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ABSTRACT

The master equation for collisional excitation of H, by H atoms is solved over a temperature range of
T = 450-45,000 K and a density range of ny = 1073-10° cm~3. Radiative transitions due to quadrupole
emission and dissociative tunneling are included explicitly. The resulting nonequilibrium steady state
populations of the (v, j) states of H, are determined and then used to calculate the rate coefficients for
ortho-para interconversion, collisional dissociation, dissociative tunneling, and cooling. The density and
temperature dependences of these rates are discussed and parameterized. Comparisons with previous

estimates are made.

Subject headings: ISM: molecules — line: formation — molecular data — molecular processes

1. INTRODUCTION

Evaluation of several fundamental processes involving
H, requires a detailed knowledge of the populations of the
vibration-rotation [(v, j)] states of the molecule; prominent
among these are prediction of the quadrupole emission
spectrum, radiative and dissociative cooling in the relax-
ation of an interstellar shock (see, e.g, Hollenbach &
McKee 1989), and heating by “quenching” of H, that is
fluorescently excited in photodissociation regions (see, e.g.,
Sternberg & Dalgarno 1989). Since the interstellar medium
is not generally in local thermodynamic equilibrium, the
relative populations of the (v, j) states of molecular H,
cannot be described adequately with the Boltzmann dis-
tribution. Instead, the competing processes that can affect
the population such as radiative emission and absorption,
and collisional excitation, deexcitation, and dissociation
must be treated explicitly. The equation that describes the
evolution of state populations is often called the master
equation (§ 2).

In this paper we use a new set of rate coefficients for
collisions of H, with H, describing both state-to-state tran-
sitions and collision-induced dissociation (CID; Mandy &
Martin 1993, 1996). The significant differences in these rate
coefficients with respect to earlier estimates based on
various more approximate calculations have been discussed
by Mandy & Martin (1993), pointing to a need for revised
cooling and CID rates. A novel feature of the new rate
coefficients is that the set is complete; examination of the
complete results has called into question the assumption
that only a few types of collisional transitions are important
(Mandy & Martin 1993). Therefore, in our master equation
calculations no restriction has been placed on the number
of (v, j) states or on the types of collisional transitions con-
necting them.

The calculations reported here, and their earlier counter-
parts, are based on finding steady state populations at a
particular temperature and density. Solution of the master
equation is also an integral part of simulations of more
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complex situations where the populations and physical con-
ditions are changing in time and/or space (e.g., interstellar
shocks and photodissociation regions), in which case the
steady state populations for the local temperature and
density sometimes might not be achieved (Lepp & Shull
1983; Chang & Martin 1991). In any case, incorporation of
the new rate coefficients directly into such calculations
should bring quantitative improvement, and the steady
state solutions at particular temperatures and densities will
provide useful insight into more complex situations.

In § 2 we discuss the details of our master equation calcu-
lation, the data used in its implementation, and the numeri-
cal method used to solve this stiff set of equations. From
fractional populations on a grid of varying density and tem-
perature, rate coefficients for ortho-para interconversion,
dissociation, and cooling are calculated, with a focus on
how they depend on density and temperature (§ 3). Analytic
expressions encapsulating these dependences are sum-
marized in the Appendix. In § 4 we conclude with a dis-
cussion that includes comparisons to earlier rate coefficient
estimates and, where possible, to laboratory experiments.

2. IMPLEMENTING THE MASTER EQUATION

The master equation provides the means to determine the
populations of all the (v, j) states of H, by considering
explicitly all processes of interest that can populate and
depopulate these states. While, in theory, it is possible to
include all processes that can affect the population of the
states, in practice only selected ones are included. In this
study we consider radiative deexcitation by quadrupole
emission, dissociative tunneling, and the collisional pro-
cesses of excitation, deexcitation, and dissociation. This
allows a straightforward comparison with the results of
earlier studies (Lepp & Shull 1983; Roberge & Dalgarno
1982; Dalgarno & Roberge 1979; Hollenbach & McKee
1979) to assess the effects of the new rate coefficients and
inclusion of all transitions among the (v, j) states.

For the collisional processes, we consider only H atoms
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as collision partners, corresponding to dilute H, in a bath of
H atoms. Interstellar formation of H, occurs on grain sur-
faces, with rate coefficient ~10717 cm3 s~ ! over a range of
gas temperatures (Hollenbach & McKee 1979; Sternberg &
Dalgarno 1989, 1995); simple two- and three-body recombi-
nation is much slower. For the interstellar warm gas condi-
tions in which we are interested H, would not be infinitely
dilute, and we find that the fractional change in the amount
of H, caused by recombination would be small on the time-
scale in which steady state fractional populations of the (v, j)
states are established. We have ignored recombination.
Nevertheless, as discussed in § 3, it is possible that inclusion
of recombination might alter both the relative populations
of highly excited (v, j) states and any derived bulk quantities
that are sensitive to these populations.

Since interstellar H, would normally be optically thin in
quadrupole lines, we have excluded reabsorption of the
quadrupole emission. We have also excluded ultraviolet
fluorescent pumping, a fundamental process in photo-
dissociation regions (Tielens & Hoilenbach 1985; Sternberg
& Dalgarno 1989). The influence of recombination and
fluorescent pumping on the rotational excitation seen via
ultraviolet absorption measurements in cold interstellar gas
is an interesting problem (see, e.g., Wagenblast & Hartquist
1989) beyond the scope of this paper.

The present calculations have relevance in assessing the
conditions in clouds in which H, is not the predominant
form of neutral hydrogen, including some chemistry in the
early universe (see, e.g., Shapiro 1992). There are situations
in which it would be desirable to consider other coilision
partners for H,, especially another H,. This would permit
an assessment of the chemistry of molecular clouds in which
H, is the dominant species. Chemical reaction networks are
sensitive to the fractional abundances of H, H,, and H* and
hence to the extent of dissociation of H,. In the case of
internal energy transfer being studied here, the behavior
with collision partner H, is expected to differ significantly
from that with H. A collision with atomic H with its open
electronic shell is more likely to promote large changes in
(v, j) in the H, target molecule than is a collision with the
closed shell H, molecule. Also the barrier to exchange is
much lower. Thus, it is anticipated that even when H, is not
infinitely dilute in H atoms and H, + H, collisions have to
be considered, H + H, collisions might still dominate
important aspects of the overall kinetics.

In our model all 348 (v, j) states of H, in its electronic
ground state are included. As displayed in Figure 1, these
consist of manifolds of j states for v = 0 to 14. Within each
manifold, quantum numbers j can range from 0 t0 ji,,,, with
the actual value of j,,, depending on the value of v (j . =
38 for v =0, j,.c = 4 for v = 14). These states include 47
that are “quasi-bound” (Blais & Truhlar 1979). A quasi-
bound diatomic molecule has an internal energy in excess of
what is required for dissociation; see, e.g., (0, 32) in Figure 1.
It is confined for a finite lifetime in this state by the rotation-
al barrier, through which tunneling can occur, leading to
spontaneous dissociation. When this lifetime is less than the
collision time, this phenomenon is sometimes referred to as
rotational predissociation. Dissociative tunneling from the
quasi-bound states can make a significant contribution to
the total dissociation rate, especially in low-density regimes
where the collisions times are large. The tunneling probabil-
ity (§ 2.2) varies strongly with the (v, j) state and can be quite
large, further increasing the stiffness of the master equation
and posing special challenges in numerical modeling.

Energy (eV)

F1G. 1., j) energy levels of the H, molecule in its ground electronic
state. The dissociation energy is indicated by the dashed line.

Let n, be the population of a (v, j) state with energy E,.
The sum of these populations is ny, and the fractional
population p, = m/ny,. Let ns,o represent the population
that has become unbound (because H, is assumed to be
infinitely dilute in H, 2n;,, does not modify the H atom
density ny). For the bound states, the master equation for
our restricted problem then has the form

o Y Aum— Y Apme+ngy Gt — Yum)
U LE>E LEc>E I#k
—T349,k Mk » 1)

where we adopt the matrix-motivated convention that sub-
script kI represents a transition to state k from state [ (i.e.,
kl = k « I). A, is a radiative transition probability (§ 2.3), y,,
is a collisional rate coefficient (§ 2.1), and 3,4 is a disso-
ciative tunneling transition probability (zero except for the
quasi-bound states; § 2.2). The availability of electronic ver-
sions of these data is described in Appendix C.
Equation (1) is supplemented by

dn
% = Y (muY3s0n + Ta0 ) . V)
1=1,348

This coupled set of 349 equations can be expressed readily
in the matrix form required by the numerical method for
solution. We wish to integrate the master equation to a
steady state, that is, until the rates of change of the fraction-
al populations of the (v, j) states are (close to) zero:

dpJdt ~0 . 3)

Note that as temperature and density increase, dny,/dt
(given by the negative of eq. [2]) increasingly departs from
zero; in this study this leads to a significant depletion of the
molecules at the highest temperature and density conditions
considered (§ 2.4).

