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ABSTRACT. Astronomers routinely violate the directive to sample surface brightness with at least 
twice the frequency of the highest spatial frequency of the Fourier transform of the continuous image, 
when doing direct CCD imaging. It is reasonably speculated that this practice is rationalized on the 
basis that the CCD does not actually sample the surface brightness at periodic intervals, but instead 
integrates the surface brightness over contiguous regions (the CCD pixels). It is herein derived that this 
mode of sampling changes the form of aliasing error, but the aliasing error is nevertheless present when 
undersampling occurs. The very nature of the error betrays the possibility of detecting its presence, a 
priori It would be of value to develop an active optical apodizer to accommodate a given CCD, in terms 
of the Nyquist criterion, without the need to abandon either the full light-gathering power of the 
telescope or the plate scale at the chosen observing station. 

1. INTRODUCTION 

1.1 Observational Background 

The use of digital imaging techniques in the photometry 
for the surface brightness of extended objects introduces a 
new source of systematic uncertainty into the correspond- 
ing error budget: aliasing due to undersampling. The error 
is pernicious in its lack of contribution to a visibly obvious 
increase in image noise level, as it takes the form of a 
failure of simple interpolation techniques within the digi- 
tized image and the aliasing of fine structure within the 
continuous image into systematic patterns of a broader na- 
ture. Aliasing error is something like a beat phenomenon 
between the sampling frequency and higher frequencies in 
the information spectrum, and as such is a form of system- 
atic error at the grid points themselves of the digitized 
image. Astronomers are inclined to feel vindicated in ig- 
noring the maxim formulated by Nyquist, that the light 
signal must be sampled at least twice as frequently, in tra- 
versal of the continuous image, as the cresting in the finest 
sinusoid in its Fourier decomposition, if this aliasing error 
is to be avoided. One principle reason for this omission is 
that adherence to proper sampling theory often requires a 
very high focal ratio, so high that the exposure time is 
increased to impractical duration. Of course this consider- 
ation does not cause the error to vanish, and generally 
impacts only deep sky photometry, interestingly increasing 
exposure times to values once tolerated in the era of the 
photographic emulsion. In lunar and planetary astronomy 
the use of diaphragmed apertures to achieve focal ratios in 
Nyquist compliance is not only feasible but has sometimes 
actually been practiced (Wildey 1977, 1978). A full-moon 
exposure with a CCD is still under 1 s at a focal ratio of 80 
and a spectral bandwidth of 200 A, at wavelength 5000 A. 
An exposure for Jupiter is nominally only 60% longer. 
Light is a terrible thing to waste, but collecting extra pho- 
tons in the form of partly scrambled signal may be a bad 
bargain. 

A second justification for ignoring the Nyquist criterion 
may be offered in terms of the dominance of atmospheric 
seeing over the fundamental diffraction of the telescope's 
aperture. But if compliance with the Nyquist criterion is 
brought about through the use of an off-axis aperture in a 
diaphragm at the entrance pupil, thus degrading the dif- 

fraction limit, the resolution will be sufficiently low that 
seeing will not be dominant most of the time. In addition, 
even if the telescope's resolving power and light-gathering 
power is preserved in bringing about Nyquist compliance, 
through the use of a repeater lens to increase effective focal 
length, it must be remembered that seeing, unlike diffrac- 
tion, attenuates and shifts the complex amplitudes at 
higher spatial frequencies rather than omitting them. Im- 
age restoration techniques are feasible where seeing is con- 
cerned, because the information is there. But no form of 
image processing can compensate for undersampling. 

Perhaps the principle reason for the failure to comply 
with the recommendation emerging from Nyquist's theo- 
rem is the accurate perception of the invalidity of its ap- 
plication, that the premise upon which it is based and even 
the language of its development and conclusion are incom- 
patible with the conditions of CCD photometry. For in fact 
the CCD does not sample periodically the continuous im- 
age, but instead integrates over each member in a uniform 
series of contiguous intervals. May not such breadth of 
integration cancel out the aliasing errors that would be 
implied in a formally correct application of Nyquist's the- 
orem? The principle contribution of the present paper is to 
derive a properly modified form of Nyquist's theorem that 
is rigorously applicable to CCD photometry. In doing this, 
it has been discovered that such aliasing errors are not 
canceled out by spatial integration, though they are signif- 
icantly changed in form, and that the emergent criterion 
remains unmodified in expression. 

