
PQ O'! r" 

S The Astrophysical Journal, 390:79-87,1992 May 1 
© 1992. The American Astronomical Society. All rights reserved. Printed in U.S.A. 

CM 
O'! \ 1 

DYNAMICAL FRICTION FROM FLUCTUATIONS IN STELLAR DYNAMICAL SYSTEMS 

Jacob D. Bekenstein and Eyal Maoz 
Racah Institute of Physics, Hebrew University of Jerusalem, Jerusalem 91904, Israel 

Received 1991 May 30 ; accepted 1991 November 7 

ABSTRACT 
A test particle traveling through a collisionless gravitating background suffers a dissipative drag force 

known as dynamical friction. As with other dissipative forces, this friction must be related to fluctuations in 
the underlying medium (fluctuation-dissipation theorem). However, this long recognized aspect of the force did 
not easily yield to analysis until now, and Chandrasekhar’s celebrated formula was obtained by considering 
momentum exchanges resulting from encounters between a test particle and field particles which were ideal- 
ized as occurring sequentially. In this paper we return to the underlying basic physics and develop a theory of 
the interaction of the test particle with the stochastic force of the background. This enables us to derive in a 
unified way the Chandrasekhar formula for the friction (for the full range of tn/M) and the heating of the 
particle by background fluctuations. This new approach shows that dynamical friction fits into the generic 
fluctuation-dissipation relation. It also readily suggests the modifications that would be required to treat 
dynamical friction and heating in an inhomogeneous background, as well as in the presence of initial corre- 
lations between background particles. 
Subject headings: celestial mechanics, stellar dynamics 

1. INTRODUCTION 

A particle traveling through a collisionless gravitating background suffers a dissipative drag force known as dynamical friction. 
This phenomenon, which is of great practical importance in astrophysics [destruction of galaxy’s globular clusters (Ostriker & 
Tremaine 1975), galaxy cannibalism (Tremaine, Ostriker, & Spitzer 1975), etc.] is customarily quantified by Chandrasekhar’s 
dynamical friction formula (see eq. [1.1]), valid for the motion of a single point particle in an infinite homogeneous background. 
Now, in common with other dissipative forces, dynamical friction must arise in connection with fluctuations in the underlying 
medium : it must be an aspect of the very general fluctuation-dissipation relation. Indeed we recall that electrical resistance can be 
expressed in terms of the low-frequency component of voltage fluctuations in the resistor (Nyquist’s theorem), and viscous friction is 
related to the low-frequency component of the stochastic force in the liquid (Reif 1965). This strongly suggests that it should be 
possible to derive a complete expression for dynamical friction from consideration of the statistics of stochastic forces in a 
gravitating system. 

It seems that this was indeed Chandrasekhar’s original aim (Chandrasekhar 1944a, b). He was able to show from statistical 
considerations that a dynamical friction force is required. But the early attempts to derive a formula for it from statistical mechanics 
did not yield satisfactory results. Chandrasekhar & Von Neumann (Chandrasekhar 1943, 1944a, b; Chandrasekhar & Von 
Neumann 1942, 1943) developed in great detail a statistical theory of stochastic motion in gravitational systems under certain 
simplifying assumptions, but could not derive the frictional effect due to the daunting mathematical complexity of the scheme. 
Chandrasekhar then devised an alternative kinetic approach which views the momentum exchange of the test particle and back- 
ground as due entirely to successive binary encounters. It is this approach which first yielded the celebrated dynamical friction 
formula (Chandrasekhar 1943), but it remained unclear whether the summation of successive two-body encounters is not an 
oversimplified picture. The same uncertainty recurs in Fokker-Planck analyses of dynamical friction (e.g., Rosenbluth, MacDonald, 
& Judd 1957 ; Binney & Tremaine 1987) which again calculate the various diffusion coefficients in the binary approximation. 

A rebirth of the stochastic approach to dynamical friction (Cohen 1975; Kandrup 1980,1983) was able to reproduce Chandrasek- 
har’s formula only when the test particle is much massive compared to background particles, and slow by comparison. 

A third approach to dynamical friction, borrowed from plasma physics, is the polarization cloud method (Marochnik 1968; 
Kalnajs 1972; Binney & Tremaine 1987; Tremaine & Weinberg 1984; Bekenstein & Zamir 1990). The linearized collisionless 
Boltzmann equation is here used to derive the distortion in the background’s distribution function due to the perturbation in the 
gravitational potential induced by the presence of the test particle. The associated wake-shaped distortion in the background’s mass 
density field acts back on the test particle and slows it down. Thus dynamical friction is here viewed as the drag exerted on the test 
particle by the wake it induces in the field particles. Elegant though this approach may seem, it recovers Chandrasekhar’s formula 
only in the limit of heavy test particle (Kandrup 1983). 

