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Concentrations of 20-22 chemical elements were determined by instrumental neutron activation
analysis in 121 samples of <1-mm fines from double drive tube 60009/10 (0.6 m length) and 353 samples
of <1-mm fines from deep drill core 60001-7 (2.2 m length). Approximately 40 >1-mm regolith particles
from each core were also studied. These two cores were taken 35-40 m apart at the IM/ALSEP site
during the Apollo 16 mission to the Central Highlands of the Moon. Compositional variation with depth
in the <1-mm fines is large. For elements associated with major mineral phases (Na, Ca, Sc, Cr, Fe, and
Eu), the variations in concentration in both cores exceed that observed in approximately 40 samples
of surface and trench soils taken over a lateral distance of 8 km at the site. Most of the variation in
lithophile element concentrations results from two-component mixing. The two components are (1) soil
that is relatively mafic and rich in incompatible® trace elements (ITEs), e.g, Sm and Th, as a result of
a significant component of mafic, ITE-rich, impact-melt breccias and (2) coarse-grained anorthosite. As
a result of this binary mixing, concentrations of ITEs generally correlate with those of elements associated
with mafic minerals (Sc, Fe) in soil from both cores because anorthosite contains low concentrations
of both sets of elements. The anorthosite component responsible for most of the compositional variation
in the fines is identified as “ferroan anorthosite” consisting of approximately 99% plagioclase and not
some more mafic variety. This argues that the numerous hand specimens of nearly monomineralic
anorthosite found at the Apollo 16 site are not sampling anomalies, but are typical of the source of the
anorthosite. The mafic, ITE-rich soil component is identified as the “Cayley soil component” because
its composition is similar to that inferred for the average surface of the Cayley Plains west of the landing
site based on orbital data. The Cayley soil component is a complex mixture of many lithologies, and
samples with the characteristic composition are usually relatively mature and fine grained. Lack of perfect
correlation among element pairs on two-clement concentration plots occurs because of variation in the
relative proportions of the various subcomponents of the Cayley soil component (impact-melt breccias,
metamorphosed breccias, and mare basalt and glass) and variation in the composition of the plagioclase
in the anorthosite component (anorthite content). These variations are evident in two ways, one trivial
and one of stratigraphic significance: (1) Some individual small subsamples of <1-mm fines are anomalous
because they contain one or a few large particles of distinct composition. (2) An entire stratigraphic
unit of soil may be enriched or depleted in some particular lithologic component. The 60009/10 core
shows more variation in composition with depth than any lunar core yet studied. It varies from 0%
anorthosite component at about 20cm depth (100% Cayley soil component) to 75% anorthosite
component (25% Cayley soil component) at 54 cm depth. A second anorthosite-rich layer occurs at 43 cm
depth. Magnetic separates of soil from this core made in earlier studies preferentially contained metal-
bearing, mafic impact-melt breccias that accounted for the enrichment of these separates in Sc, Cr, and
ITEs. The 60001-7 core is more uniform in composition with depth (5-10% anorthosite component
through most of the lower half). However, an anorthosite-rich layer (45% anorthosite component) occurs
at about 20 cm depth, which may be related to the anorthosite-rich layers in 60009/10. No other
stratigraphic unit in 60001-7 can be identified with any of those occurring in 60009/10, although the
surface material in both cores is similar. Data presented here show that the contents of the 60006 section
of the core have been mixed and disturbed, and retain no stratigraphic information. A unit of soil between
103 and 187 cm depth (60003 and 60004 sections) contains 0.5% to 1.5% mare material (basalt and/
or glass), similar to the unit between 26 and 48 cm depth in the Station 4 core, 64001; no soil similarly
enriched in mare material was sampled among the surface and trench soils from Apollo 16. Siderophile-
element concentrations are also slightly higher in this unit of soil At the bottom of this unit is a 10-
cm-wide zone that is particularly rich in siderophile elements (177-187 cm depth). Relative siderophile-
clement and Cr concentrations in this zone are generally consistent with debris from an ordinary
chondrite in which the ratio of metal to silicate phases is unusually high, ~40/60. At the maximum
enrichment, this zone of soil contains 3% meteoritic material in excess of the approximately 1.5% present
throughout the rest of the core. Some individual samples above the 10-cm-wide zone of siderophile-
element enrichment have anomalously high concentrations of Au compared with other siderophile
elements, possibly as a result of vapor-phase condensation. Below 187 cm depth (60001 and 60002)
the soil is compositionally distinct, most notably in containing a higher concentration of Na. This soil
cannot be modeled as a mixture of components that adequately accounts for compositions of soils above
this layer or the soils from 60009/10. This unit of soil appears to be of different provenance than the
surface (Cayley) soils and may be related to trench soil 61221. It is similar in composition to particles
of regolith breccia found in this unit and probably derives primarily from disaggregation of regolith breccia
boulders. Two >1-mm particles from this unit are unusual in being nearly pure plagioclase with Angyg;
compositions. Although the lithology from which they derive is unknown, rare-earth-element
concentrations in these particle are intermediate to those of ferroan anorthosite and alkali anorthosite.
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1. INTRODUCTION

