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Abstract. Numerous integrations of the solar system have
been conducted, with very close initial conditions, totaling an
integration time exceeding 100 Gyr. The motion of the large
planets is always very regular. The chaotic zone explored by
Venus and the Earth is moderate in size. The chaotic zone ac-
cessible to Mars is large and can lead to eccentricities greater
than 0.2. The chaotic diffusion of Mercury is so large that its
eccentricity can potentially reach values very close to 1, and
ejection of this planet out of the solar system resulting from
close encounter with Venus is possible in less than 3.5 Gyr.
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1. Introduction

The discovery of the chaotic behavior of the orbital motion
of the inner planets in the solar system (Laskar,1989) was
obtained using a numerical integration of the averaged equa-
tions of motion over 200 Myr. Nevertheless, over such a long,
but still limited time span, it was not possible to evaluate the
possible variations of the planetary orbital elements over the
age or expected lifetime of the solar system, that is about 5
Gyr. On the other hand, due to considerable improvement in
the last three years, direct numerical integrations of the mo-
tion of the complete solar system have now been performed
up to 100 Myr (Quinn et al., 1991, Sussman and Wisdom,
1992) and have confirmed its chaotic behavior, but are still
far from the 5 Gyr goal. Furthermore, since the motion of the
solar system is chaotic with a lyapunov time of about 5 Myr
(Laskar, 1989, Sussman and Wisdom, 1992), there is no hope
of tracking precisely the real motion of the solar system over
more than 10 to 20 Myr. An integration of the solar system
over 5 Gyr can thus only be considered as an indication of
its possible behavior, and cannot pretend to be the description
of its actual motion. The problem thus becomes more compli-
cated, as a single integration is no longer sufficient. Since very
close initial conditions can lead to completely different behav-
ior after 100 Myr, one would like to have a more global view
of the dynamics of the solar system and to study its behavior
for all initial conditions. This is easy to do for a two degree

of freedom system, when a surface of section is sufficient
to obtain this information. For three degree of freedom sys-
tems, this is considerably more difficult, but can be achieved
in some sense (Laskar, 1993, Dumas and Laskar, 1993). Such
a global view was also achieved in the study of the long time
evolution of the obliquities of the planets (Laskar et al., 1993,
Laskar and Robutel, 1993), but for the complete solar system,
this task seems too complicated at present. Indeed, the solar
system, including all its major planets (from Mercury to Nep-
tune), after performing the reduction of center of mass is a
3 x 8 = 24 degree of freedom system. After averaging over
the mean longitudes of the planets (Laskar, 1985, 1986, 1989,
1990, 1992) this is reduced to 16, and to 15 after taking into
consideration the conservation of angular momentum.

2. Evolution of the solar system on Gyr time scales

Even without describing the global dynamics of this 15
degree of freedom dynamical system, we can still get an idea
of the geography of the chaotic zone where our solar system
evolves. For this purpose, we can follow a numerical integra-
tion over a very long time span, even larger than the age of
the solar system. This solution will act as a scout exploring
the chaotic domain to which the solar system belongs. We can
also send a number of similar explorers, starting from nearby
initial conditions. At present, this appears to be the only way
to obtain some understanding of the possible long time evo-
lution of the solar system, and to provide some bounds on its
behavior.

The equations of motion used here are the averaged equa-
tions which were previously used for the demonstration of
the chaotic behavior of the solar system. They include the
Newtonian interactions of the 8 major planets of the solar sys-
tem (Pluto is neglected), and relativistic and Lunar corrections
(Laskar, 1985, 1989, 1990). The numerical solution of these
averaged equations showed excellent agreement when com-
pared over 4400 years with the numerical ephemeris DE102
(Newhall et al., 1983, Laskar, 1986), and over 3 millions years
with the numerical integration performed by Quinn, Tremaine
and Duncan (Quinn et al., 1991, Laskar et al., 1992). Similar
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Fig.1a and b. Numerical integration of the averaged equations of motion of the solar system 10 Gyr backward and 15 Gyr forward. For
each planet, the maximum value obtained over intervals of 10 Myr for the eccentricity (a) and inclination (in degrees) from the fixed ecliptic
J2000 (b) are plotted versus time. For clarity of the figures, Mercury, Venus and the Earth are plotted separately from Mars, Jupiter, Saturn,
Uranus and Neptune. The large planets behavior is so regular that all the curves of maximum eccentricity and inclination appear as straight
lines. On the contrary the corresponding curves of the inner planets show very large and irregular variations, which attest to their diffusion

in the chaotic zone.

agreement was observed with subsequent numerical integra-
tion by Sussman and Wisdom (1992).

