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ABSTRACT

The distinction between Hubble’s linear redshift-distance z(L) law and the linear velocity-distance V(L) law
that emerged later is discussed, using first the expanding space paradigm and then the Robertson-Walker
metric. The z(L) and V(L) laws are theoretically equivalent only in the limit of small redshifts, and failure to
distinguish between the two laws obscures the basic elementary principles of modern cosmology. The linear
V(L) law [V = HL, where H(t) is the Hubble term] applies quite generally in expanding homogeneous and
isotropic cosmological models, and recession velocities can exceed the velocity of light. The z(L) relation in its
linear form (cz = HL), however, has no theoretical basis and can be used only in the limit of small redshifts.
In general, the z(L) relation is nonlinear (with the exception of exponentially expanding spaces) and must be
derived separately for each particular model. The general distance-redshift L(z) relation is obtained from the
fundamental velocity-redshift relation V(z) = cH,, | dz/H(z), where H, is the value of the Hubble term at the
present epoch. Possible historical reasons for the confusion between the z(L) and V(L) laws, and why both are
indiscriminately referred to as Hubble’s law, are discussed.

Subject headings: cosmology: theory — galaxies: distances and redshifts

1. INTRODUCTION

Cosmologists generally fail to distinguish between the
redshift-distance law proposed by Hubble (1929) and the
velocity-distance law established later on theoretical grounds.
Historians (North 1965, 1990; Smith 1979, 1982; and
Hetherington 1990) also overlook the subtle but important
distinction, and both laws are indiscriminately referred to as
Hubble’s law. But no general proof exists demonstrating that
the two laws are equivalent, and perhaps for that reason many
astronomers since the time of Hubble have viewed with reser-
vation the velocity interpretation of extragalactic redshifts. The
failure to distinguish between the linear redshift-distance law
(an empirical approximation of limited validity) and the
velocity-distance law (a theoretical derivation of unlimited
validity) leads to confusion® and obscuration of the fundamen-
tal concepts of modern cosmology. The present treatment
describes the two laws (§§ 2 and 3) and attempts to dispel the
confusion concerning their equivalence, first by invoking the
expanding space paradigm (§ 4) and then by using the
Robertson-Walker metric (§ 5). The general velocity-redshift
V(z) relation [and hence the general L(z) relation] is derived in
§ 6, and some particular velocity-redshift expressions are dis-
cussed. Possible reasons why confusion still persists concerning
the two laws are mentioned in § 7.

! Two examples illustrate the confusion. In reviews of observational cos-
mology, Sandage (1961, 1988) remarks that Hubble’s redshift-distance law is
valid for all distances measured in Milne’s (1933, 1935) world map, where the
world map covers homogeneous and isotropic space at an instant of cosmic
time. This remark, though true for the velocity-distance law, does not apply to
the redshift-distance law. In a review of modern cosmology, Peebles et al.
(1991) remark that the velocity-distance law requires relativistic corrections
when the velocity approaches the velocity of light (i.e., the distance approaches
the Hubble distance). This remark, though true for Hubble’s redshift-distance
law, does not apply to the velocity-distance law.
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2. HUBBLE’S REDSHIFT-DISTANCE LAW

In 1929, Hubble presented the case for a linear relation
between the redshift z and distance L of extragalactic nebulae:

z = constant x L .

This linear redshift-distance z(L) relation is usually expressed
in the form
(M

Here c is the velocity of light; the Hubble term H(t) is every-
where a constant in homogeneous and isotropic space at a
common instant of time ¢; a zero subscript denotes the present
time, H, = H(t,); and L is the distance to a galaxy of redshift z.
Such a relation between redshift and distance had previously
been suggested (see North 1965; Smith 1979, 1982; Osterbrock
1990), but Hubble’s work, incorporating redshifts determined
by Slipher and Humason, convinced most astronomers of the
dependence of extragalactic redshifts on distance. Interpreta-
tion of the redshifts as a recession effect was much less enthu-
siastic (Zwicky 1929; Macmillan 1932; see Hubble 1937; Smith
1979).

The Hubble term is now numerically expressed in the form
H, =100k km s~' Mpc~?, and the value of h currently lies
between 0.5 and 1.0. The inverse of the Hubble term corre-
sponds to a time scale 1/H, = 10h~! Gyr and a Hubble dis-
tance

@

of 3k~ ! Gpc. Equation (1) with equation (2) takes the alterna-
tive form
©)

With the exception of cosmological models in which H is con-
stant in time (see § 6.3), the redshift-distance z(L) law is linear
only for small redshifts z < 1 and short distances L < Ly,.
Because the various “distances ” (distance at signal reception,

zc=HyL.