2.1. Collisional Rate Coefficients

The only collisional processes considered in this study are
those of molecular H, interacting with H atoms. The inter-
action potential energy surface for H + H, is well known
for the ground electronic state (Liu 1973; Siegbahn &
Liu 1978; Truhlar & Horowitz 1978; Varandas et al. 1987;
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Boothroyd et al. 1991, 1996). The rate coefficients y used
here were determined from cross sections that had been
calculated with the quasi-classical trajectory (QCT) method
using the LSTH potential energy surface (se¢e Mandy &
Martin 1993 and references therein for details). Limited
comparisons of various revised surfaces and (low-energy)
cross sections based on them indicate that the LSTH calcu-
lations should be quite accurate (Mandy & Martin 1991,
1992; Keogh et al. 1992; Sun & Dalgarno 1994; Lepp,
Buch, & Daligarno 1995; Boothroyd et al. 1996).

Outcomes of H + H, collisions fall into three classes:
nonreactive, in which an inelastic collision leaves the orig-
inal H, molecule in a different (v, j) state, which must be of
the same nuclear spin parity; exchange, in which the atomic
H collision partner combines with one of the H atoms of the
target diatomic to form an new H, molecule in some (v, j)
state (among such collisions are those that change the
parity, which we refer to as ortho-para interconversion);
and dissociation, in which the molecular bond is severed
leaving three H atoms. All of these processes are included
here. Rate coefficients have been evaluated at 15 tem-
peratures between 450 and 45,000 K (about 180,000 coeffi-
cients per temperature, 120,000 exchange plus 60,000
nonreactive, which were evaluated separately in the QCT
method).

Some caution must be exercised in using the rate coeffi-
cients at the high end of this temperature range. Although
most excited electronic state potential energy surfaces for
H + H, are well separated from the ground electronic state
potential energy surface considered here, there is one that
has a conical intersection with the ground state surface for
D, geometries, the lowest of which is at 2.7 eV, about  of
the way to the dissociation limit (see Fig. 1). The possibility
that collisions are not electronically adiabatic is expected to
affect collisional cross sections at high energy, and hence
rate coefficients at higher temperatures, above ~10* K.
While this has not been explored in any detail, available
information suggests that the effect will be less than 50% for
state-to-state transitions (Blais, Truhlar, & Mead 1988; D.
Truhlar 1991, private communication). Wu & Kuppermann
(1993) have shown that quantum interference related to the
conical intersection can have a measurable (and oscillating)
effect on the cross section at total energies as low as 1.8 eV.
Although the net effect on nonreactive or reactive rate coef-
ficients has not been assessed quantitatively it is unlikely to
be large at the temperatures in which we are interested (A.
Kuppermann 1995, private communication).

There are other unmodeled complications that could
arise in a high-temperature gas, including electronic excita-
tion of the H collision partner, and increasing fractional
ionization in the ambient gas, which would introduce elec-
trons and protons as other collision partners. It can also be
noted that at high temperatures collisional dissociation is
rapid and H, is short-lived. When we carried out calcu-
lations at 45,000 K, we found H, largely destroyed by the
time stéady state populations were achieved (§ 2.4). Further-
more, because of rapid dissociative cooling, a simulation at
a constant high temperature might not be relevant in many
astrophysical applications.

Caution must also be exercised at the low end of the
temperature range because the rate coefficients become
increasingly sensitive to the energy dependence of the cross
section near threshold. The statistical noise in the QCT
cross sections is largest when the cross sections are small (as
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they usually are near the threshold for a transition). Also
the QCT approach, by its very nature, does not include
quantum effects that are expected to become increasingly
important at lower T. To gauge the magnitude of this effect,
where available the quantum cross sections for reactive
transitions between (0, 0) and a few of the lower energy (v, j)
states were substituted in the calculation of the rate coeffi-
cients (Mandy & Martin 1993). At 1000 K the changes in
the values of the rate coefficients caused by the substitution
of the quantum results amounted to 25% rms and 53%
maximum; at 10,000 K these decreased to 8% and 14%,
respectively. As mentioned, master equation solutions were
obtained for T as low as 450 K.

For physically meaningful results from the master equa-
tion, the collisional rate coefficients used must obey detailed
balance (microscopic reversibility; Mandy & Martin 1993)
to numerical accuracy. Calculating the upward coefficient
v (E; > E,) to machine accuracy from the downward coeffi-
cient y,, using detailed balance ensures that this is the case.

2.2. Dissociative Tunneling

The (v, j) states that are quasi-bound (or rotationally
predissociated) have a finite probability of tunneling
through the rotational barrier to form an unbound disso-
ciated state. The dissociative tunneling transition probabil-
ities have been found from

T340k = thrk > “)

where I, is the energy width of state k (measured here in
cm™?) as calculated by LeRoy & Bernstein (1971) and Sch-
wartz & LeRoy (1987).

It is possible to classify the quasi-bound (v, j) states into
two broad groups based on the magnitude of the disso-
ciative tunneling transition probability relative to that for
radiative deexcitation or collision. For most quasi-bound
states, dissociative tunneling is the most probable of the
processes unless the density is very high (we have included
the collisional [y,,] coefficients in the calculation for all
quasi-bound states, although their role is significant only at
higher densities). In the interstellar medium and in some
laboratory conditions, a molecule excited to one of these
(v, j) states is effectively dissociated.

The second group is composed of the few states with high
Jj and internal energies only slightly above the dissociation
energy. These states have much smaller tunneling transition
probabilities that are comparable to or smaller than the
Einstein A-values and much smaller than the probability of
collisional energy transfer at the densities of interest, and so
to avoid an artificial buildup of their populations it is neces-
sary to treat them in the same manner as the classically
bound states by including their radiative transition prob-
abilities (see § 2.3). The six (v, j) states so treated were (0, 32),
(0, 33),(1, 31), (2, 29), (4, 26), and (5, 24).

2.3. Radiative Transitions

Radiative emission from a (v, j) state of H, obeys the
quadrupole selection rule: Aj = 0, +2, except in the case of
j =0, where only Aj =2 is allowed. Thus, radiative tran-
sitions cannot lead to ortho-para interconversion. There is
no restriction on the change in vibrational quantum
number save through the requirement that the energy of the
final state be below that of the emitting state. We used the
Ay, of Turner, Kirby-Docken, & Dalgarno (1977), supple-
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mented for some higher states by further calculations (A.
Daigarno 1982, private communication). Values were
required for several (v, j) states with internal energy close to
the dissociation limit, namely (0, 31), (3, 27), and the six
boundlike quasi-bound states mentioned above (§ 2.2).
Their A4,;-values were extrapolated from adjacent smoothly
behaved values.

2.4. Numerical Solution

This system of first-order differential equations is stiff in
that the transition probabilities involved span many orders
of magnitude as do the populations of the (v, j) states. The
routine DO2EJF in the NAG Fortran Library (Fox & Wilk-
inson 1990) provides an appropriate method to solve this
system of equations. This routine uses a variable-order,
variable-step method implementing the backward differen-
tiation formulae. The starting conditions are unimportant
to the steady state result. In practice, we initialized the
populations to the corresponding Boltzmann populations if
both ny > 100 cm™3 and T > 10,000 K; otherwise we
populated only the lowest ortho and para states at 0.75 and
0.25, respectively. The integration proceeds until a user-
specified function of the solution is zero. The function we
used takes the maximum of the fractional changes in the
non—quasi-bound populations after each time step and
divides it by the time step (see eq. [3]). A steady state is
deemed to have been reached when this maximum is below
some specified value and the integration is terminated.
Sensitivity tests showed that by using this criterion, and for
the integration tolerances chosen, the steady state popu-
lations of the states could normally be determined to better
than four significant figures.

However, at higher temperatures and densities it was
necessary to adopt another criterion to stop the integration.
Under these physical conditions the probability of disso-
ciation of H, was sufficiently high that our solution without
recombination could approach p;,, = 1 without the above
precise termination criterion being met; negative values for
the populations of some of the 348 states could then occur
as numerical artifacts. Instead, the integration was stopped
when 99% of the initial H, had dissociated. For the range
(grid) of physical conditions studied (§ 2.4.1), this affected
only the 45000 K model at ny =10 cm™3, those for
T > 20,000 K at ny = 103 cm 2 and those for T > 10,000
K at ny > 10° cm 3. In these cases the solutions were
examined to assess how closely they appeared to be approx-
imating steady state conditions and it was found that the
fractional populations were converged to better than 0.5%.