Three core samples were taken in the vicinity of the lunar
module by astronauts Charles Duke and John Young during the
Apollo 16 mission to the Central Highlands of the Moon
(Fig. 1). One of these was the “deep drill core,” a rotary-
percussion drill string consisting of seven sections designated
sequentially 60001 through 60007 (hereafter, 60001-7). The
deep drill core was 2 cm in inside diameter and penetrated
to a depth of 2.2 m. The other two cores were drive tubes
that were pushed or hammered into the regolith. Both were
“double drive tubes” in that they consisted of two sections
each 42cm long and 4 cm inside diameter. Core sections
60009 and 60010 constituted one double drive tube (desig-
nated 60009/10) and sections 60013 and 60014 constituted

the other (60013/14). Both double drive tubes returned
columns of soil about 60 cm long. The sampling locations of
these three cores form a triangular array about 40-50 m on
a side (Fig. 1). This is the only such array of cores taken on
the Moon and, consequently, these cores are the only samples
we can use to seek stratigraphically contiguous subsurface
units that might occur on this scale.

This work presents high-resolution concentration profiles
(~5-mm sampling intervals) for 20-22 chemical elements in
the <1-mm grain-size fractions of 60001-7 and 60009/10,
which were taken about 35-40 m apart (Fig. 1). Both cores
were intensely studied in the mid 1970s. At this writing,
60013/14 has not yet been opened, although gross structural
features are known from X-radiographs (Fruland and Reimold,
1981). I have restudied 60001-7 and 60009/10 for several
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Schematic map of the Apollo 16 landing site with an insert of the LM/ALSEP Station showing the location of the three cores taken

at this station. Squares with enclosed numbers indicate sampling stations (main map); Xs indicate core locations (insert). Maps are based

on Fig. 5 of Muebiberger (1981) and Fig. 1 of Schaber (1981).
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» reasons. First, samples from the 60013/14 core are scheduled
1 to be available within the next year and it will be useful to
¢ have a self-consistent dataset for comparison of this unique set
of three cores. Second, our studies of two other lunar cores
at high resolution (Korotev et al, 1984; Morris et al, 1989)

£ have revealed stratigraphic features that would not have been

observed with the more widely spaced sampling intervals
typical of earlier studies of other cores. Third, earlier studies
of 60009/10 and 60001-7 left some problems unresolved and
posed questions that were left unanswered. Considering the
advances that have been made in the understanding of lunar
geology and geochemistry in the 13 years since the cores were
last studied, it seemed likely that the high-resolution studies
would provide answers to some of these questions and yield
some new insights. Finally, the 24 core strings returned by the
Apollo missions provide the only data on variation with depth
of parameters such as grain size, composition, mineralogy, and
exposure effects for the upper 1-2 m of the lunar regolith. If
we intend to interpret wisely the results of the forthcoming
Lunar Observer mission, which will only provide information
about the upper few micrometers to centimeters, it is
imperative that we learn as much about these variations as the
Apollo cores have to offer.