These averaged equations can thus be considered as a very
good approximation of the real motion of the solar system. In
particular, they are well suited for understanding the main fea-
tures of its global dynamics. This system of equations was ob-
tained with dedicated computer algebra and contains 153824
monomial terms of the form «azzy232425 (Laskar, 1985). It
was constructed in a very extensive way, containing all terms
up to second order with respect to the masses, and up to Sth
degree in eccentricity and inclination, but it appears that many
of these terms are of very small amplitude. In order to im-
prove the efficiency of the numerical integration, less than 50
000 terms were retained. The accuracy of the resulting sys-
tem was tested against the full equations by direct comparison
over 10 Myr. For all variables, the discrepancies are smaller
than 1073 after 10 Myr. This is much less than discrepan-
cies with direct numerical integrations (Laskar et al., 1992),
or among direct numerical integrations (Sussman and Wis-
dom, 1992). The evaluation of this simplified system is very
efficient, since fewer than 6000 monomials need to be evalu-
ated because of symmetries. Numerical integration is carried
out using an Adams method (PECE) of order 12 and with a
250-year stepsize. The integration error is measured by inte-
grating the equations back and forth over 10 Myr. It amounts
to 3 10713 after 107 years (40 000 steps), and behaves like
!4, Ignoring the chaotic behavior of the orbits, this would

give a numerical error of only 4 10~° after 10 Gyr. All inte-
grations were performed on an IBM RS6000/370 workstation
and took 1 day of CPU time per Gyr.

The equations were integrated over 10 Gyr backward, and
15 Gyr forward. It may seem strange to try to track the orbit of
the solar system over such an extended time, longer than the
age of the universe, but one should understand that it is done
in order to explore the chaotic zone where the solar system
evolves, and after 100 Myr, can give only an indication of
what can happen. On the other hand, if there is a sudden
increase of eccentricity for one planet after 10 Gyr, this still
tells us that such an event could probably also occur over
a much shorter time, for example in less than 5 Gyr. In the
same way, what happens in negative time can happen as well
in positive time.

In order to follow the diffusion of the orbits in the chaotic
zone, one needs quantities which behave like action vari-
ables, that is quantities which will be constant for a regular
(quasiperiodic) solution of the system. Such quantities can be
given by the quasi frequencies obtained by frequency analysis
(Laskar, 1990, 1993, Dumas and Laskar, 1993), but here I pre-
ferred variables more directly related to the physical behavior
of the orbits, and plotted the evolution of the maximum eccen-
tricity and inclination attained by each planet during intervals
of 10 Myr (Fig. 1).

The behavior of the large planets is so regular that all the
corresponding curves appear as straight lines (Fig. 1). On the
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Fig.2a and b. Orbit of the solar system leading to very large values for the eccentricity of Mercury, and possibility of escape at -6.6 Gyr
and +3.5 Gyr. The plotted quantities are the same as in Fig.1, except for Mercury, where minimum eccentricity and inclination over 10 Myr
are also plotted. During all the integrations, the motion of the large planets is very regular.

contrary the maxima of eccentricity and inclination of the in-
ner planets show very large and irregular variations, which
attest to their diffusion in the chaotic zone. The diffusion of
the eccentricity of the Earth and Venus is moderate, but still
amounts to about 0.02 for both planets. The diffusion of the
eccentricity of Mars is large and reaches more than 0.12, lead-
ing to values higher than 0.2 for the eccentricity of Mars. For
Mercury, the chaotic zone is so large (more than 0.4 ) that it
reaches values larger than 0.5 at some time. The behavior of
the inclination is very similar.

Strong correlations between the different curves appear in
figure 1. Indeed, as the solar system wanders in the chaotic
zone, it is dominated by the linear coupling among the proper
modes of the averaged equations (Laskar, 1990), which in-
duces a very similar behavior for the maximum eccentricity
and inclination of Venus and the Earth. This coupling is also
noticeable in the solution of Mars. On the other hand, an an-
gular momentum integral exists in the averaged equations, and
explains why when Mercury’s eccentricity and inclination in-
crease, the similar quantities for Venus, the Earth and Mars
decrease. Thus it appears that, despite the small values of the
inner planets’ masses, the conservation of angular momen-
tum plays a decisive role in limiting their excursions in the
chaotic zone. In particular this should give some limitation
on the diffusion of the more massive planets, Venus and the
Earth.

3. The possible escape of Mercury

After this first experiment, let us play another game. At some
time, Mercury suffered a large increase in eccentricity (fig. 1)
rising up to 0.5. But this is not sufficient to cross the orbit
of Venus. The question then arises whether it is possible for
Mercury to escape from the solar system in a time comparable
to its age. A first attempt to answer this was made by slightly
changing the initial conditions for the planets. Indeed, because
of the chaotic behavior, very small changes in the initial con-
ditions lead to completely different solutions after 100 Myr.
Using this, I decided to change only one coordinate in the po-
sition of the Earth, amounting to a physical change of about
150 meters (10~° in eccentricity). The full system was inte-
grated with several of these modified solutions, but it led to
similar (although different) solutions. In fact, it should not be
too easy to get rid of Mercury, otherwise it would be difficult
to explain its presence in the solar system.