Since the steady state populations of the excited states for
all models were determined to better than 0.5%, the cooling,
dissociation and ortho-para interconversion rates that were
calculated directly from these populations have similar (or
better) accuracy. Thus, our solution of the master equation
did not add significantly to the uncertainties already
implicit in the calculation due to the uncertainties in the
collisional rate coefficients, the dissociative tunneling prob-
abilities, or the radiative emission probabilities.

The large values of some of the dissociative tunneling
probabilities contributed significantly to the stiffness of the
system. To facilitate the numerical solution it was possible
to cap their values at a factor 10° times larger than the
greater of the A-value or the collisional probability (at that
density) and still not affect significantly the solution. A con-
sequence is that the quasi-bound states with large (true)
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values of the probability for dissociative tunneling are over-
populated relative to the true steady state solutions. The
dissociative tunneling rate is the product of the smaller
adopted coefficients and the artificially larger populations
of the quasi-bound states. Thus, we were able to reproduce
the true rate in our calculations; in each of the test cases we
considered agreement was significantly better than the 0.5%
from our worst-case convergence. Radiative cooling or CID
from these overpopulated states was insufficient to affect
populations of other states; since the affected quasi-bound
states are still underpopulated relative to the other excited
states, there is no detrimental effect on the assessment
of cooling or dissociation from the whole system
(contributions to these global quantities are again much less
than 0.5%).

2.4.1. Range of Physical Conditions

The range of physical conditions that can be considered is
constrained by the validity of the collisional rate coefficients
(450-45,000 K; see § 2.1) and, practically, by whether the
solution of the master equation converges to a steady state.
Both of these factors serve to restrict the temperature range,
but are compatible. We found that below 450 K a steady
state could not be attained within a reasonable amount of
computer time. Above 45,000 K solutions indicate that the
molecular dissociation is virtually complete before the frac-
tional populations of the (v, j) states come to within 0.5% of
the steady state.

The range of densities was chosen to be ny = 1073-10°
cm~3. We found that this range adequately spanned the
regime where we wished to assess the competing effects of
collisional processes and radiative decay. Outside this
range, steady state populations did not change significantly
with density (unless the density becomes extremely high,

'~10%° cm 3 and greater; there the collisional rates become

comparable to the rate of dissociative tunneling, and there
is again a strong dependence of populations on the density).

3. RESULTS

Steady state populations were found for a grid of physical
conditions: 15 temperatures from 450 K to 45,000 K (450,
600, 780, 1000, 1400, 2000, 3000, 4500, etc.), and 13 densities
spanning the range ny = 1073-10° cm~? at order-of-mag-
nitude intervals. A selection of the results from the total of
195 simulations will be presented, making use of graphical
displays to support our qualitative interpretation and dis-
cussion. The fundamental data are the population distribu-
tions that are described in the first subsection. We are also
especially interested in such bulk quantities as the rates of
dissociation, cooling, and ortho-para interconversion.
These are calculated once the populations are determined.
Observing how the population distribution changes with
density and temperature is essential to understanding the
behavior of the bulk quantities. To provide quantitative
results, these rates have been parameterized using inter-
polating functions of temperature and density (see
Appendix).

3.1. The Populations

Figure 2 shows the energy levels of Figure 1 contoured as
functions of v and j. This basic behavior serves as back-
ground and orientation for the displays of (v, j) population
distributions, which will be contoured in similar diagrams.
States to the lower left are more tightly bound and so will
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FIG. 2.—(1, j) energy levels of the H, molecule contoured as functions of
v and j. Negative energies (bound states) are represented by the dashed
lines; the 14 contours correspond to the energies of 14 excited (v, 0) states.
The first solid contour corresponds to the dissociation energy. The other
solid contours are for positive energies for a few of the many quasi-bound
states: (0, 32), (2, 30), (1, 32), (0, 34), (1, 34).

have larger populations. Because of the roughly three to
one ratio of ortho to para hydrogen (§ 3.2), it is necessary to
plot their distributions separately, but other than this
scaling they are very similar in shape.

At high density, where collisional energy transfer is the
dominant process, the populations are closest to the Bolt-
zmann distribution. This is illustrated in Figure 3a for the
steady state at T = 2000 K and ny = 10° cm~>. The con-
tours of the distribution roughly parallel the energy con-
tours (Fig. 2), except at low j where the states have low
statistical weight. However, the distribution is not quite
Boltzmann. As a result of dissociative tunneling, most
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T
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quasi-bound states are highly depleted; note the normal
behavior of the ortho boundlike quasi-bound states (0, 33),
(1, 31), and (2, 29), which have low tunneling rates. Further-
more, CID depletes, less dramatically, those bound states
near the dissociation limit, especially at high v and low j,
where the CID rate coefficients are largest (see below). Note
that in our simulations neither mode of depletion is com-
pensated by recombination. Because these relative
(fractional) populations within H, sum to unity there is a
corresponding slight overpopulation of the lowest energy (v,
j) states; this is most pronounced at high temperature. A
consequence of the underpopulation of the highest states is
that the average internal vibrational-rotational energy of
the H, is also less than the thermal equilibrium value kT for
each mode. The rotational mode can be substantially
excited toward this thermal equilibrium value by 1000 K,
but the vibrational mode is never fully excited, even at the
higher values of T (see also Chang & Martin 1991, Fig. 6).

At low density, where the probability of collision is suffi-
ciently low that radiative emission is the dominant process,
any collisionally excited H, molecule is likely to lose all
internal energy (in excess of the zero point energy) by a
radiative .cascade before undergoing another collision.
Thus, the populations are far from Boltzmann, mostly occu-
pying the two ground (v, j) states (0, 0) and (0, 1). In the
slightly excited (v, j) states there are trace populations that
scale linearly with density; the range of these excited states
becomes more extensive at higher temperatures.

At densities intermediate between these extremes, there is
a competition between radiative deexcitation and col-
lisional redistribution. Figure 3b shows the population dis-
tribution for T = 2000 K and ny = 10° cm™3. It has the
same characteristic shape as Figure 3q, but the excited-state
populations are very much depressed (hence the contours
are more closely spaced). For example the contours 10~*
and 1072 of Figure 3a more or less overlie the contours
1079 and 1072 in Figure 3b. Comparison of the horizontal
spacing of the contours at fixed v in Figure 3b relative to

15

] 5 10 15 20 25 30 35 40
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F1G. 3.—(a) Contour plot of the steady state fractional populations of (v, j) states of H, at T = 2000 K and ny; = 10° cm 3. Contours are at 1 dex intervals,
decreasing from a value 10™! in the lower left. Steep falloff in populations near the dissociation limit arises from collision-induced dissociation and, for
quasi-bound states, from dissociative tunneling as well. (b) Same as (a), but for n; = 10 cm 3. The effect of the cap on the tunneling rate (§ 2.4) can be seen in

the overpopulations of the highest energy quasi-bound states.
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F1G. 4—(a) Contour plot of the probabilities of (v, j) states depopu-
lating by quadrupole radiative emission. The first set of 13 contours are at
0.1 dex intervals, decreasing from a value 5 x 1076 s for the contour
encircling the maximum at (0, 27) and the local maximum at (9, 3) [the
contour passing near (5, 15) dividing these two maxima is at a value
2.5 x 107 s™1]. Thereafter, in the lower left as the probabilities continue
to decrease, at contour level — 6.5 dex the contour interval increases to 0.5
dex. (b) Contour plot of the rate coefficient for (v, j) states depopulating by
collisional energy transfer and dissociation at T = 2000 K. Contours are at
0.1 dex intervals increasing from a value 5 x 107 !! cm3 s™! at the lower
left to 3.2 x 1072 cm? s™! at the upper left. (c) Contour plot of critical
density of (v, j) states at T = 2000 K, formed from the ratio of the values in
(a) and (b) (eq. [5]). The first 14 contours are at 0.1 dex intervals decreasing
away from a value 6.3 x 10° cm ™3 for the closed contour around (2, 5).
Subsequently, in the lower left at contour level 2.5 dex the contour interval
increases to 0.5 dex. Along v = 0 the critical density rises rapidly from a
value 6.2 x 107! cm™3 for (0, 2) to a maximum of 1.2 x 10* cm ™3 for
©,17).