1.2 Theoretical Background 

Nyquist's theorem is elaborated in many different text- 
books, e.g.. Downing (1961), in relation to signal process- 
ing theory. The theorem transcends dimensionality. It may 
involve an independent variable to be thought of as time, 
and hence be one dimensional (Downing 1961), or two 
independent variables that are coordinates in an optical 
image, and hence be two dimensional (Wildey 1967 ab, 
1973). In continuous spectrometric imaging the problem is 
three dimensional (Young 1974) (the concept of the image 
"cube"). But the logic that underlies the Nyquist criterion 
is independent of dimension, so that if it is stated in one 
dimension its nature in η dimensions is obvious. Formally 
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stated, it can be proved that if a continuous function is 
known only in the form of a tabulation at evenly spaced 
discrete values of its independent variable, there is a simple 
condition which, if satisfied, guarantees that there is zero 
loss of information in going from the continuous function 
to its tabulation. That condition is that the sampling fre- 
quency of the table (the number of tabulations of the func- 
tion per unit interval of the independent variable) must 
equal or exceed twice the highest frequency at which infor- 
mation exists in the Fourier transform of the continuous 
function. If there is no information loss, the inescapable 
conclusion is that the exact value of the function at an 
arbitrary value of its independent variable can be obtained 
from the table. This may be thought of as a form of inter- 
polation, hbwever, it is ultimate in high order, as the entire 
table is involved for the inference of functional value at one 
point in the continuum of values. 

The mathematical equivalent of a table of values of a 
function is the product of the function with a sum of pro- 
gressively shifted Dirac delta functions. If the function is 
the distribution of flux in the focal plane of a telescope, 
then the corresponding table is the array of reduced surface 
brightnesses derived from the time-integrated signals re- 
corded by an array of detectors whose individual point- 
spread functions (spatial responsivity functions) are infin- 
itesimally narrow compared with their spacings. Because a 
CCD is more nearly an array of flat-topped vertically sided 
functions that abut one another (an array of contiguous 
"boxcar" functions), there is no justification for applying 
the Nyquist criterion in the above form in order to deter- 
mine whether one's CCD images possess aliasing errors, or 
may not be reliably interpolated with a precision that in- 
creases as higher-order interpolation formulas are used. A 
visceral sentiment that a sampling frequency selected ac- 
cording to the Nyquist criterion must surely be correct 
within a factor of 2, even if not erroneous, is not of ade- 
quate precision. Nor is there more than vague satisfaction 
in the notion that the Airy disk should just nominally 
cover an individual pixel of the CCD. The subject deserves 
deeper and more rigorous inquiry. 

^U)= rix^fix—x^dx', 
J — cc 

s{x)=r{x)*f{x), (1) 

where r{x) is the point-spread function of the detector, 
normalized to integral unity. We have defined the integral 
operation of convolution above, in terms of the asterisk, for 
subsequent brevity of notation. 

Insofar as the electron wells of a CCD are operationally 
identical, the digital image that it acquires can be related to 
Eq. (1) by stating that such image is equivalent to 5(^:) 
being given only at discrete positions, χ = ηΔ, where « is a 
real integer and Δ is pixel separation. Then r(x) is now the 
nominal point-spread function of a pixel (we are not yet 
enforcing that Δ is also the pixel size). A functional rep- 
resentation of the digitized image, which we will call h(x), 
can be easily contrived, 

oc 
h(x)= Σ 8 

h{x)= Σ δ(χ-ηΔ)[/·(χ)*/(χ)]. (2) 
n = — oc 

For the moment, we will ignore the implication that the 
infinite limits on the summation suggest an infinitely large 
format for the digital image (see the Appendix). Thus 
h(x) is the digital version of j(^:). The use of the Dirac 
delta function, inasmuch as the final pixels are thereby 
infinitely narrow, expresses the result in terms of pure in- 
formation, as ready for processing on a digital computer, 
whereas an optical rendering would be represented by an 
additional convolution of h(x) with such as a boxcar func- 
tion. No conceivably useful form of processing for present 
considerations demands such additional operation. We re- 
emphasize that CCD operation is already incorporated 
into 5( λ: ), and that this use of the Dirac delta function 
signifies only the discreteness of a tabulation and not an 
idealized point-spread function. 