Ly =c/H,

z = L/Ly.
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distance at signal emission, distance by apparent size, distance
by radar measurement, and luminosity distance) introduce dif-
ferences of second and higher order in z, equation (1) in its
range of validity (z < 1) holds for most definitions of distance.

3. THE VELOCITY-DISTANCE LAW

Unlike the Hubble law, the origin of the velocity-distance
law remains obscure. Friedmann in 1922 and 1924 pioneered
“nonstationary ” open and closed homogeneous and isotropic
cosmological models, and in the following decade these
expanding models were developed by Lemaitre (1927, 1931)
and other cosmologists (e.g., Eddington 1933, Robertson 1933;
Tolman 1934). During the formative stages of the expanding
space paradigm in the early 1930s it became apparent that
expansion must be linear if the universe is homogeneous.
Milne’s (1933, 1935) cosmological principle and his emphasis
on kinematic symmetries inspired further studies (Robertson
1935, 1936a, 1936b, Walker 1936, 1944) that formally estab-
lished the Robertson-Walker line element of an expanding
homogeneous and isotropic space. This general line element
leads immediately to the linear velocity-distance law

V = H(t)L , @)

(derived in § 5.1) in which proper distances L are well-defined
in a space of uniform curvature at an instant of common
(cosmic) time ¢, and the velocity of recession V = dL/dt of all
comoving bodies is relative to the comoving observer. Equa-
tions (2) and (4) yield

V =cL/Ly , )

and the recession velocity equals the velocity of light at the
Hubble distance Ly;. Equation (4) is valid for all distances; if L
is infinite, then also V is infinite. Previous to the Robertson-
Walker metric, the concept of distance in expanding curved
space loomed unclear, and even now a lack of clarity persists
owing to emphasis on operational rather than geometrical
concepts of distance. The proper distance in equation (4) is of
the geometrical tape-measure kind, and the practical problem
of its determination in cosmology should not be the reason for
rejecting its conceptual utility.

4. THE EXPANDING SPACE PARADIGM

The expanding space paradigm emerged during the for-
mative stages of modern cosmology amidst the controversy
concerning the physical meaning of the extragalactic redshifts
(North 1965). In an influential paper that enunciated the para-
digm, Eddington (1930) said of the galaxies: “it is as though
they were embedded in the surface of a rubber balloon which is
being steadily inflated.” An expanding rubber surface aptly
illustrates some of the properties of curved and dynamic
space.? Like the cosmological principle, the expanding space

2 Milne revolted against attributing to space, which “by itself has no
existence” (Milne 1932), the properties of curvature and expansion, and in
protest developed a theory—kinematic relativity—that rejected general rela-
tivity (Milne 1933, 1935). Of the expanding space paradigm, he said, “ This
concept though mathematically significant has by itself no physical content; it
is merely the choice of a particular mathematical apparatus for describing and
analysing phenomena. An alternative procedure is to choose a static space, as
in ordinary physics, and analyse the expansion-phenomena as actual motions
in this space” (Milne 1934). Rejection of the expanding space paradigm in
favor of Milne’s picture of expansion in fixed Euclidean space contradicts
general relativity and leads to the conclusion that the universe possesses a
center and an edge. In numerous popular but misleading treatments, Milne’s
center is associated with the big bang.

paradigm serves as a useful idealization enshrined in the
Robertson-Walker metric.

Spatial homogeneity and isotropy imply a preferred
(universal) space, and the time invariance of homogeneity and
isotropy implies a preferred (cosmic) time. In the comoving
frame, space is isotropic, receding bodies are at rest, and pecu-
liar velocities have absolute values. (Thus the Sun’s absolute
velocity is determined from the dipole anisotropy of the cosmic
background radiation.) This picture of expanding and curved
space is fully consistent with special relativity locally and
general relativity globally (Robertson 1935; Walker 1936).

4.1. The Velocity-Distance Law

In expanding homogeneous and isotropic space, let comov-
ing markers A, B, C,... be equally spaced in a straight line,
with a separating distance o between adjacent markers. Homo-
geneity requires that if B recedes from A at velocity aH(t), then
also C simultaneously recedes from B at velocity aH(t), and so
on. Hence C recedes from A at velocity 2aH(t), D at velocity
3aH(z), and so on, thus illustrating the tape-measure nature of
proper distance in uniform space, and the essential linearity of
the velocity-distance law:

V = constant x L,

where the “constant” is constant in space but not necessarily
in time. Unlike the empirical redshift-distance law, this result is
valid for all distances L. The “constant” is usually determined
by assuming that ¥ = ¢z for small z, thereby obtaining from
the z(L) law of equation (1) the V(L) law of equation (4). If V(L)
were nonlinear, the receding markers A, B, C,... would become
unequally spaced, and homogeneity would be destroyed. This
simple argument demonstrates that time-invariant homo-
geneity, as expressed by the cosmological principle (all places
are alike at each instant in time), requires a linear velocity-
distance law.