Figure 3a shows that the ratios of populations within a
given v manifold are not generally equal to the Boltzmann
ratios (Lepp & Shull 1983); particularly for the higher j
states, which are at increasingly higher energies (Fig. 1), the
populations are relatively depressed.

Figure 4 illustrates how there is a (temperature-depen-
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dent) “ critical density ” ny , for each particular (v, j) state k,
at which the probability of depopulation by radiative emis-
sion (Fig. 4a; no T dependence) is equalled by that from
collisional energy transfer (combined rate coefficients con-
toured in Fig. 4b for 2000 K):

Ny, k Z Y = Z Ay ®)
1=1,349 LEx>E;

(or more compactly ny , I'y = 4;). Thus, the ratio of the
values in Figures 4a (A4,) and 4b (I';) gives the critical
density shown in Figure 4c¢ (we ignore dissociative tunneling
for the quasi-bound states). In the derived (bulk) quantities
to be discussed below, behavior related to critical density is
exhibited as a region of sharp change in the dependence on
density. Since individual states have different critical den-
sities, and since the population distributions (as well as the
critical densities) depend on temperature, the position and
sharpness of this transition from low- to high-density
asymptotic behavior exhibits temperature dependence.

The uncertain contribution of recombination to the exci-
tation of H, is often excluded (see, e.g., Burton, Hollenbach,
& Tielens 1990), as we have done here. The process of H,
formation on grain surfaces is subject to considerable
uncertainty (Sternberg & Dalgarno 1989, 1995), with the
rate coefficient estimated to be R ~ 10717 cm3 s ! for the
conditions of interest here. While the newly recombined H,
will be internally excited, various conflicting suggestions
have been made as to the details of this excitation distribu-
tion. For example, Sternberg & Dalgarno (1989) adopt the
simple assumptions made by Black & Dalgarno (1976) that
there is equipartition with one-third of the binding energy
available for H, internal excitation and that this energy is
statistically distributed. With these assumptions, the
branching coefficients §, into state k follow a Boltzmann
distribution at about 17,000 K; for (ortho) states within
about 1 eV of the dissociation limit B, ~3 x 1073
(relatively higher for high j at the same energy) leading to
entry rate coefficients R, ~ 3 x 1072° cm3 s~ !, On the
other hand, Wagenblast & Hartquist (1989) adopt a model
advanced by Duley & Williams (1986) in which there is very
little rotational excitation (j is O or 1) and v is intermediate
(~7); these states are about 1.5 eV or more below the disso-
ciation limit (Fig. 1) and might have B, as large as 1071
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Clearly, there is a lot of parameter space to explore to see
what effects might arise. This is beyond the scope of this
paper, but we can make an estimate to illustrate the poten-
tial importance.

The rate coefficient due to recombination, Rf;, which
affects dn,/dt can be compared directly to the exit rate coef-
ficient from state k due to collisions and radiative emission,
(ny,/m)pi( T + Ai/ny), which for steady state values of p,
balances the entry rate coefficient. Consider states about 1
eV below the dissociation limit, for which 4, ~ 3 x 1076
s~ ! (Fig. 4a) and T, ~ 107° cm® s~! at 2000 K (Fig. 4b).
Above the critical density (~3 x 10 cm™~3; Fig. 4¢), p, ~
10~° (Fig. 3a). In the case used by Sternberg & Dalgarno,
we then compare Rf~3x1072° cm® s™! to
10~ *¥(ny,/ny) cm® s, indicating that recombination con-
tributions would be competitive if (ny,/ny) < 3 x 1072 At
lower densities like 10° ¢cm™3, A4, comes into play, p,
becomes smaller (~10712 in Fig. 3b) and the limit on
(ny,/ny) rises somewhat (note that A, p,/ny, stabilizes at low
densities).

Qualititatively, the states likely to be most affected are
those with the lowest populations (high-energy states, low-
temperature and/or low-density conditions); their total
population would be negligible compared to the population
of lower energy states. Thus, we expect that only those
quantities that depend sensitively on the populations of
these highly excited states might be affected by recombi-
nation. These would include line emission from these states
(not addressed here) and dissociation (§§ 3.3 and 4.2), but
not ortho-para interconversion (§ 3.2) or radiative cooling
@§ 3.4).

There are of course other complications that could be
considered too. When recombination is in a steady state
with ultraviolet photodestruction of H,, the accompanying
fluorescent excitation of molecules escaping photo-
destruction can also affect the populations of the high-lying
energy states. In a plasma, production of excited H, by
associative detachment of H + H™ might become inter-
esting too (Black, Porter, & Dalgarno 1981). Thus, model
assumptions should be examined critically before the results
are widely applied: caveat emptor.

3.2. Ortho-Para Interconversion

Nuclear spin considerations determine whether a mol-
ecule of H, is in an ortho or para state. Para H, has anti-
paraliel nuclear spins, which restricts the rotational
quantum number j to even values. Parallel nuclear spins are
characteristic of ortho H, with odd values of j. These states
have statistical weight g = (2s + 1)2j + 1), where the
nuclear spin factor s is 0 for para and 1 ortho. In our model-
ing of H, infinitely dilute in H, ortho-para interconversion
occurs only as the result of the exchange reaction. Quadru-
pole emission and nonreactive energy transfer do not
change the nuclear spin and thus can change j by only even
values.

The rate coefficient for exchange from ortho to para
hydrogen, y,,,, is simply obtained:

Yoo= 2, 2 YwPk- ©6)

k:ortho Il:para
A similar equation holds for para to ortho conversion and
for steady state populations y,, = 7,,. Independent evalu-

ation of the two rate coefficients (including for Boltzmann
populations) provides useful numerical checks. In Figure 5

COLLISIONAL EXCITATION AND DISSOCIATION OF H, 271

we show loci of y,, as a function of density ny for fixed
values of temperature T. Changes in the bulk quantity y,,
reflect changes in the steady state populations for the differ-
ent physical conditions. The timescale for conversion is
1/(ypo ). We found that these population-weighted values
were dominated by the contributions from the lower (v, j)
states; furthermore, there is only a small change as the
populations change over a wide range. Because recombi-
nation affects primarily the populations of the upper states,
we expect the exclusion of this process from our model not
to affect this bulk rate coefficient for ortho-para conversion.

In the low-density limit, any collisional excitation (or
exchange) is followed by radiative emission, which does not
contribute (further) to the exchange reaction. The conver-
sion rate coefficients y,, and y,, are simply the sums of the
state-to-state exchange rates from (0, 0) and (0, 1), respec-
tively (see eq. [7]). Classically a total energy of 0.424 eV
(0.155 eV relative to the zero point) is the minimum
required for exchange, although quantum mechanically
tunneling though this barrier can occur. This energetic
barrier is reflected in the steep temperature dependence at
lower temperatures. The temperature dependence weakens
at higher temperatures as transitions to higher energy states
become accessible.

At higher densities excited states can be significantly
populated (depending on T) and so come into play in the
conversion rate coefficient. The rate coefficients from the
excited states tend to be higher with increasing energy of the
state, accounting for the increase in y,, with density (at a
given T). This is most pronounced for higher temperatures
where the excited-state populations become most signifi-
cant. However, the higher density y,,’s are not monotonic
with temperature above 14,000 K because of the increased
importance of dissociation from the excited states near the
dissociation limit that depletes their populations. For the
same reason, these high-density (ny = 10° cm™?) “limiting”
rate coefficients are depressed relative to those obtained
assuming Boltzmann populations.

3.2.1. The Density Dependence of the Ortho to Para Ratio

In Figure 6 we consider the ratio of the population of
ortho states to that of para states. If thermal equilibrium
were reached (at least for the states most relevant to the
conversion), then at high temperatures (many excited states
accessible) a ratio near 3 would be expected on the basis of
nuclear spin considerations. For Boltzmann populations at
or above 450 K, this is indeed the case, and this ratio is
approached in our high-density limiting cases too. At lower
temperatures, the ratio decreases because of the diminishing
Boltzmann factor for state (0, 1) with respect to (0, 0) in the
partition function (the energy difference corresponds to
170.5 K).