2. THE PRESENT THEORY 2.2 Analysis in the Fourier Domain 

2.1 Modeling the Signal in Image Space 

In the following treatment, we will keep arguments 
transparent to the need for normalization constants in tak- 
ing Fourier transforms for the sake of simplicity. We will 
also avoid the unwieldy notation required for two-dimen- 
sional dependence, inasmuch as the extension of applica- 
bility from one dimension to two is completely straightfor- 
ward, so long as one is content with Cartesian coordinates. 

Let a one-dimensional continuous image formed by a 
hypothetical telescope be represented by the function /(*)· 
The function thus defined is not the original scene, then, as 
its Fourier spatial spectrum has already been apodized in 
the form of the Fraunhofer diffraction of the telescope's 
entrance aperture. Next, let the continuous spatial signal 
stream corresponding to the dwell of a general transducing 
device be 5(λ:). It is mathematically useful to the present 
argument to define such a function even though it corre- 
sponds in any practical sense to image acquisition by area 
scanning rather than the simultaneous operation of detec- 
tors in an array. The relation between 5(je) and f{x) will 
then be given by 

We now wish to take the general complex Fourier trans- 
form of both sides of Eq. (2). With ω as frequency in the 
sense of radians per unit interval of x, we follow the con- 
vention of using the capital letter corresponding to the 
lower-case function designation to signify its Fourier trans- 
form. The Fourier transform of the sum is the sum of 
individual Fourier transforms. Thus 

Η{ω) 
- 1 J" n= — 00 J — 

{δ{χ — ηΔ) [r{x)*f{x)\}ei(ÙX dx. 

(3) 

An important theorem of Fourier analysis is now useful 
(e.g., Bracewell 1986): 

The Fourier transform of a product is the convolution 
of the individual Fourier transforms. The Fourier trans- 
form of a convolution is the product of the individual 
Fourier transforms. 

Applying this theorem twice, once in each form, we have 

Η(ω)= Σ {βΐω^* 
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Η(ω)= [Κ{ω,)Γ(ω,)]6'"^{ω'-ω') do)'. 

(4) 

[That 6χρ(/ωΑ7Δ) is the Fourier transform of δ{χ — ηΔ) is 
a matter of straightforward integration.] In the explicit 
form of the convolutions of Eq. (4), we see that the sum- 
mation and integration can be commuted and terms not 
containing η can be factored out of the sum. This yields 

Η{ω) Κ(ω')Ρ{ω') Σ ) (5) 

The series sum on the extreme right-hand side of the 
integrand of Eq. (5) can be regarded as the Fourier series 
representation of some function we will label g, whose ar- 
gument is {ω —ω'). The peculiarities of this Fourier series 
are that its coefficients are all the same and that its peri- 
odicity in {ω —ω') is 2π/Δ. Given the general rule for 
determining Fourier coefficients on a periodic interval, as 
applied to this situation, 

J+77/Δ 
g{y)ei'iy^ dy=comX independent of n, 

-77/Δ 
(6) 

the nature of g{y) emerges. If Cit is independent of the 
value of «, it is thereby independent of the weighting given 
to g00 by the weighting function exp{inyA) at all values 
of y for which the value of η influences the weighting. That 
is, the weighting of g{y) is immaterial at all values of y 
exceptThis is only possible if g{y) is zero everywhere 
except at ^=0, where it is sufficiently infinite to produce a 
finite contribution to an integral. In other words. 

(7) 

the Dirac delta function. As a Fourier series representation 
of <50;), however, the periodicity on a repeating interval of 
2π/Δ must follow. [If the limit is taken in Eq. (6) as the 
periodic interval becomes infinite, the well-known Fourier 
integral representation of the Dirac delta function emerges 
(Mathews and Walker 1965).] 