A different approach was taken by Gilbert (1968) who developed a theory of collisional relaxation by starting from the Liouville 
equation, and expanding the dynamics in powers of 1/N. He has shown that the leading terms of the force on a test particle consist 
of two parts : a term which is equivalent to the polarization drag, and a term which stands for the effect of the fluctuating 
gravitational field. Gilbert’s approach is broader than the “polarization cloud” method since it produces also an heating mecha- 
nism. Although it is of much theoretical importance, this approach has not led to practical calculations such as an explicit formula 
for dynamical friction, or a clear demonstration of the equipartition process. 

The pervasiveness of fluctuation-dissipation relations in physics begs for a consistent treatment of dynamical friction from this 
point of view. Therefore, we return in this paper to the underlying basic physics, i.e., the statistical mechanics of stochastic forces, 
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^ and show how the derivation of the dynamical friction formula may be carried out in this framework. Not only does this most basic 
§ of all approaches to dynamical friction provides a deeper physical insight, but it readily suggests modifications of the usual 
S description that can cope with an inhomogeneous background, and with the presence of correlations between background particles. 
2 Adaptation of the alternative approaches mentioned above to these new problems is not immediately possible. An exception is the 

polarization cloud method which has been successful in describing friction in circular orbits in spherical systems (e.g., Tremaine & 
Weinberg 1984; Weinberg 1989, and references therein). 

Before going further, let us recall that the friction formula is not the whole story. In a Maxwellian background the formula would 
read 

dv 
dt 

4nG2(M + m)p In A 
(1.1) 

where M is the mass of the test particle traveling through a homogeneous background of particles of mass m and velocity dispersion 
a (total mass density p) with instantaneous velocity v,x = v/^/2 a, and In A is the Coulomb logarithm. The tendency of the particle 
to come to rest eventually, as equation (1.1) would have it, is opposed by fluctuations which force the velocity vector, portrayed by 
equation (1.1) as retaining its direction, to actually perform a Brownian random walk in velocity space. In fact the background not 
only drags on the test particle, but simultaneously “heats” it. This heating is necessary if the particle is to ever reach energy 
equipartition with the background population. 

In Chandrasekhar’s kinetic approach the drag comes from momentum exchange in direction parallel to the velocity; in his 
original paper (Chandrasekhar 1943) the momentum exchange in the normal directions is assumed to sum to zero. Actually, the 
normal components of velocity cannot remain zero in face of the fluctuations. The departure of these components from zero 
together with the fluctuation of the parallel velocity component is what generates the heating (Rosenbluth et al. 1957). The 
distinction between the treatment of heating and drag in the kinetic approach is noteworthy. In the stochastic approach here 
developed both effects are treated together as two sides of the same coin. 

2. ENERGY EQUATION 

A test particle in a stellar system is subject to a many-body force. If the system is in steady state, the force may be separated into a 
smooth part—derived from the potential O of the mean field of the system—and a fluctuating or stochastic force F(r, t) arising 
mainly, but not exclusively, from near neighbors. This alluded separation can be made unique by demanding that the statistical 
(ensemble) average of F vanishes: <F> = 0. We shall be more precise later about the kind of ensemble to be considered. If the test 
particle’s mass is M, we may write its equation of motion as 

-V<D + M-lF{r{t), t), (2.1) 
dt 

where O satisfies Poisson’s equation 

V2<D = 4nGmn(r), (2.2) 

where m is a field particle’s mass and n(r) is the smoothed field particle density. 
The force F turns out to be weak as compared with — MV<X>, the smoothed force. This because we expect | V<h | = O (GNmR 2) 

where N is the (large) number of particles making up the background, and R is its typical dimension (we assume the background not 
to be exactly spherical about the point in question). Now \F\ = 0 (GMmn2/3) (Kandrup 1980). Since N = O (nR3\ it is plain that 

|f| = o (N~113). (2.3) 
M|V®| K ’ 

Likewise F is rapidly fluctuating. The briefest time scale of fluctuation, t, is set by the motion of the nearest neighbors at distance 
n-1/3 so that t = 0(n~1/3 a"1). This has to be compared with the time scale T over which v changes significantly due to the smooth 
force; clearly T ~ \ v\/\ V® |. Our previous remarks, together with the estimate a2 ~ GNmR1 from the virial theorem give 

0(N~113) (2.4) 
T v 

It is plain that unless v has become very small—and the tendency to equipartition is against this—the stochastic force is indeed 
rapidly fluctuating. We may thus conclude that in a large system F may be treated as weak and rapidly fluctuating. 