As the density decreases, the populations deviate further
from the Boltzmann distribution and in the limit only states
(0, 0) and (0, 1) are populated. This limit is reached by
ny = 1072 cm ™3 except for the highest temperatures in our
grid; at 45,000 K po., =1 x 1072 and po 3 =2 x 107,
Without going through the full master equation numerical
solution (and hence as a check), the fractional populations
of the two ground states in this limit are determined by
solving

Z Yk,(0,0)P0,0) = Z Yk,0,1)P(0,1)

k:ortho k:para

and pg,o +Po,ny=1. (7)
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FiG. 5—Steady state rate coefficient 7, for conversion of ortho to para H, (and vice versa) as a function of collision partner density ny. Values for
constant T are joined by curves whose analytic form is given in the Appendix. Beginning at the lower part of the diagram, the 15 values in the T grid are 450K,
600 K, 780 K, 1000 K, 1400 K, 2000 K, 3000 K, 4500 K, 6000 K, 7800 K, 10,000 K, 14,000 K, 20,000 K, 30,000 K, and 45,000 K ; the systematic order of
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FiG. 6—Same as Fig. 5 but for ratio of ortho to para H, (no analytic fit has been performed). Note that T grid begins with 450 K at the upper part of the
diagram.
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The left-hand equation evaluates the steady state condition
Yop = Ypo iN this low-density limit. The low-density ortho to
para ratio is now simply po 1)/P(o.0)-

In the additional limit of very low temperature, it is often
assumed that only the transitions between k = (0, 1) and
(0, 0), respectively, are significant in equation (7). Then by
detailed balance for the state-to-state 7 1) 0,0y and its
inverse counterpart the ratio p,1)/P0,0) (Whence the ortho
to para ratio) would be 9 exp (—170.5/T) (Mandy &
Martin 1993). Note that at low temperature this low-density
approximation would give precisely the same value as the
thermal equilibrium ratio (the factor 9 is misprinted as 3 in
eq. [2] of Flower & Watt 1984.) At 450 K this approx-
imation would give a ratio 6.2. But the energy of state (0, 2)
relative to (0, 1) is equivalent to 339.5 K and so this low-
temperature limit is not reached on our grid (450 K and
above). Because of the accessibility of the (0, 2) state (and
others) the ratio is lower than the simple low-temperature
estimate, though still typically larger than 3. With increas-
ing temperature the low-density ortho to para ratio
becomes cioser to 3 (and even slightly lower) as more states
(in the above sums) become accessible to exchange tran-
sitions from the ground states.

3.3. Dissociation

In our master equation solution, H, dissociates as the
result of collisions to the continuum of classically unbound
states (CID), or through dissociative tunneling from quasi-
bound states. The total dissociation rate coefficient for the
dissociation of H,, y,, is

Ya = Ycip + Yat
= Y Yaaouli+ Y
=1,348

k k:quasi-bound

349,k Pi/My - ®

Figures 7 and 8 show y¢p and y,,, respectively, as functions
of ny for various T. The timescale for dissociation is
1/(yany)-

In the low-density limit, y¢p corresponds to dissociation
directly from (0, 0) and (0, 1), the only populated states.
Therefore, an independent way of calculating yp without
integrating the master equation (and to check it) is

Ycip = Y349,0,0)P(0,0) T V349,(0,1) P(0,1) » 9

where p o) and p, ;) are from equation (7). Similarly,
since dissociative tunneling arisés from quasi-bound states
excited only from the ground states

Yar = Z

k:quasi-bound

(1 = D)L Yx,00,0) P0,0) T+ Vk,0,1)Pc0,1)] 5

(10)

where b, = Y 1.o> 5, Au/(Fas0.k + Y5> 5 Au) is the fraction
of quasi-bound molecules in state k that are stabilized by
the quadrupole emission. Except for the six states men-
tioned in § 2.2, dissociative tunneling is much more prob-
able than quadrupole emission (branching factor b, = 0),
but as a refinement to the treatment in Dove & Mandy
(19864) it is important to allow for this branching to match
the master equation results precisely. Equation (10) shows
directly that in this low-density limit y,, is independent of ny
(see Fig. 8); this can be reconciled with equation (8) by
noting that the quasi-bound populations p, scale as ny in
this limit. At low temperatures, since slightly less energy is
required to reach a quasi-bound state (which then under-

goes dissociative tunneling) than for direct CID, y4, > 7aip-
This inequality is reversed at grid temperature 4500 K and
above.

With increasing density, a significant part of the disso-
ciation takes place via “ladder climbing,” a sequence of
inelastic collisions in which a molecule is first excited, with
interconversion of vibrational and rotational energy, and
then dissociated by CID or transfer to a quasi-bound state
followed by dissociative tunneling. In the master equation
solution, this is represented by the increased, and now sig-
nificant, steady state populations p, of the excited states
from which dissociation by either route can take place (eq.
[8D).

Figure 9a shows the coefficients y349 , state by state for
the intermediate temperature 2000 K. Note the huge
increase relative to the rate coefficient from the ground
state; because of this yp, increases with density for fixed T.
Internal energy is more effective in promoting dissociation
than is the same amount of translational energy (Dove &
Mandy 1986b), with a slight preference for the vibrational
form. The latter can be seen by comparing the shapes of the
contours in Figure 9a with those for constant internal
energy in Figure 2: for a given internal energy, y349 , is
higher for higher v and lower j.

The populations p, for T = 2000 K and ny = 10* cm 3
have been shown in Figure 3b; they decrease rapidly toward
the continuum, opposite to the trend for y;4 , seen in
Figure 9a. The population-weighted contribution to y¢p,
Y349,k Pi» is contoured in Figure 9b. For low density, all of
the CID dissociation is from the ground state(s). The value
10% cm ™3 is a transitional density where the highly excited
classically bound states near the dissociation limit begin to
dominate; this dominance is more pronounced with
increasing density as the excited-state populations increase
further. The increase of yqp with density can be seen in
Figure 7, with the characteristic “ critical density ” behavior.
The increase levels off at ny ~ 10% cm ™3 as the classically
bound populations become collisionally dominated and
stabilize.

Figure 8 shows that vy, also increases with density
through a critical region and then also reaches a plateau.
This plateau can be reconciled with equation (8) by recalling
that the classically bound states from which the quasi-
bound states are being populated have been stabilized;
thus, the quasi-bound populations p, scale as ny just as in
the low-density limit. Except in the limit of very high
density where the quasi-bound states can be thermalized
(well beyond our grid, which ends at ny = 10° cm™3; see
§ 4.2.2), dissociative tunneling from these states is much
more probable than CID.

Also included (for the quasi-bound states) in the quantity
contoured in Figure 9b is 7349, Pi/ny, the contribution to
y4.- CID is negligible from the quasi-bound states allowing
an unambiguous display of the dissociative tunneling,
which is seen to be very relevant; thus, y4 > 7yqp for
T = 2000 K and ny = 10° cm 2 as already seen for all ny
from Figures 7 and 8. Individual quasi-bound states tend to
make comparable contributions to y,, despite vastly differ-
ent populations, since those quasi-bound states with high
tunneling probabilities have low steady state populations
and conversely. It is more a matter of how quickly they are
populated by collision from the lower lying bound states; as
seen in Figure 9b, the maximum contribution is from (0, 33)
and other low-lying quasi-bound states like (7, 21), which
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FiG. 9.—a) Contour plot of the CID rate coefficient y,,, , (for ortho states of H,) at T = 2000 K. Contours are at 0.5 dex intervals, decreasing from a
value 107% cm® s~ ! at the upper left to 10723 cm® s~ ! at the [ower left. (b) Contour plot of the population-weighted contributions Y3494 Pk + T30 % Pu/Nyy» fOT
ny = 103 cm 3 (see Fig. 3b for the fractional population p,). Contours are at 0.5 dex intervals. The highest CID contributions are from the states (14, 3) and
(13, 5); the contour level just below these states is 10723-* cm® s~ !. Contours at 10724 cm® s~ ! are adjacent to this and also above the local maximum at (0, 5).
At 1072*° cm® s~ contours loop down through (9, 9) and rise from (0, 15); contours at 10725 cm?® s~ ! loop down through (9, 3) and rise from (0, 23).
Although the CID contribution from the sparsely populated quasi-bound states is very low, the dissociative tunneling is important. The highest contours,
10723 cm®s ™!, surround the states with highest dissociative tunneling contribution, (0, 33) and (6, 23). '

are most easily populated at 2000 K. With increasing T, the
maximum in 934 ; p;, moves to lower v and higher j and the
relative importance of 7349 ; Pi/ny decreases.

At high density the relative importance of y4 and y¢p is
like that at low density, although v, is less dominant at low
temperature and the reversal to y4, < y¢p is at grid tem-
perature 6000 K. Compared to the temperature depen-
dences at low density, those at higher density are
compressed because transitions involving excited states are
important.

Our model has excluded the effects of recombination (and
fluorescence), which might significantly affect the popu-
lations of the upper states (§ 3.1). The contribution of the
upper states to the value of y, can be significant as we have
shown, and so our values should be used in other scenarios
with caution. It can also be noted that the cases most likely
to be affected are those with low upper state populations,
and these coincide with low or negligible y,.

