

The framework of ideas related to the motion of the earth continued to survive
for many centuries and in forms involving serious differences from the original
Pythagorean views. And these views should not have been considered as bizarre
and aberrant views of marginal interest: it appears that their opponents were not
dismissive nor were they able simply — and perhaps, easily — to dismiss them.
Condescension does not appear to have characterized the attitude of any of those
who had adopted the geocentric and geostatic view. Archimedes, it appears, was
not dismissive nor did he dismiss Aristarchus’s heliocentrism.

The mathematical treatment of astronomical problems was, of course, attempted
within a background of a number of astronomical observations of varying accuracy.
If one takes into consideration the totality of these observations, then the geocentric
and geostatic view does not appear to have indisputable advantages on astronomical
grounds over the ideas entertaining some kind of a motion for the earth. By the
middle of the third century and independent of when they were originally observed,
the following comprised the main astronomical observations known to astronomers:
the inequality of the seasons, the phases of the moon, the eclipses of the moon and
the sun, the different size of the full moon over the year, the changing luminosity
of the planets, the retrogade motion of the planets and their stations, the motion of
the sun, the solstices and the equinoxes, and the apparent diameters of the sun and
the moon. Had it been the case that astronomical observations furnished evidence
for some kind of an advantage of the geocentric and geostatic view, we may be
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sure that Aristotle would have been the first to emphasise this. Not only do we not
find such a pronouncement by Aristotle, we do not even find it in Ptolemy!

If the beginning of the early Hellenistic period provided a rather favourable
backdrop to an idiosyncratic pluralism of hypotheses concerning the motion of
the earth, by the end of this early Hellenistic period geocentrism appears to have
gained an indisputable dominance. We cannot avoid asking the question of what
happened, and progressively the geocentric view acquired a privileged status
and eventually became the dominant view. One needs to examine this question
systematically, but it is possible to speculate, at least, about the main reason for
such a development. We feel that the changes in favour of geocentrism must have
been related to some mathematical developments that facilitated the re-evaluation
of the philosophical considerations in favour of geocentrism. It is known that
Apollonius — under certain special conditions which nevertheless were quite
general for our purposes — had proved the equivalence of two mathematical
models that had been considered as totally different to each other. In one model
a body was revolving in a circle around another that was not in the centre, but at
a point away from the centre. The motion of the revolving body was regular with
respect to the geometrical centre of the circle and not with respect to the body
that was situated at the eccentric. In the other model, a body was revolving around
an epicycle whose centre was revolving along the circle whose centre was the
motionless body. Though we cannot be sure of exactly when the use of eccentrics
and epicycles started, we can be quite certain that many individuals must have
thought about these issues by the time of Apollonius. Apollonius’s proof, and
above all Hipparchus’s systematic treatment of epicyclic and eccentric motion,
eventually became something more than a successful mathematical model. It
became a powerful tool that could successfully absorb all kinds of observational
data, and hence, slowly, the model itself became an algorithm, inscribing the
traces of a new mentality of how to deal with celestial phenomena. Thus the work
of these two mathematicians further legitimized the circular and regular motion:
it provided the range of possibilities for the regular circular motion. It appeared
that the methodological directives of both the Academy and the Lyceum could
be shown to be a methodology that could actually be visualized and that gave
results that were in agreement with the observations. But let us not forget that
the methodological directives of both the Academy and the Lyceum were, at the
same time, geocentric and geostatic. Perhaps what was metaphysically appealing
became physically true.
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