So far we have said nothing about the permitted dimension of M. For our later arguments it will be useful to assume that the 
potential well about the test particle is shallow, namely 

GMn113 < o2 . (2.5) 

This also means that the test particle perturbs the field particles only slightly, except those rare ones which approach it much nearer 
thann_1/3. 

Let us define the energy of the test particle as 

E = M{\v2 + <D) . (2.6) 
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^ Since the smooth potential Q> does not include all forces on the particle, this energy is not conserved. From equation (2.1) it follows 
£ that CM 
2 dE/dt = F • v . (2.7) 

According to the theory of Brownian motion (Reif 1965), frictional energy loss arises from an equation like (2.7) because v and F get 
correlated in the course of time as a result of the influence of F on the particle’s dynamics. Evidently if the particle has entered the 
background at time t = —co, integration of equation (2.1) gives 

v(t) = t>( - oo) + M"1 T Flr(t'), t'~\dt' - * VO)[r(i')]^' , (2.8) 
J— 00 J— 00 

which makes the correlation explicit. 
We are interested in the expectation value <F • r> which contains the dissipative energy loss. But use of v(t) from equation (2.8) in 

practice means we need to know the motion of the particle over a long time in order to perform the integrals. Of course fluctuations 
throw the particle off the deterministic path after some time making this procedure impractical. What is more, we have the feeling 
that the dissipation must come about from correlation over brief times, so that to follow the motion over long periods must be 
superfluous anyway. Then why not imagine that the particle is injected into the background at an earlier (but not infinitely earlier) 
time? Of course this procedure would entail transient effects generated by a sudden appearance of a test particle whose effect is hard 
to assess. If so, why not start the integrals in equation (2.8) from some time just prior to i? This is fine provided it is realized that the 
initial value of v at such time is not really known; it must, according to equation (2.1) itself, contain a stochastic contribution from 
the integral of F. We may obtain the required information about the initial value by invoking conservation of momentum. 

If at i = — oo the background as a whole was at rest, and at some time later—call it i = 0—the test particle’s velocity was 
v0 = v(t = 0), it is plain, by conservation of momentum, that 

YYl ^ YYl ^ 
»0 - »(- oo) = - — X [«¡(0) - w¡(- oo)] = - ^ Z »¡(0), (2.9) 

where «¿(0) is the velocity of the ith field particle at i = 0, and the rightmost equality is due to the assumption that the center of mass 
of the background particles was initially at rest. This exact equation relates the stochastic unknown v0 to t>(—oo), which may be 
regarded as known, via knowledge of the iij which are subject to some probability distribution. To the extent that the distribution is 
known, we obtain a distribution for v0. While continuing to use the formal result (2.8), we shall bring equation (2.9) to bear on the 
problem soon. 

Calculating dE/dt from equation (2.8) at the time t = ôt briefly after i = 0, ensemble averaging, and interchanging time integral 
and statistical average, we have 

<dE/dt)St = <F(<5t) • i>( — go)> + M-1 T <F[r(<5t), <5t] • F[r(t'), t'J)dt' - \ <F[r(<5i), <5t] • V<D[r(i')])^t'. (2.10) 
J— 00 J — 00 

We shall now argue that the second contribution to (dE/dt}ôt represents the heating due to fluctuations while the first stands for the 
energy loss or drag. 

3. THE HEATING TERM 

3.1. The Autocorrelation Function 
The tensor <F[r(í), i]F[r(i'), i']>, whose trace appears in equation (2.10), can only depend on t and t' through the difference 

s = t' — t because of the assumed stationary nature of the medium. We thus define the correlation tensor by 

C(r, r', s) = (F(r\ t + s)F(r, t)} . (3.1.1) 

A time translation í i — s in (3.1.1) should not change the correlation function. However, formally the two F-values exchange roles 
and s-> — s. Therefore, in explicit component notation we have the identity (Reif 1965; Landau & Lifshitz 1980) Cab(r, r\ s) = 
Cba(r'> r> ~s)* Time reversal is a good symmetry in gravitational systems, and must leave the correlation tensor (as seen by a moving 
test particle) unchanged. Imagine that the test particle travels from r to r' in time s. Under time reversal of the system the test particle 
moves from r' to r. We thus have CJr, ï, s) = CJr', r, — s). Combining the two results we learn that £ is a symmetric tensor, and 
even in s. 