The implications of a linear velocity-distance law seem star-
tling: the velocity of recession has no upper limit. Inside a
Hubble sphere of radius Ly, the recession velocity of comoving
bodies is subluminal (V < ¢), and outside is superluminal
(V > ¢). Light emitted toward the observer by a body outside
the Hubble sphere travels in space at velocity ¢, but because
space itself recedes superluminally, the light actually recedes.
The light may eventually reach the observer, however, if the
Hubble sphere expands in the comoving frame, i.e., dLy/dt > ¢
(Harrison 1991, 1992).

4.2. Wave Stretching

Wave-stretching illustrates an important application of the
expanding space paradigm. The rule is that waves, wave trains,
and distances between wave packets of radiation in space are
progressively stretched and vary in proportion to the scale
factor R(t). Let A, and A, be the wavelengths at emission and
reception, respectively, and R; and R, the corresponding
values of the scale factor; from the wave-stretching relation
A oc R, we have 45/4, = Ry/R,, and the redshift expression z =
(Ao — A1)/A, gives Lemaitre’s (1927, 1931) important result

z=Ro/R; — 1. 7)

Thus a redshift z = 1 means the universe has expanded twofold
since the emission of light with this redshift. According to the
expanding space paradigm, the progressive stretching of waves
is not the familiar Doppler effect (Harrison 1981) and justifies
the reservation of earlier workers who hesitated over the
appropriateness of a Doppler interpretation.
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Equation (7) applies to the propagation of time intervals. Let
pulses of radiation be emitted by a source of redshift z at time
intervals At ; the distance cAt that separates the propagating
pulses increases steadily in expanding space and the pulses
arrive at the receiver at intervals Aty = (1 + z)At,.

5. ROBERTSON-WALKER METRIC

The expanding space paradigm derives from the fundamen-
tal assumption of invariant homogeneity that underlies the
Robertson-Walker line element

ds? = dt? — R(t[dr? + f()X(d0? + sin?0dp?)],  (8)

established formally by Robertson (1935, 1936a, b) and Walker
(1936, 1944), and anticipated by Friedmann (1922, 1924),
Lemaitre (1927, 1931), Robertson (1929), and Eddington
(1930). In this line element, r, 6, ¢ are comoving space coordi-
nates, f(r) =sinr, r, or sinhr corresponding to curvature-
constant values k = 1, 0, or —1, respectively, and R(t) is the
scale factor.

5.1. Velocity-Distance Law
The proper distance of a comoving body of fixed coordinate
distance r from a comoving observer is L = cR(t)r. Because of
the constancy of r, the recession velocity of the comoving body
is dL/dt = cRr (where R = dR/dt). The velocity V = dL/dt is
V = (R/R)L, and with H(t) = R/R we obtain the velocity-
distance law of equation (4).

5.2. Lemaitre’s Redshift Law

Lemaitre’s redshift equation (7) is usually obtained from the
radial null-geodesics (ds = 0, d0 = 0, d¢ = 0) of the Robertson-
Walker line element. Thus dr = +dz, where dt = dt/R, and the
equation to the past light cone (with the minus sign) is

r=t,—71. &)

For a body at a fixed comoving coordinate distance r, we are
given that dr = 0, and an interval of conformal time dz is con-
stant and everywhere equal to dt, on the light cone. At emis-
sion dt, equals dt, at reception, or dt;/R, = dt,/R,, and
propagated intervals of cosmic time vary with the scale factor
R(t). Because v, dt, = v, dt,, and vy 4, = v, 4, for frequency v
and wavelength A, we obtain the wave-stretching result
Ao/A1 = Ro/R, that gives Lemaitre’s equation (7).
The distance of a source at the time when it emits light is

I'=cRy(to — 14), (10)
and the distance to the same source when light arrives is
L = cRo(to — 11) (11)

and the two distances are related by L = (1 + z)L.

6. VELOCITY-REDSHIFT EXPRESSIONS

6.1. Doppler Velocity-Redshift Formula
The Doppler formula

V(2) = c(z? + 22)/(2% + 2z + 2) (12)

is valid for peculiar local motions and not for comoving global
motions. We cannot combine the velocity-distance V(L) law of
equation (4) and the Doppler V(z) formula of equation (12) to
yield a general redshift-distance z(L) relation. Cosmological
models have different V(z) relations that are generally quite
unlike the Doppler formula except in the limit of small z. Thus,
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for z < 1, Lemaitre’s redshift equation (7) yields

z~AR/R ~ L/Ly, (3a)
where AR/R = HyAt = HyL/c for L = cAt, and from V =
cL/Ly we arrive at the classical approximation V = cz.