3.4. Cooling Rates

The translational kinetic temperature T is usually a dis-
tinct parameter of importance in characterizing the physical
conditions, and so in this study cooling is considered to be a
lowering of T or the removal of translational energy, E,;. In
general, the lowering of E,, is balanced exactly by changes in
the internal energy E;. of the H, molecules (the net effect of
collisional redistribution and dissociation, and of radiative
deexcitation) and changes in the radiation field E, through
radiation by excited H, molecules. Since we are considering
steady state populations, the translational cooling arises
from the usual irreversible effects of radiative transitions
and collisions leading to dissociation. The cooling rate per
unit volume (units: ergs cm ™3 s7!) is usually called A,
which we separate into components related to internal

energy (A;.) and radiation (A,):
= —dE,/dt = dE;/dt + dE,/dt = A, + A, . (11)

We report the cooling rate using our steady state popu-
lations of H,, which were obtained assuming that the trans-
lational temperature, T, is constant, consistent with the
coolant, H,, being infinitely dilute in the H gas. In actual
applications one would want to investigate whether the
steady state populations at that T would be reached on the
cooling timescale (in this case ny kT/A since the energy of
the trace amounts of H, is negligible).

3.4.1. Internal Energy

For steady fractional populations it follows from equa-
tion (3) that A;, = —Ddny,/dt, where D is the absolute
value of the average binding energy of the H, molecules for
these populations. This result also makes intuitive sense.
For steady state relative populations the internal energy of
an average molecule is constant; only the number of mol-
ecules changes. Since we have not included recombination
(and the accompanying heating) in our calculation, every
dissociation of a hydrogen molecule permanently removes
the required energy from translation. Thus, in a steady state
A,. is identical to what is sometimes referred to as disso-
ciative cooling.

It is useful to define a rate coefficient y;, = A;./(ny ny,)
(units: ergs cm® s~ ). In terms of previously defined coeffi-
cients for CID and dissociative tunneling (eq. [8]),

YVie = D74 -

In earlier work (see, e.g., Hollenbach & McKee 1979; Lepp
& Shull 1983) a less precise definition has often been
adopted, using instead of D the value D,, the dissociation
energy from the ground state (4.48 eV), and also ignoring

(12)
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the contribution of dissociative tunneling to y,. In steady
state conditions in which H, is excited, D can be appre-
ciably less than D, (on our grid D is as small as 2.6 eV at
high T and ny). We have already discussed (§ 3.3) the impor-
tance of dissociative tunneling relative to CID and their
behavior with T and ny.

Figure 10 displays y;. in the familiar form of Figures 7
and 8. At 2000 K and below y,, is small in comparison to 7,
to be discussed next. Also y;, would be affected by neglect of
recombination in the same way as y,, but only where y;, is
negligible.

3.4.2. Radiation

Whenever a H, molecule in an excited (v, j) state emits a
photon, the energy carried away by the photon is irrevers-
ibly lost from the gas system (which is assumed to be opti-
cally thin). As described in equation (13), the state-specific
energy loss rate, shown in Figure 11, depends on the Ein-
stein A-values (the sum of which is shown in Fig. 4a) and the
energies of the photons emitted.

The bulk radiative cooling rate then arises from the pro-
ducts of these state-specific rates with the steady state popu-
lations (e.g., Fig. 3b). For example, using the populations for
ny =10° cm ™3 and T = 2000 K, we find that despite the
bias seen in Figure 11 toward somewhat excited states most
of the radiation comes from the lowest states because of the
low excitation; there is a local maximum in energy loss rate
at state (0, 7) for ortho states. As the excitation increases
with density, the peak energy loss moves up to higher
states—for example, to (1, 3) and (1, 5) for the ortho popu-
lations at 2000 K and ny = 10° cm ~2 and larger. Increased
temperature of course also raises the excitation at constant
density. Because of this population weighting, neglect of the
potential importance of recombination for high-lying states
(§ 3.1) should have little effect on A,.
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FiG. 10.—Rate coefficient y,, for the cooling contribution related to
decreasing the internal energy (often called dissociative cooling for steady
state conditions; see eq. [12] and also Fig. 7 for y¢p, and Fig. 8 for y,4,). Line
types and symbols are as in Fig. 5, except that results are not shown for the
lowest temperatures in our grid (T < 2000 K). On our grid y,, is important
relative to y, only for temperatures 3000 K and above, and even then only
for ny above the critical density (see Fig. 12).
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F1G. 11.—Contour plot of the radiative energy loss rate from individual
(v, j) states. The first set of 29 contours are at 0.1 dex intervals, decreasing
from a value 6.3 x 1078 erg s~ ! for the contour encircling the maximum
at (9, 7); the contour passing near (4, 19) leading to a local maximum at
(2,29)is at a value 2.5 x 10~ 185~ ! Thereafter, in the lower left, the contour
interval increases to 0.5 dex. The minimum loss rate is 2.1 x 10~ **ergs™!
at (0, 3).

A natural function to compute from the populations is
the cooling per H, molecule (units: ergs s~ '):

A,/nyg, = Z (Ex — E)Aypy -

k=1,348 ILE;<Ex

13)

But for direct comparison with y;, we plot in Figure 12 the
rate coefficient (units: ergs cm® s~ 1) y, = A, /(ny ny,).

At low densities 7, is independent of ny since the p, scale
linearly with ny (§ 3.1). In this limit virtually all collisional
excitations are followed by a radiative cascade to (0, 0) or
(0, 1) (for the highest temperatures considered the quasi-
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FiG. 12—Rate coefficient y, for radiative cooling in same format as Fig.
10 for ;. Lines types and symbols like Fig. 5, except that lowest locus is for
600 K. For comparison with Fig. 10, 3000 K is the second lowest dotted
locus; it sinks below that for y,, at log (ny) ~7.5.
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bound states are reached and so branching to dissociative
tunneling has some effect). Therefore, in this case it is pos-
sible to calculate y, independently:

Y= Z (Ex — E(O,O))bk(?k,(o,m Po,0) + )’k,(o,uP(o.n) (14)

k:para

+ Y (Ex— Eq,1)bil(¥k,0,0P0,0) + Yh,0,1) P, 1) - (15)
k:ortho

Here p.0) and p ;) are from equation (7) and b, is the
state-specific branching ratio accounting for tunneling from
the quasi-bound states (see eq. [10]; b, = 1 for classically
bound states). Equation (14) also makes explicit that y, is
independent of ny in this low-density limit and that its tem-
perature dependence arises from that of the state-to-state
excitation rate coefficients.

Above the critical density collisional energy transfer
becomes more influential than radiative energy transfer and
steady state relative populations of the (v,j) states are
reached, which no longer change with further increases in
density. Therefore, at high density A,/ny, does not depend
on ny and y, oc ni; *. Given this decrease of y, with increasing
ny and the simultaneous growth of y,., the latter comes to
dominate at high densities.

4. DISCUSSION

In this section we examine the various rate coefficients
derived from the master equation results in the context of
previous estimates (including the low-density limit) and
laboratory experiments (approximating but not identical to
our high-density limit). A comparative discussion of the
state-to-state collisional rate coefficients on which this
study is based was presented by Mandy & Martin (1993).

4.1. Ortho-Para Interconversion

In many regions of interstellar space the ortho to para
ratio might be modified by collisions between H, and
protons (Dalgarno, Black, & Weisheit 1973 ; Flower & Watt
1984). The rate coefficient for the (0, 1) to (0, 0) transition by
this process is estimated to be relatively independent of
temperature and of order 3 x 1071° cm3 s™!. This can be
compared to some state-to-state values given in Mandy &
Martin (1993) and the values of y,, given in Figure 5 and
equation (A1). For example, at 1000 K y,, ~ 2 x 107** cm?
s~ ! for a wide range of densities. Thus, at 1000 K collisions
with H will come to dominate the conversion compared to
collisions with H* when ny./ny < 1073; at 2000 K the
ratio would be 10~ 2. Thus, collisions with H are important
to understanding measurements of the relative populations
in the j states in warm regions (Takayanagi, Sakimoto, &
Onda 1987; Tanaka et al. 1989).

Schofield (1967) has summarized some experimental mea-
surements of the rate of conversion of para H, to the ortho
form at high density and in the temperature range 300-450
K. Adopting Boltzmann values for the para population dis-
tribution we have used our state-to-state rate coefficients to
simulate this situation; recall, however, that we regard 450
K as the lower bound on the range of validity of our coeffi-
cients. Our value is (coincidentally) within 10% of the
experimental value at 450 K and a factor of 3 low at 300 K.
Schofield also summarizes some theoretical calculations
based on an earlier potential energy surface and extending
from 300 to 1000 K. Compared to the analytic function
adopted by Schofield our simuiations are a factor of 2 low

COLLISIONAL EXCITATION AND DISSOCIATION OF H,

277

at 450 K, equal at 1400 K, and higher by a factor of 4 at
4500 K. Given the uncertainties, we consider the level of
agreement acceptable.