Suppose that in the first integral in equation (2.10), prior to taking the dot product, we set i' -► <5i — s. We can cast it into the form 
pi p 

(F[r(Ôt), ôt]F\r(tf), t^}dtf = C[r(0), r(s), s^ds . (3.1.2) 
J— 00 J — 00 

Use of the last identity, together with time translational invariance, shows that the integral of C from 0 to oo has exactly the same 
value, and so we may write our desired integral as half the integral of £ from — oo to oo. Thus 

(F[r(ôt), St] • F[r(t'), t'])dt' = , i*(s), s]ds , 

where Tr £ denotes the trace of C. 

(3.1.3) 
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Now the Wiener-Khintchine theorem (Reif 1965) states that the Fourier transform of an autocorrelation function equals the 
power spectrum of the quantity being autocorrelated. The integral in (3.1.3) is just the sum of the Fourier transforms of the diagonal 
components of C at vanishing frequency, so that each term must be positive. Therefore, the second term in equation (2.10) is 
responsible for a gain in the energy of the test particle as a result of fluctuations. It is a heating term. We must stress the naturalness 
with which the heating term appears in the fluctuation approach; by contrast, the polarization cloud approach is not very well 
suited to bringing this term out, and is not discussed in developments of this method (Marochnik 1968; Kalnajs 1972; Bekenstein & 
Zamir 1990). ^ 

Let us define a tensor L as the temporal integration of C over all s. The heating term is just proportional to Tr L. Under the 
approximation that the test particle moves uniformly with constant velocity v0 

L(v{ C(r, r + v0s, s)ds (F(r + v0 s, s)F(r, 0)}ds (3.1.4) 

There is no point in taking into account here the deviations from this uniform path due to F because C already contains two 
F-values and any corrections of the kind considered would be small because F is small. There is equally no point in accounting for 
deviations due to the smooth force since this acts over times long compared to the time over which C is nonvanishing (a few times t, 
see eq. [2.3]). Hence the approximation envisioned here is a good one. 

Let us first denote the distribution function (DF) that we start with by/^r, w). The corresponding particle density is 

«W = J /*(n u)d3u, 

so that $nd3r = N, the total number of particles in the system. Plainly the stochastic force acting on the particle of mass M is 

1 f n(r') F(r, t) = -GMmV\ £   í— - Í ■ 
lj= ! \r - rj{t)\ J 

d3 

r - r'\ 

where the integral is just <¡> from Poisson’s equation with the smoothed density n(r) as source. Expressing | r — rfa) \ \ 
and n(r) as Fourier integrals with respect to r, applying the convolution theorem, and carrying out the gradient we find 

F(r, t) = 
G Mm 
In2 

Í 
X exp i-ik • r/t)] 

J=1 

k exp (ik • r)d3k 

with 

Now 

"*=f n(r) exp ( — ik • r)d3r . 

(3.1.5) 

(3.1.6) 

(3.1.7) 

(3.1.8) 

<exp ( — ik ■ »•;)>* = N 1 exp (-ik • rj)fjrp uj)d
3Ujd3rj = N 1nk , (3.1.9) 

where the first equality is a definition, and the second follows from equations (3.1.5) and (3.1.8). Therefore, <F(r, t))* = 0 which 
verifies that the expression (3.1.6) correctly gives the stochastic force. 

It follows from equation (3.1.1) that 

, v G2M2m2 f 
 j?-J 

where we shall interpret F = i* + t?0 s and 

EJs) = <exp { -i[k ■ r/t) + l ■ r¡(t + .s)]}>* . (3.1.11) 

We have here suppressed the i and j indices because, as will become clear, only the case i = j gives something new. In the general 
spirit of this work we shall ignore correlations between field particles. Thus the average in equation (3.1.11) factors whenever i ^ j. 
By equation (3.1.9) this factored average equals N~2nk nt; there are N(N — 1) such equal terms. In the case i = j the average does not 
factor; however, it has the same value for all j. Therefore, 

I Ekl(s) -"fcWil 
kl exp {i{k • i* + / • r')}d3kd3l 

w 
(3.1.10) 

c (3.1.12) 