6.2. The General Redshift-Distance Relation
The distance to a comoving body is

to
L =cRyr =cR, J dt/R(1) ,
t

from equation (9), where the integral is from emission at time ¢,
to reception at time t,. Using the velocity-distance law V =
H,Land

dt/R = dR/HR? = —dz/HR, ,

we find
V(z) = cH, J Az /) (13)

and this, not the Doppler formula of equation (12), is the most
general form of the velocity-redshift relation.

6.3. Models of Constant H

Clearly, if H is constant in time, i.e., H(z) = H,, then equa-
tion (13) gives

V=cz, (14)

and this pseudo-classical Doppler expression holds for all
values of z in exponentially expanding de Sitter, steady-state,
and inflationary spaces. From the V(L) law we see that the
linear Hubble law

z=L/Ly ©)

is true for all z without approximation. The distance to the past
light cone at the time of emission, according to equation (10), is

I=Lyz/(1 + 2), (15)
and the light cone at high redshift asymptotically approaches
the surface of the Hubble sphere of constant radius Ly.

6.4. Friedmann Models
For the Friedmann models of zero cosmological constant,
(HR*Q - 1) =k, (16)
we have
QH?R® = Q. H} R}, 17
at zero pressure, where Q is the density parameter. Hence
H(z) = Hy(1 + z)(1 + zQ)'?, (18)

and on substituting this result in equation (13) and integrating,
we find

|4 _
=@ -7
. (2Q, — Y2
X sin ! <m— {ZQO + (QO - 2)[(1 + 290)1/2 — 1]} N
(19
and in the limit of small z this yields V = cz, as expected.
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6.5. Power-Law Models

For models in which R oc t", with n constant in the range
1 <n<1,wefind

H(z) = Hy(1 + 2)'", (20)

and hence
V(z) = c[n/(1 —m][1 — (1 + 2"~ D], 2y

The nonrelativistic (relativistic) Einstein-de Sitter model corre-
sponds to n =% (n=1). Comparison of equation (12) with
equations (14), (19), and (21) shows that the expansion redshift
is not a simple Doppler effect.

7. DISCUSSION

In the literature, both the redshift-distance z(L) and the
velocity-distance V(L) relations are referred to as Hubble’s law.
Strictly, in a homogeneously expanding universe, the linear
z(L) relation advanced by Hubble is the true Hubble law, valid
only for small redshifts, whereas the linear V(L) relation is
valid for all geometric distances L. Because of the curious
custom of referring to both the z(L) and V(L) relations as
Hubble’s law, the z(L) relation has acquired an undeserved
validity that properly belongs to the V(L) relation.

The habit of converting redshifts into radial velocities by
means of the Doppler approximation V = cz, though conve-
nient astronomically, has undoubtedly caused much of the
confusion surrounding the z(L) and V(L) relations. Cosmo-
logists in the late 1920s and early 1930s were greatly influenced
by the properties of the de Sitter metric (Ellis 1989, 1990), that
in its exponentially expanding form yields the expression
V = ¢z for all z. This simple pseudo-Doppler expression inter-
changes z and V in the z(L) and V(L) laws, and the two laws
become equivalent, justifying their joint reference as Hubble’s
law in the case of this metric. But incorrect application of the
pseudo-Doppler expression in other metrics has fostered the
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belief that the z(L) and V(L) laws are generally identical.
Expansion redshifts and Doppler redshifts are in fact physi-
cally distinct except in Milne’s theory of kinematic relativity
that rejects general relativity and the expanding space para-
digm.

Newtonian cosmology provides a lucid description of the
velocity-distance law in Euclidean space (Milne 1934; McCrea
& Milne 1934), and the popularity of this treatment (Bondi
1952) has perhaps contributed to the belief that a linear
velocity-distance law applies only to nonrelativistic recession
velocities. The unlimited recession velocities of the velocity-
distance law required by invariant homogeneity are fully con-
sistent with general relativity.

From a purist point of view one cannot but deplore the
expression big bang, “loaded with inappropriate con-
notations” (McVittie 1974), which conjures up a false picture
of a bounded universe exploding from a center.in space. In
modern cosmology, the universe does not expand in space, but
consists of expanding space.® and this correct picture leads
naturally to a distinction between the redshift-distance and the
velocity-distance laws.

In all expanding homogeneous and isotropic cosmological
models, the linear velocity-distance law is the fundamental
relation, valid for all distances, and the linear redshift-distance
law is only an approximate relation, valid for small redshifts
and distances that are small compared with the Hubble dis-
tance.

I am indebted to W. H. McCrea for earlier discussions, and
to P. J. E. Peebles, A. R. Sandage, and D. N. Schramm for
recent comments on aspects of this work.

3 “The theory of [general] relativity brought the insight that space and
time are not merely the stage on which the piece is produced, but are them-
selves actors playing an essential part in the plot ” (de Sitter 1931).
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