4.2. Dissociation
4.2.1. Comparison with Other Work

Dalgarno & Roberge (1979) and Roberge & Dalgarno
(1982) showed clearly that radiative depopulation of the
higher energy states (radiative stabilization) could be signifi-
cant in the interstellar medium where the density and conse-
quently the collisional probability was sufficiently low to be
comparable to the probability of quadrupole emission;
their particular emphasis was on the accompanying depres-
sion of the rate of collision-induced dissociation (CID).
Lepp & Shull (1983) refined the model for a warm gas
(T > 1000 K) by including vibrationally excited states and
dissociation from all vibrational levels. Not surprisingly,
different sets of rate coefficients and different levels of
approximation in the solution of the master equation have
led to discordant estimates of the rates of CID (and cooling;
§4.3).

Figure 13 displays our results for yop, as a function of T for
ny=10"3 cm~3, 103 cm~3, and 10° cm ™3 (low density,
critical density, and high density, respectively: see Fig. 7).
This form of display is that used by Roberge & Dalgarno
(1982) and is useful in the context of the functional fits
described in Appendix A. Also shown for comparison are
values from the study by Lepp & Shull (1983) for the same
densities. As pointed out earlier by Dove et al. (1987), the
temperature dependence at low density is incorrect. Fur-
thermore, the critical density that arises from their adopted
excitation rate coefficients is too high, so that their results
for ny = 10° cm 3 are too close to those for the low-density
limit. Mac Low & Shull (1986) published a modification to

log(yge) (em’s™)
S 12 10

-16

-18

o |/ i .
o 3.5 4 4.5
log(T) (K)

FiG. 13.—Rate coefficient yqy, for collision-induced dissociation as a
function of T for fixed densities. Circles: our values for ny; = 1073 cm ™3
(lowest curve), 10> cm™3 (near the critical density), and 10° cm™3. Solid
curves: our analytic fit (eq. [A1]). Dashed curves: analytic form from Lepp
& Shull (1983) for same densities. Dash-dotted curves: analytic form for two
lowest densities using low-density limit from Mac Low & Shull (1986),
experimental high-density limit from Breshears & Bird (1973) (same as
upper dashed curve from Lepp & Shull) and interpolation formula of Lepp
& Shull. Dotted curve: like dash-dotted case for ny = 10 cm ™3, but with
critical density lowered by factor 10.
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the CID rate coefficient for the low-density limit, which is in
closer agreement with our results (Fig. 13). However, the
discrepancies at intermediate density are still present when
this is combined with the critical density formulation from
Lepp & Shull (as one infers should be done). If instead we
lower their critical density by 1 order of magnitude, the
behavior with density becomes much closer to what we find.
A lower critical density is qualitatively consistent with the
differences in the treatment of collisional transitions; we
included all rotational and vibrational-rotational tran-
sitions, some involving smaller amounts of energy than do
the vibrational-only transitions accounted for in the calcu-
lations of Lepp & Shull.

The uppermost curve in Figure 13 is the high-density
limit from the experimentally determined values of
Breshears & Bird (1973), these actually being constrained
only in the limited range 3500-7500 K. This limit has been
adopted as a firm constraint in these earlier studies; the
appropriateness of this is discussed next.

4.2.2. The High-Density Limit

In the “high-density” limit of this study, namely ny =
10° ¢cm 3, collisional processes dominate relative to radi-
ative depopulation and the populations of the bound states
approach the Boltzmann distribution (§ 3.1). In this regime,
the dissociation rate coefficient y, is enhanced with increas-
ing temperature because of the increase in the populations
of higher energy states. However, care must be exercised in
comparing y, for our high-density limit with experimentally
measured values of the dissociation rate coefficient
(Breshears & Bird). As seen in § 3.3 dissociative tunneling
can be an important process relative to CID even at ny =
10° cm 3. As the density increases many orders of magni-
tude further to the range characteristic of laboratory experi-
ments, y4, fades in importance relative to yqp (see eq. [8]);
we have confirmed this with some simulations with ny as
large as 102° cm 3.

Over the limited temperature range available for com-
parison, 3500-7500 K, our “ high-density ” values of yqp are
consistently lower than those of Breshears & Bird. For
example; at 4500 K we find yqp = 0.97 x 10713 ¢cm3 5!
compared to 2.0 x 10713 cm® s™!. (Values of y,;, which
include dissociative tunneling, are coincidentally very close:
2.0 x 10713 cm? s ! at 4500 K, for example; see also Fig.
13). Nevertheless, the agreement between experiment and
our purely theoretical calculations based on ab initio CID
rate coefficients y349, is quite remarkable, and the slight
systematic discrepancies can be understood at least qualit-
atively. At ny = 10° cm™3, our values of yqp are low
because of an underpopulation of the upper states, which
have the largest individual CID rate coefficients (e.g., Fig.
9a). In higher density simulations, this is gradually
redressed but the values for the CID rate coefficient are still
slightly low. If, on the other hand, we simply take Bolit-
zmann popuiations in combination with our individual
CID rate coefficients y345, We tend to overestimate the
laboratory results slightly since we have now over-
compensated for the population of the upper states.

Another reason that even our highest density simulations
(including some with radiative and dissociative tunneling
rates set to zero) have slightly depressed populations for the
important high-energy (including quasi-bound) states is
that in the simulations these states are not repopulated by
recombination, a process that is important at experimental
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densities. Schwenke (1990) has included recombination in
some higher density master equation calculations based on
some similar state-to-state rate coefficients. One of his
models (his Fig. 3) has ny ~ 2 x 10'¢ cm™2 and ny, <ny
consistent with our assumptions. For this model at 5000 K
his time-dependent results show a “plateau region” at
which a quasi-steady state has been established (the time-
scale agrees with our time-dependent integrations), before
recombination has become important to the state popu-
lations. Interpolating from simulations at 4500 and 6000 K
and ny = 10'® cm ™3 we have been able to reproduce the
dissociation rate coefficient deduced from his results for the
plateau region. Thereafter, his dissociation rate coefficient
increases with time by a factor 3 to a value close to the vaiue
we derive using simply Boltzmann populations.

From these considerations it can be seen that it is not
appropriate to force the “high-density” limit of yp (at
ny = 10° cm ~3) to match the measurements of Breshears &
Bird, as has been done by Roberge & Dalgarno (1982) and
Lepp & Shull (1983). Furthermore, as discussed in § 3.3,
over the whole range one also has to include dissociative
tunneling, which has been omitted in previous studies.

4.3. Cooling

Early assessments of the cooling rate focussed on the role
of rotational excitation (Takayanagi & Nishimura 1960;
Nishimura 1968; Elitzur & Watson 1978). For warmer gas
this has to be extended by inclusion of vibrational tran-
sitions. Figure 14 displays our results for the radiative
cooling rate per H, molecule, A,/ny,, as a function of T for
fixed densities and compares them to the analytic fits found
by Lepp & Shull (1983; see also their Fig. 3) and Hollen-
bach & McKee (1979; see also their Fig. 7, which shows y,).
The uppermost curves in Figure 14 are for the “high-
density” limit for which the populations approach their
Boltzmann values. Our results offer some improvement at
high T owing to our complete treatment of the (v, j) states.
The plateau beginning at T = 10* K does not appear for

-20

log(A/n ) (erg s™")
=22

24
T

log(T) (K)

FIG. 14—Radiative cooling rate per H, molecule, A,/ny, as a function
of T for fixed densities: n,; = 10° cm ™3 (lowest curve), 102 cm ™3, 10* cm ™3
and 10® cm~3 (“high-density ” limit). Solid curves: our analytic fit (eq.
[A2]). Dashed curves: analytic form from Lepp & Shull (1983). Dash-dotted
curves: analytic form from Hollenbach & McKee (1979).
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Boltzmann populations, but occurs in our master equation
results because the high-energy states near the dissociation
limit remain somewhat underpopulated as discussed in
§ 3.1. Larger differences with respect to the earlier results
occur for lower densities. At the lowest densities, where 7,
becomes independent of ny (Fig. 12; eq. [14]), the differ-
ences can be attributed to use of different excitation rate
coefficients from the ground states and detailed inclusion of
a full suite of excited states. Our results show that at inter-
mediate densities, a full master equation solution is required
to determine the populations of all states.