Let us now calculate Ekl(s) for i = j under the assumption that the field particles move inertially: rfit + s) = r^t) + Uj(t)s. This 
neglect of field particle accelerations requires justification on various counts. The effect of the smoothed potential Ö is negligible at 
the same level as it is for the test particle, basically because it acts over a long time scale. T. The effect of the potential of the test 
particle itself may be neglected on account of assumption (2.5). Then there are the encounters of the field particles with one another. 
This scattering destroys the correlation of each field particle’s orbit with itself, which means that for sufficiently long s its Ekt(s) 
factors again even for i = jAn that case the term NEki(s) in equation (3.1.12) is just so that £ vanishes. Thus whenever a 
particle is contributing to C, it can be regarded as moving freely. In summary, for s small enough for £ to be nonvanishing, each 
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• particle contributes 
a 

Ekl(S) exp l-i(k + /) • rj] exp (-il • ujs)fif(rj, Uj)d3Ujd3rj . (3.1.13) 

3.2. Homogeneous Distribution 
Henceforth in this paper we shall be concerned with a homogeneous system, meaning one in which may be regarded as fairly 

constant over a sizable region. The consistency of this view with restriction (2.2) will be examined in a subsequent paper. With Ô 
constant, the DF of a homogeneous stationary background is usually a function only of jmu2. We denote it by f*(u). Then equation 
(3.1.13) reduces to 

Eki(s) = (2n)3N~1 d{k + /) exp { — isl • u)fju)d3u (3.2.1) 

Since nk is now proportional to ô(k), the second term in the square brackets of equation (3.1.12) vanishes by virtue of the factor k. 
Substituting equation (3.2.1) in equation (3.1.12), and integrating over / (which results in the replacement l—k) gives 

Ü(r, r', s) = 
2G2M M2m2 j* kk exp I ik • (»• — r')']d3k 

fe3 
Í- 

f*(u) exp (isk • u)d3u . 

Since r' — r — VqS,Ü depends only on vQ and/^«). In view of equation (3.1.4) we have after interchange of the integrals 

£(*>o,/*) = 
2G2M2m2 

71 Uu)d 
'“Í 

kkd3k f00 j r. , , v, 
k4 J ds exp [is* • (« - »o)] . 

To calculate Tr £ we first contract kk, and integrate over s to get 2n 0[(u — v0) • A], Taking the z-axis along « — »0 we get 

‘ d2kLdkzô(kz) 
Tr £(p0,/*) = 4G2M2m2 J d3u J - 

kl + k2 

(3.2.2) 

(3.2.3) 

(3.2.4) 

where k± is the two-dimensional projection of k onto the plane normal to v0 — u. The integral over k-space reduces to a 
two-dimensional one and gives 2n\n(kmax/kmin) with k~lx (k“3) denoting the smallest (largest) length scale at which the treatment 
here makes sense. The integral over u is the well-known Rosenbluth potential (Rosenbluth et al. 1957; Binney & Tremaine 1987). 
For an isotropic velocity distribution the heating term (compare eqs. [2.10] and [3.1.3]) becomes 

UiVu. (3.2.5) =~M 1 Tr L(v0,f*) = 4nG2Mm2\nA 
dt / h 2 

which is the traditional result (Rosenbluth et al. 1957 ; Binney & Tremaine 1987). 

4. THE COOLING TERM 

What about the first term in equation (2.10)? At first sight we might be tempted to equate it to zero since we have started from 
<(F> = 0. This would mean there is no drag on the moving particle. This “paradox” has often been commented upon. For example, 
Kandrup (1980) blamed it on the description of F as a space quantity instead of a phase-space quantity. We shall here rather adhere 
to the more plausible viewpoint of condensed matter physics which focuses on the modification of the ensemble determining the 
statistics of F arising from the motion itself. In other words, the probabilities P[F(i)] used to define the averages are evidently related 
to the distribution function (DF) for the field population. Originally this is /*(#•, u) = fj&u2 + <I>). It defines a distribution P[F(i)] 
such that <F> = 0. We denote this kind of average <...)*. As a result of the motion of the test particle, energy is conveyed to the 
background, so that P[_F(tj] will change resulting in <F> # 0. The change in <F> may be calculated by the following modification of 
the argument (Reif 1965) employed in the case of strongly interacting particles, i.e., a liquid. 