As a result of immediately preceding considerations, we 
conclude that 

Σ Σ (8) 

in which the summation on the right-hand side for terms 
other than m=0 provides the requisite periodicity. Rela- 
beling the independent variable from y to (ω —ω'), and 
inserting from Eq. (8) into Eq. (5), we have 

Η{ω)= ^ Riœ^Ficù') X ô^co — co'— ^ jûfa/. 
(9) 

In Eq. (9) we may take Λ (ω'under the summation 
sign and then interchange integration and summation to 
obtain some directly do-able integrals: 

Ä Γ00 / 2-77777 \ 
Η{ω)— 2u Κ{ω')Ρ{ω')δ{ω—^- — ω'\άω\ 

m= — oo J — oo \ J 

™ ( Irrm \ / Ιττηι \ 
Η(ω)= ΣΛ-J · (10) 

2.3 Aliasing as Harmonic Overlap 

Thus we see that the effect produced by discretely sam- 
pling the continuous function 5(x) [to produce h{x)] is 
that it accomplishes a result whose Fourier transform is 
not only the Fourier transform of ^(λ:), but the sum of that 
transform with an infinite number of versions of itself 
whose origins are shifted from zero to the sampling fre- 
quency and all of its harmonics. Given that fact, it must 
now follow that if, and only if, the shifted versions of 5( ω ) 
=R{co)F{co) do not overlap, one can formulate a method 
of exactly "interpolating" the value of s{x) by taking the 
Fourier transform of h{x), multiplying the result by a 
product of Heaviside step functions (to form a boxcar 
function) in the form of 

Η -ω \HA ^ + 

thus isolating the Fourier transform of ^(x), then taking 
the inverse Fourier transform of that result and evaluating 
it at the desired value of x. The foregoing condition is 
identifiable with the Nyquist criterion, but applied to the 
function [K·*:)*/(·*:)], not /(^), as would be the case in a 
straightforward application of Nyquisfs theorem as 
though a CCD were an array of Dirac delta functions. The 
characteristics of the CCD, as the specifier of r{x) and 
Κ{ω), have not yet been introduced into the argument. 
That is now the appropriate point to raise. 

2.4 The CCD as Periodic Convolver 

For a CCD image, at least the vast majority of nonex- 
perimental varieties in which the dimension of the photon- 
capture well greatly exceeds the wavelength of light, there 
is a simple relation between the point-spread function and 
the sampling interval. The point-spread function is a box- 
car function whose width is the sampling interval. Conse- 
quently, its Fourier transform is simply 

JA/2 

-Δ/2 
dx, 

sin(á)A/2) 
r{cû)= (^δ/2) =sinc(^A/2)· (11) 

The zeros of Κ{ω) occur at ωη = ΐΊτη/Δ for all nonzero 
integers «. As we address the issue of overlapping harmon- 
ics, we note that if this ^(ω) from Eq. ( 11 ) is substituted 
into Eq. (10), with no constraints on F {ω), the center 
frequency (zero) of the dc component of the right-hand 
side of Eq. ( 10) is superposed with the nth. zero of the nth. 
harmonic, and all harmonics are present. We further note, 
more specifically, that at one half the sampling frequency 
of the CCD, one sample per (2A) or π/Α radians per unit 
of x, which is where S {ω) must reach and stay at zero if 
there is to be no overlap from the first harmonic, and hence 
aliasing errors are to be avoided, the contribution is the 
same from Κ{ω) and i^[a}— (27r/A)] at a value of 200/77- 
= 64% of maximum. This state of affairs is indicative of 
aliasing. It also precludes the simple interpolation of 5(λ:), 
hence the reasonable inference of f{x) to a definable pre- 
cision and resolution. Such an interpolation produces a 
result that cannot be precisely characterized, given a free 
choice of /(x), but its difference from the correct result 
may be crudely approximated as a random variable whose 
mean stationary amplitude is equal to the rms difference 
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between adjacent pixels in the image and whose correlation 
length is about one-fourth, more or less, of pixel separa- 
tion. 

Therefore, the assurance of the necessary purity of the 
signal, s{x), is not to be gained from the behavior of the 
CCD. It must be supplied by insuring that F (ω) cuts off 
absolutely at ω = π/Δ, thus guaranteeing the nonoverlap of 
the harmonics on the right-hand side of Eq. ( 10), irrespec- 
tive of the behavior of R{co). This condition can only be 
reasonably imposed by assuring that the optical transfer 
function of the telescope cuts off at ω = ω€=π/Δ. This be- 
comes a constraint on the focal ratio of the telescope im- 
posed by the choice of CCD. 