I thus decided to guide Mercury somewhat towards the
exit. A first experiment was done for negative time: for 2
Gyr, the solution is left unchanged, then, 4 different solutions
are computed for 500 Myr, in each of which the position of the
Earth is shifted by 150 meters, in a different direction (due
to the exponential divergence, this corresponds to a change
smaller than Planck’s length in the original initial conditions).

The solution which leads to the maximum value of Mer-
cury’s eccentricity is retained up to the nearest entire Myr, and
is started again. In 18 of such steps, Mercury attains eccentric-
ity values close to 1 at about -6 Gyr (Fig 2) when the solution
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enters a zone of greater chaos, with lyapunov time ~ 1 Myr,
giving rise to much stronger variations of the orbital elements
of the inner planets. In such a long computation, which goes
far beyond the horizon of predictibility of the system, negative
time is equivalent to positive time, but in order to be more
convincing, a second solution was also computed in positive
time, without the initial 2 Gyr period, and with changes in
initial condition of only 15 meters instead of 150 meters. As
anticipated, this led to a similar increase in Mercury’s eccen-
tricity, this time in only 13 steps and about 3.5 Gyr (Fig 2).

While the eccentricity increases, the inclination of Mer-
cury can change very much (Fig 2b). In order to check whether
these changes in Mercury’s eccentricity can really lead to an
orbit crossing with Venus, the relative positions of the inter-
section of the orbits of Mercury and Venus with their line of
nodes was computed around 3.5 Gyr, at a date which seems
critical (Fig.3). Most of the time, on the line of nodes, the orbit
of Mercury stays inside the orbit of Venus, but at some times,
the orbit of Mercury crosses the orbit of Venus. This lasts a
few thousand years, and during that time, the two planets can
experience a close encounter which can lead to the escape of
Mercury or to collision.

It should be said that for very high eccentricity of Mercury,
the model used here no longer gives a very good approxima-
tion to the motion of Mercury, but it is very important to
know that in this approximation, the chaotic zone allows the
escape of a planet from the solar system in a time smaller
than the expected life of the solar system, due to diffusion in
the chaotic zone. Even more, in this averaged system, the de-
grees of freedom corresponding to semi major axes and mean
longitudes are removed, but in the real system the addition
of these extra degrees of freedom will probably lead to even
stronger chaotic behavior, as in general, addition of degrees
of freedom increases the stochasticity of the motion.

4. Conclusion

In all the integrations which are reported here, the large planet
motions are always very regular, while the diffusion of the
inner planets’ orbits in the chaotic zone is much larger than
what was already seen over 200 Myr (Laskar, 1990, 1992).
Combining the results of the different integrations (Figs. 1
and 2), it appears that the possible diffusion of Venus and the
Earth over 5 Gyr is larger than 0.06 in eccentricity, and 1
degree in inclination. For Mars, it amounts to about 0.16 in
eccentricity and 6 degrees in inclination, while for Mercury it
is so large for the eccentricity that ejection of this planet out
of the solar system resulting from close encounter with Venus
(or collision) is possible in less than 3.5 Gyr.

The diffusion of the solar system in its chaotic zone is also
sufficient to drive Mars’ eccentricity above 0.2 in a few Gyr.
If this happened in the past, it should be of great importance
for understanding past climates of this planet.

The difference in behavior between the large planets and
the inner planets is very striking (Fig.1ab). One reason for
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Fig. 3. Relative position of the orbits of Mercury and Venus computed
at the line of intersection of their two orbital planes (line of nodes)
for a selected date of the integration plotted in Fig.2. The distance
from the Sun of the orbit on the line of nodes (in AU) is plotted
against the date (in Gyr). Most of the time, on the line of nodes, the
orbit of Mercury stays inside the orbit of Venus, but at some times,
the orbit of Mercury crosses the orbit of Venus. This phenomenon
lasts a few thousand years, and during that time, the two planets can
experiencce close encounter which can lead to the escape of Mercury,
or to collision.

this is probably that the large planets system is not perturbed
much by the inner planets, and thus can be thought of as a
system with only 8 degrees of freedom, instead of 16 for the
whole system. Another possibility is that if the outer planets
were less regular, then the inner planets’ motion would be so
chaotic, that the Earth would suffer changes too large in its
orbit to ensure climatic stability on its surface.
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