All probabilities to be discussed here are conditional ones, namely given v0. In the interval ( — oo, ôt), the particle gives energy to 
the field. This gets distributed among the field particles with consequent distortion of the DF. If we normalize DF by 

Í 
f(r, u)dr = N , (4.1) 

where N is the number of field particles and dT = d3rd3p is the one-particle phase space element, and imagine that a particle at 
phase space position T,- has been “ kicked ” to position 1 the distortion may be expressed as 

L 
ôf(r, u)dF = 1 Í Jr «Ti 

ôf(r, u)dT = - 1 

which implies that 

in agreement with particle conservation. 

j Jail 
ôf(r, u)dr = 0 , 

(4.2) 

(4.3) 
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How does the said distortion modify the probabilities P[F(ij] ? We shall suppose that these are modified in direct proportion to 
the change in the number of states available to the whole system as a result of the distortion. There is a well known relation between 
the number of states and the (information-theoretic) entropy. Namely, the entropy of the system, 

S = S* 
Í 

flnfdT , (4.4) 

can be interpreted as the logarithm of the number of microstates available to that system. The arbitrary constant S* expresses the 
well known arbitrariness of the zero point of the entropy in classical physics; this will not hinder us, as we shall only be concerned 
with differences of entropy. How does S change when the DF goes from/* 10/=/* + <5/? Evidently 

<5s = _ J¿/In/*dr - Jôfdr . 

By equation (4.3) the second integral vanishes. Introducing equation (4.2) we get 

0S=-i inur'd + £ In/^r.). 
¿=1 i=l 

Therefore, the total number of background states, exp (S), has changed by a factor 
N f (T ) 

K = exp (<5S) = [I 77/7: • 
i=l i) 

(4.5) 

(4.6) 

(4.7) 

This is precisely the factor by which the probability P[F(i)] has been augmented. 
Most encounters between particles are weak ones. Thus, as in Fokker-Plank analyses, we may ignore the rare close encounters. 

As a consequence, when field particle i which energy e* interacts with the test mass, it experiences a change in energy which in most 
cases satisfies 0€i €;. We may, therefore, expand equation (4.6) as 

öS ; yl^ü 
if* d* 

öei (4.8) 

For a Maxwellian DF, equation (4.7) with (4.8) turns out to be proportional to exp (D^e,), a statistical factor well known from 
treatments of the modification of the background distribution in condensed matter (Reif 1965). More generally, since we assume that 
the 0€i are small, the argument in the exponential in equation (4.7) is small; expanding we have 

K = exp "y±^ 
lyf* jf* 56 f ij J- cc 

fMn n-up'w. (4.9) 

where is the force exerted on the ;th particle by the test mass M. In the expression for 0€i we ignored the contribution from 
interaction of field particles with themselves since these energy changes have nothing to do with the presence of the test particle, and 
thus should sum to zero in equation (4.8). We notice that K fluctuates via its dependence on fj. Thus to compute an average, we first 
multiply the relevant quantity by K, and then average with respect to the unperturbed P[F(i)]. In this way we bring to bear the 
statistical weight of the states made accessible by the injection of energy. 

Denoting the cooling rate by W we thus have (F = — S/) 

w = <f(¿í) . œ)> = - x um ■ v{-<»)>* 
N 

■I 
j 

1 5/* 
/*(</) 5e 

r* N m N 1\ 
J fj(t') ‘ Uj(t')dt' £ /<<5t) • »0 + — S «*(0)Jy , (4.10) 

where the subscript “ * ” denotes averaging in the unperturbed ensemble, and r( — 00) in the second term was replaced with the help 
of equation (2.9). 

The first summation, deriving from the zeroth-order term of K, must vanish since at the level of the unperturbed DF there should 
be no correlations between the initial test particle velocity and the current forces, i.e., </(<5iM — oo)>* = 0. Moreover, since we are 
ignoring field particle correlations, we are left only with terms in the second average for which i=j = k. Thus the second multiple 
summation term reduces to a sum of N identical terms : 

1 ¿/* 
/*(e) 56 

f(t') • u(t')dt'f(ôt) • 
'"+S“<0)]), 

(4.11) 

As usual the average <...)* is performed by integrating over phase space with weightand dividing by N for normalization. We 
thus obtain 

W = - ^ dr fiomw 
m ^ 

ro + T7 "(0) M 
(4.12) 

By having taken u(t') out of integral and replaced it by ii(0), we have neglected terms of 0(V<D ôt) which are small compared to w(0) by 
our assumptions on O (§ 2). We have also neglected a term of order m-1 J f(t')dt'; such a term generates a product of three /-values 
in the average which is of the same order as terms already neglected by making the approximation in equation (4.9). Again, because 
we assume a weak stochastic force, we are entitled to neglect these three-point correlation functions as compared to C. 
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The force exerted on a background particle which started at x with velocity « at t = 0 is 