2.5 Optical Transfer Function of the Telescope 

The optical transfer function of the telescope is a scaled 
autoconvolution of the aperture as a cylindrical boxcar 
function, which cuts off at a spatial frequency, in cycles per 
radian of scene/image subtension at the effective 
lens/mirror nodal point, equal to the objective diameter 
divided by the wavelength of light (e.g., Smith 1963). Let 
the effective focal length be /, the objective lens/mirror 
diameter be D, the focal ratio be F, and the wavelength of 
light be λ. The focal plane scaling factor is the reciprocal of 
the focal length. In terms of radians rather than cycles, the 
telescope imposes the condition 

2πΌ 2π 
ω=ΊΤ=λΡ·(12) 

But we have made a case for setting this cutoff at π/Δ. 
Consequently, we require 

F=1UI. (13) 

2.6 Theoretical Summary 

Equation (13) expresses the same result that would 
have been achieved had we required the optical transfer 
function to cut off at one-half the sampling frequency of 
the CCD, i.e., as though a CCD were an array of Dirac 
delta functions and the Nyquist criterion could be straight- 
forwardly applied. However, such an approach was not 
justifiable and the argument presented has been quite dif- 
ferent. 

3. DISCUSSION 

In Table 1 we have randomly chosen a collection of 7 
CCDs currently accessible to the astronomical community. 
The set of corresponding focal ratios has been based on a 
wavelength of 5000 A. Only the smallest pixel size avail- 
able (which tends to indicate a more temperamental CCD) 
enables compliance with the Nyquist criterion at a typical 
telescope's Coudé focus, operated at full aperture. The 
Tektronix 512x512 CCD with 27 μηι pixel size would be 
the more likely candidate for deep-sky imaging photometry 
at a prime or Newtonian focus, just as in former times 
signal-to-noise considerations would have dictated a 
coarse-grain emulsion over a fine-grain emulsion for such 
work. With a likely focal ratio of from 3 to 5, the result 
would be undersampling by a factor of from 22 to 36. To 
take the Hale telescope as an example, the sampling fre- 
quency would be about one cycle per second-of-arc of the 
celestial sphere, while the cutoff of the optical transfer 
function is about 30 cycles per arcsec. It can be calculated 

Table 1 
Commonly Available CCDs 

Δ 
Manufacturer Format (jUm) F 

Videk (Kodak) 1320x1035 6.8 27 
Thompson, T. T. 1024x1024 12 48 
Ford, RCA 512x512 20 80 
GEC8602 576x385 22 88 
Tektronix 512x512 27 108 
TI/VPIM 1024x1024 18 72 
TI4849 582X390 22 88 

that a strong periodic pattern in object space at a charac- 
teristic spatial frequency of 1.02 cycles per arcsec, if the 
foregoing sampling frequency be taken exactly, will be im- 
aged, in part, as a periodic pattern of almost a minute of 
arc between the brightness crests, with scarcely a diminu- 
tion of 50% over the original amplitude of the unaliased 
frequency. Strictly speaking, the result is not a photometric 
error, but a morphometric error, but that nuance provides 
little consolation. In the example just cited, should the 
telescope be diaphragmed to 15 cm to conform to sampling 
theory, the exposure time will increase by a factor of 900. 
If light is not wasted, by use of 4 X repeating optics at the 
Coudé focus, the long exposure will still be required for a 
single frame, in addition to which that frame will be but 19 
arcsec across. What is needed is an active optical device 
that will cleanly reapodize the image, without diminished 
entrance pupil, somewhere ahead of the CCD. 

The foregoing discussion has been thus far limited to the 
aliasing error that can appear even at the precise grid 
points of the digital image. There is also the matter of the 
precision of interpolation. For unbounded variation of the 
sampled function in a strictly correct context for applica- 
tion of Nyquist's original theorem, the size of error in a 
failure of linear interpolation caused by undersampling is 
itself unbounded. But for the nature of the sampling pro- 
cess that is characteristic of a CCD, the interpolation error 
is clearly relatively subdued and more nearly like the ran- 
dom variable discussed earlier in terms of its approximate 
boundedness. It remains a mode of characterization of the 
error associated with undersampling. 