4.4. Conclusions

Over the past two decades computational speeds have
improved to the extent that it should be possible to include
a full treatment of the (v, j) populations of H, in models of
astrophysically interesting environments, like shocks and
photodissociation regions. Our models illustrate this possi-
bility for time-dependent calculations (which in our case
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lead to steady state conditions) and show that a full simula-
tion is a desirable goal compared to approximate treat-
ments. Over the same time there have been significant
advances in the computation of the potential energy surface
for H + H, and in the calculation of state-to-state (and
CID) cross sections, to the point that a full set of state-to-
state rate coefficients is now available for the H + H, inter-
action (Mandy & Martin 1995; Martin & Mandy 1995) at
intermediate temperatures. These rate coefficients need to
be extended by quantum calculations to lower tem-
peratures, which is not insurmountable since there only the
lowest (v, j) states are important. Among the remaining
challenges is development of a set of state-to-state rate coef-
ficients for the H, + H, interaction.

This work was supported by the Natural Sciences and
Engineering Research Council of Canada. We thank R. J.
LeRoy for an electronic version of the dissociative tunneling
probabilities and the referee for insightful comments.

APPENDIX

FUNCTIONAL APPROXIMATIONS

The following fits have been made and are available in electronic form (see Appendix C).

APPENDIX A

COLLISIONAL RATE COEFFICIENTS

Figure 5 (y,,), Figure 7 (yaip), Figure 8 (y4,), and Figure 10(y,,) show that the respective rate coefficients all have qualitatively
similar behavior. For fixed temperature there is a flat portion at low density, say y,, and another higher flat portion at high
density, say y,. The transition occurs near some critical density n,. This motivates the following form, generalized from Lepp

& Shulil (1983):

log y4,1 = ay + a, log T + az(log T)? + a,(log T)* + a5 log (1 + ag/T),
log y,,; = ag + a9 log T + ao(log T)? + a4 log (1 + a,,/T),

log y4,, = «;/T ,
log y,,, = a3/T,

logn,; = a4+ 05 log T+ agslog T)? + ay4/T, p=atyo + a0 €xp (— T/1850) + o, exp (— T/440),

log y =log ;1 — (log y4, ;1 — log y,,1)/[1 + (ny/n. )] + log 7, , — (og yy.2 — log 7,.,)/[1 + (ny/n ,)"] .

At density n,, 7 is the geometric mean of y, and y,.

logn,, =0, +logn,,,
(A1)

Table 1 contains the o’s. Units for these parameters are not given but are obvious from the context (c.g.s. units; see axis
labels in figures and footnotes to the table). These parameters were obtained by nonlinear least-squares fits to the computed
grid of values for each rate coefficient (low- and high-density limits were not optimized separately). Grid values at 450 K were
given low weight except in the case of y,,,, and so the fits should be used with caution below 600 K. To indicate the quality of
the fit, the rms error along with the maximum and minimum (signed) deviation (within the valid T range) are also tabulated
(all in percent).

APPENDIX B
RADIATIVE COOLING RATE
Figure 11 for log y, shows a qualitatively different behavior with respect to n,; and T. At low density there is a flat portion

that turns downward at some critical density n, to a high-density linear portion with slope — 1. This motivates use of a
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TABLE 1
ANALYTIC FITS OF STEADY STATE RATE COEFFICIENTS FOR H + H,

Fit Ypo' Yo" Yat Vie 70
rms° ...... 1.6 39 8.7 6.9 75
max®...... 3.6 9.3 23.8 31.3 19.1
min®...... —4.0 —8.8 —-204 —17.5 —19.8
| 1.045999 +2 —1.784239+2 —1.427664 +2 —1.846781+2 —1.058656+3
2. —5.180703 +1 —6.842243 + 1 4270741 +1 3.793892+1 6.412920+2
3 7.374957+0 4.320243 +1 —2.027365+0 2.996993 +0 —1.330667+2
4.......... —3.123496—1 —4.633167+0 —2.582097—1 —8.286897—1 9.285717+0
St —1.621112+1 6.970086 + 1 2.136094 + 1 3.155289+1 9.160106 + 1
6.eeenn.. 1.029437 +4 4.087038 +4 2.753531+4 2.861577+4 2.680075+3
Toeeeenens —2.606107+3 —2.370570+4 —2.146779+4 —2.141734+4 9.500433+3
8. . —1.733190+0 1.288953 +2 6.034928 +1 6.265847+1 —1.253746+3
9 —2.417648+0 —5.391334+1 —2.743096 + 1 —3.282533+1 7.792906 + 2
10......... 1.532729—1 5.315517+0 2.676150+0 3.275816+0 —1.628687+2
11......... —2.409915+0 —1.973427+1 —1.128215+1 —1.351127+1 1.145088 + 1
12......... 2.284705+4 1.678095+4 1.425455+4 1.430836+4 1.057438 +2
13......... —1.626040+3 —2.578611+4 —2.312520+4 —2.309884 +4 2.889762+3
14......... 3.061327+1 1.482123+1 9.305564+0 5.903307+0 1.382858 +4
15......... —1.154976 +1 —4.890915+0 —2.464009+0 —7.783954—1 —1.175497+2
16......... 1.177836+0 4.749030—1 1.985955—1 —6.723144—-3 7.886144 +1
17......... —3.924553+3 —1.338283+2 7.430600 +2 8954974+ 2 —1.777082+1
18......... —1.684643 —1 —1.164408 +0 —1.174242 40 —1.156336+0 1.338843+0
19......... 7.329367 -1 8.227443—1 7.502286 —1 8.040080—1 3.406424 + 3
20......... —7.165353—1 5.864073—1 2.358848 —1 1.464416—1 ...
21......... —4.441274—1 —2.056313+0 2.937507+0 2.615630+0

3 Units: cm3s™1.

® Units: ergscm3s™ 1.

¢ The rms, maximum, and minimum of signed deviations in percent.
* Coefficients o, for analytic fits.

hyperbola to describe the data at fixed T, whence
log y, = —log ny + a; + a, log T + as(log T)* + ay(log T)® + as log (1 + a6/T) + /T,
log y, =log y, + log ny —logn.,  f=1logy/y,=log ny/n.,
log n, = ag + ag log T + a;o(log T)* + ay(log T)* + oy, log (1 + ay3/T) + 044/T ,
Ww=ays + a6 log T + a;,(log T)? + a;g(log T)® + /T,
log y, = log 7, + 0.5[f — (f? + 2w?)*/?] . (A2)

The fit is summarized in Table 1, again for 600 K and above. The low- and high-density limits, y, and y,, were not optimized
separately.

APPENDIX C
AVAILABILITY IN ELECTRONIC FORM

The following is a description of several files and associated test programs that may be requested by e-mail.

A file from which the entries in Table 1 were made is available, along with a test program (in FORTRAN) that reads this file
and evaluates the various coefficients as a function of temperature and density using equations (A1) and (A2).

The data assembled for solution of the master equation (eqs. [1] and [2]) were described in § 2. The population n; on the
right-hand side of the master equation is an element of a column vector of length 348 + 1. The elements were ordered as
follows. First come the 177 para-H, (v, j) states, with an inner loop on v (vertically in Fig. 1):

(0,0),(1,0),(2,0),...,(14,0),(0, 2),(1,2),..., (0, 34),(1, 34), (0, 36), (0, 38).

Then come the 171 ortho-H, (v, j) states:

©,1),(1,1),(2,1),...,(14,1),(0, 3),(1, 3),...,(0, 35), (1, 35), (0, 37).

Element 349 corresponds to a dissociated molecule. Subroutines to transiate from (v, j) to / and vice versa are available. These
can be exercised with a test program that reads a file of the energies of the (v, j) states (as plotted in Fig. 1) to generate
(elements of ) the corresponding energy column vector.

With the above ordering the matrix of elements A,, (radiative transition probabilities from state I) contains two square
blocks on the diagonal of dimensions 177 and 171 since there are no parity-changing quadrupole radiative transitions. Each
block is sparse because of selection rules on Aj. Row and column 349 are empty. A test program to produce this matrix is
available.
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The dissociative tunneling transition probabilities 340 ; can be regarded as row 349 of an otherwise empty matrix. Even
this row is zero except for the quasi-bound states. In the test program it is added to the matrix A,,, which had row 349 empty.

In the test program™ a diagonal element A, corresponding to the sum of all radiative and dissociative tunneling transitions
out of each of the 348 states k is generated as the negative of the sum along that column.

Electronic files of the matrix y,, with this same ordering have been made available separately (Martin & Mandy 1995).
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