^ GMm(r + v0t' - x - ut') _ iGMm Jk exp {ik ■ (r + v0t' - x - ut'))dlk 
I »• + »o t' - Jc - Hi'|3 2n2 ! k2 

85 

(4.13) 

Suppose we first integrate the product over x, and then integrate over the Fourier index / in a way similar to that used to 
obtain equation (3.2.2); we get 

Í 
d3xf(t')f{ôt) =: 2G2M2m2 J kk exp {ik • (p0 — u)(ôt — t')}d3k (4.14) 

According to equation (4.11), we have to integrate this result over t'. If we extend the integral to t' = oo and correct by a factor of; 
we get a factor 27t(5[(ii — »o) * Z0- Thus taking the z-axis along u — v0, equation (4.12) reads 

, + (m/M)u]d2k1 , ,,(*<?/* d3u Ç kL • u k± • [»o + 
W = 2G2M2m2 f*   : ^  V 

J de |»o-«l J fcI 
(4.15) 

where kL is now a two-dimensional vector perpendicular to » - »0. Thus we may replace the rightmost u in the integrand by »0. 
Since uôfjôe = m “1 ôfjôu, an integration over /c1-space gives 

W = 2nG2M2m\ 1 + 
m 

)ln A Í —: d3u , (4.16) 
MJ ) du |»0-«l 

where v± is the component of v0 perpendicular to »0 - «, and In A has the same meaning as in equation (3.2.5). Writing v± explicitly 
as 

where U = v0 — u,U = | £/|, 1 is a unit tensor, and using the identity 

jL.fi I/t/1 2U 
du’\jJ- U3]~ U3 ’ 

we obtain after integrating equation (4.16) by parts 

W = —4nG2M2m[ 1 + ^InAjdV, 
(p0 - «) • »0 

l»o-«l3 

(4.17) 

(4.18) 

(4.19) 

Since W is negative, it indeed represents a cooling. It coincides with the rate predicted by Chandraskehar’s dynamical friction 
formula (Binney & Tremaine 1987). 

5. TOTAL RATE OF ENERGY CHANGE 

5.1. The Total Energy-Loss Rate 

The heating and cooling terms (3.2.5) and (4.19) coincide with those obtained by the method of diffusion coefficients (Binney & 
Tremaine 1987; eq. [8.66]). The total rate of energy change of a particle traveling with speed p = | p0| through a background with 
isotropic DF f(u) is 

— (d) = l6n2G2 M2m\n A ß 
Í 

00 
f(u)udu — v (5.1.1) 

where ß = m/M. Substituting in equation (5.1.1) a Maxwellian DF 

/(“)'ê53iî“p 

using the relation dE = Mv dv, and defining x = v/^/2 <7, we obtain 

dv 4nG2Mp\nA[ 
dt v2 erf (x) 

il" 
2<t2 

2(1 + ß)xe~ 

(5.1.2) 

(5.1.3) 

where we assume, as always, that all background particles have mass m. This formula is displayed for various values of ß in Figure 1. 
Throughout the entire derivation leading to equation (5.1.3) nothing was assumed about ß. Thus this formula adequately 

describes the modification of the motion of a light particle in a sea of heavier ones as that of a heavy particle in a background of 
lights. In the limit ß-+0, Chandrasekhar’s formula (eq. [1.1]) is fully recovered; this is the formula used by most workers in 
analyzing the effects of dynamical friction in extragalactic systems. But for /? # 0 equation (5.1.3) gives different results. As shown 
in Figure 1, the dv/dt experienced by the test particle changes sign when v goes through the value erfaß). This reflects the com- 
petition between the dissipative mechanism and the heating by the field particles. This type of behavior was obviously expected, 
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Fig. 1.—Deceleration of a test particle traveling in an ambient background (eq. [5.1.3]). Results are shown for three ratios of test to field particles masses ß. In the 
limit ß -*0 Chandrasekhar’s dynamical friction formula is fully recovered. 

and there are many conceivable extragalactic situations where it may be important so that use of equation (5.1.3) is preferable to 
that of the plain Chandrasekhar drag formula. We now show that equation (5.1.3) is consistent with the equipartition of energy 
principle. 