Compliance with the Nyquist criterion, in terms of in- 
terpolability, serves concrete practical considerations in 
certain programs. For example, the lunar photometry pro- 
gram proposed by Kieffer and Wildey (1985) of modeling 
reflection of sunlight from the lunar surface so that the 
Moon can be used to radiometrically and stereometrically 
calibrate spacecraft and satellite imagery after launch re- 
quires intercomparison of an extremely large number of 
photometric images of the Moon over a range in libration 
and phase requiring years to accumulate. It is a logistical 
necessity that every image be interpolated and accumu- 
lated on a master selenographic grid for proper modeling. 

4. CONCLUSION 

The principal conclusion of this investigation is that 
compliance with the Nyquist criterion is worth pursuing 
any time that it is remotely feasible to do so. The fact that 
a CCD samples surface brightness by integrating it over 
contiguous intervals does not prevent the presence of the 
aliasing errors that would be expected from an array of 
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infinitesimal spatial samplings, should that sampling be in- 
adequately frequent according to Nyquist's theorem. When 
aliasing errors are present they do not signify it in the 
manner of the "snow" of random errors. The pursuit of 
research in the development of active optical devices to 
smoothly apodize the transfer functions of telescopes to 
accommodate the sampling intervals of digital imaging de- 
vices, without sacrificing light-gathering power or increas- 
ing scale, is to be encouraged. 

APPENDIX 

In the foregoing derivation, the infinite limits of the sum 
in Eq. (2) should be actually truncated in order to provide 
a finite-image format, contrary to the development shown. 
Infinite limits were accepted ostensibly because of the ir- 
relevance of predictions outside the central region of actual 
interest. We now deal with the issue in less cavalier 
fashion. The effect of a truncation at n=±N is to 
replace the Η {ω) of Eq. (10) by its convolution with 
[ύη{ωΝΔ/2)/{ωΝΔ/2)]. That this is true can be seen as 
follows. Firstly, the truncation can be realized by retaining 
the infinite limits on the sum and multiplying the Dirac 
delta function, —«Δ), by an even boxcar function of x 
whose edges are at ^Λ^Δ. Where one formerly had the 
Fourier transform of δ(^-«Δ) involved in the argument, 
one will now have the Fourier transform of this product, 
which is the convolution of the Fourier transform of the 
boxcar function with the Fourier transform of the Dirac 
delta function. The Fourier transform of the boxcar is the 
foregoing sine function of {ωΝΔ/2). It is not a function of 
η and can be taken to the left-hand side of the summation 
sign in Eq. (4), using also the fact that all convolutions are 
simply commutative and associative. What is left on the 
right-hand side of this final convolution is the expression 
ultimately devolved to the Η{ω) of Eq. (10). Q.E.D. 

The convolution of the Dirac delta function with any 
function is simply that function returned unmodified. The 
sine function of (ωΝΔ/2) is negligibly different from the 
Dirac delta function (spike-spent in an interval small com- 
pared to a pixel) so long as ^>1. That deserves slightly 
more elaboration. Certainly this sine function is thor- 
oughly born and dead over a range of ω that is small 
compared to the range required for significant change of 

Λ [ω — (277777/Δ)]. It would appear that that would have to 
be true for Γ[ω— (2π/72/Δ)] as well, if the trivialization of 
this issue is to remain justified. By nature of the Fourier 
transform pair relation, abruptness in F transforms to 
breadth in /. If we arbitrarily say that the effective range of 
operation of this sine function is within ten sign changes of 
either side of its maximum, that is in correspondence to 
Δω=40π/ΝΔ. An abrupt change in such a range implies 
significant amplitude at the corresponding "frequency" 
(the frequency corresponding to ω is actually x) of 
27γ/(407γ/ΛγΔ) = ΝΔ/20. But presumably the image extent 
is (Δχ) =27VA. Have we just shown that the incorruptible 
image we wish to process must occupy no more than 
l/40th of the region of digitization? Although the answer 
develops from discrete Fourier transform theory (Pratt 
1978) that is beyond the scope of the present paper, the 
answer is yes only if one insists that the rest of the region 
be null. For a range of digitization in correspondence with 
image size, at Δχ = 2ΝΔ, the rest of the space of x will not 
be unoccupied but contain periodic reproductions of fix). 
But there would not be file coverage in that greater region, 
and that is consistent with the fact that it contains redun- 
dant information. 
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