5.2. Consistency with Equipartition 
Let us perform the following thought experiment: We are given an infinite homogeneous distribution of equal mass particles. At a 

certain moment an arbitrarily chosen ensemble of particles from that background are painted green. Obviously, the green popu- 
lation can be chosen in such a way that it will not satisfy the equipartition principle internally, or with respect to the rest of the 
system. 

Each particle changes its velocity in a stochastic way due to the fluctuating forces. Since fluctuations never vanish, even in a 
relaxed system, the velocity of each particle will never settle down to a constant value, regardless of the particle's velocity. Each green 
particle performs a Brownian motion in velocity space in such a way that the average of dE/dt of all green particles with the same 
velocity satisfies equation (5.1.1). This means that even if all green particles had initially the same velocity, their distribution function 
in velocity space, g(v), will get broader with time. We expect that after a sufficiently long period, g(v, t) will reach equipartition with 
the background population which is described by/*(!>). This should also hold if the chosen particles differ not just in color but also in 
mass. 

Let us denote a green particle mass by M. The rate of change of the total energy Etot of the green particles’ population is 

=j* ^ ^ ^ ^d3v ’ ^■2-1) 

where dE/dt(v) refers to a single green particle; see equation (5.1.1). Equipartition would require that the above expression vanish. Is 
this so? Suppose f*(v) is a Maxwellian DF with velocity dispersion o and particle mass m, while g(v, t) tends towards a Maxwellian 
with velocity dispersion s and particle mass M. Substituting these in equation (5.2.1), and integrating over velocity space, we easily 
see that the following relation must hold if the integral in equation (5.2.1) is to vanish : 

s2 m 
~ö2=~M' 

(5.2.2) 

But this is precisely the statement of equipartition. 
By contrast, if dE/dt is calculated from Chandrasekhar’s drag formula, equation (1.1), and substituted in equation (5.2.1), then it is 

easy to verify that dEtot/dt is a negative quantity, and can never vanish. 

6. SUMMARY AND CONCLUSIONS 

Equation (5.1.1) for the total rate of change of the energy is also obtained in the analysis via diffusion coefficients of systems 
governed by an inverse-square law force (Rosenbluth et al. 1957; Binney & Tremaine 1987). This indicates that summation of the 
effects of successive two-body encounters is not a bad model in an homogeneous background. It is, however, unclear whether the 
same will be true for an inhomogeneous medium, since describing an encounter by Keplerian orbits in the presence of external 
potential is inadequate. 

The diffusion coefficients approach ascribes the drag to transfers of momentum to the test particle along the line of motion, and 
the heating effect to momentum transfer in all directions (both kinds of diffusion coefficients are involved and not only by transfer 
normal to the motion). The corresponding points in our approach are that all components of E are involved democratically in the 
heating term in equation (3.2.5), while the energy loss term involves a projection of the appropriate tensor along <r0>, as in equation 
(4.12). One advantage ofThe fluctuation approach’s treatment of heating is that in slow motion through a homogeneous background, 
only one parameter, Tr L, shows up, instead of two diffusion coefficients, D(Av\\) and D(Avj) = 2D(Av2\). 

As mentioned in § 1, the polarization drag method is known to recover the correct result for the drag only for M m. This is not 
surprising since it studies the response of a system to the perturbation associated with the presence of a test particle, and this is an 
adequate description only for M m. Furthermore, the approach considers the test particle as following a specified trajectory. 
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00 
; While this is a reasonable approximation for motion of a heavy particle in a sea of light ones, it neglects an important part of the 

^ physics when M < m. By contrast, our analysis takes into account stochastic behavior of the test particle in an implicit and natural 
^ way by relating its dynamics to that of the entire distribution of field particles via conservation of momentum; see equation (2.9). 
S Dynamical friction has been derived here from the interaction of a test particle with the stochastic force of the background, under 

the assumptions of negligible gravitational potential field, absence of initial correlations between field particles, and an isotropic 
velocity distribution for the field population. This approach shows that dynamical friction fits into the generic fluctuation- 
dissipation relation. Thus the old challenge going back to the early work of Chandrasekhar has been answered. On a more practical 
level, the approach here developed has two virtues. First, contrary to the other approaches mentioned earlier, it produces a unified 
picture of the energy dissipation and heating of particles in gravitating systems for the full range of m/M. Second, it readily suggests 
the modifications in the formalism that would be required to treat dynamical friction and heating in an inhomogeneous background 
(Maoz 1992), as well as in the presence of initial correlations between background particles. 

This research was supported by the Wolf Foundation for the Advancement of Science and Art through a grant administered by 
the Israel Academy of Sciences. 
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