In this paper I will emphasize the stratigraphic features of
the cores and compare the new results with those of previous

works, particularly earlier petrographic and geochemical -

studies. Detailed comparison of the core soils with other
Apollo 16 regolith samples and discussion of the relationship
of Apollo 16 regolith to the local site geology are deferred to

a subsequent paper. It is impossible, however, to separate .

discussion of compositional variations with depth from
discussion of the lithologies responsible for the variations,
which in turn are related to site geology. Thus, I will
sometimes address soil-rock relationships without discussing
the source of the rocks. Compositional trends in the core soils,
when compared with those for rocks, provide certain
constraints on the evolution of the Apollo 16 regolith
(Korotev, 1990b), but as they do not relate directly to
stratigraphy, those ideas will be developed more fully in a
subsequent paper.
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2. SAMPLES AND ANALYSIS

2.1. Samples Studied

For this investigation I have studied a total of 623 individual
samples. These fall into two categories: (1) <1-mm fines with
nominal masses of 50 mg and (2) individual particles mostly
1-2 mm in diameter (1-10 mg in mass). The two cores were
processed at the Johnson Space Center (JSC) in Houston;
details of the processing are given by Duke and Nagle (1976)
and Frudand et al. (1982). Additional documentation and
curatorial information is given by Fruland and Reimold
(1981). At JSC, both cores were sampled at depth intervals
of approximately 0.5 cm, except for the 60005 section of
60001-7, which was sampled at 1-cm intervals. One subsample
(rarely two) of <1-mm fines from nearly every sampling
interval of each core was analyzed.

2.1.1. 60009/10. The analyzed subsamples (n=121)
were unsieved (but generally <1 mm) fines from the fourth
dissection column of 60009 and sieved fines (<1 mm) from
the third dissection column of 60010. At approximately 52 cm
deep in the core, a diagonal contact cuts across two
consecutive sampling intervals, with dark, more mafic material
above and light, more feldspathic material below. A “dark” and
“light” split was made of each of these sampling intervals at
JSC, thus two points occur at these depths in subsequent
figures. Analytical results for these samples are presented in
Table Al.

Results for the <1-mm fines indicated compositional
extremes at 20, 54, and 58 cm depth. To help identify the
lithologies responsible for these extremes, I also studied a suite
of 40 individual >1-mm particles selected by the JSC curatorial
staff to be representative of those found at each of these three
depths. Allocation details are presented in Table 1. After
chemical analysis, thin sections of most of the particles were
prepared. For 60009/10, particle designations are coded
according to the nominal depth from which they came, e.g,
“20-A” is particle A from 20 cm (nominal) depth. Analytical
results for these samples are presented in Table A2.

TABLE 1. Allocation data for >1-mm particles from 60009/10 and 60001-7.
Sample Number Depth Nominal Number of Particles Fraction
Specific Parent Interval (cm) Depth (cm) Total Studied Studied (%)
60010,478 90 20.0-20.5 20 49 20 41
60009,618 214 53.8-54.3 54 19 10 53
60009,1270 ,1154 57.8-58.3 58 28 10 36
60002,736 95 193.2-193.8 193 ~100 6 <10
60002,732 ,124 199.9-200.4 200 >100 3 <5
60002,731 126 200.4-201.0 201 >100 7 <10
60002,733 137 203.5-204.5 204 >50 4 <10
60002,734 ,139 204.0-204.5 204 ~50 5 ~10
60002,735 ,147 205.4-205.9 205 ~50 9 ~20
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2.1.2. 60001-7. 1 analyzed a total of 353 samples of
<1-mm fines. For all samples from the bit of the drill, material
<0.35 mm in diameter had been previously removed at JSC for
a different experiment (Duke and Nagle, 1976), thus for the
eight 60001 samples, the grain size of the analyzed material
is 0.35-1.0 mm. Analytical results for <1-mm fines from
60001-7 are presented in Table A3.

While preparing the <1-mm fines samples for analysis, I
encountered some particles that I removed for individual
analysis. These included 12 large particles (2 exceeding 13 mg,
ie., >25% of the mass of the allocated fines sample) and 6
small spheres. Nine of the large particles were from 60001 and
60002, where the average grain size was larger than for
the rest of the core; the other three were from 60004. For
60001-7, particle designations are coded according to the
section of the core from which they came, eg., “4.03” is
particle 3 from 60004. Analytical results for these samples are
presented in Table A4.

In addition, I have studied 34 particles from the 60002
section of the core (particles 2.01 through 2.34), which were
selected by the JSC curatorial staff to be representative of the
fragments present in the >1-mm grain-size fractions (allocation
data are presented in Table 1). Most of these are 1-2-mm
particles with masses of <10 mg; however, two particles were
much larger. I broke one of these (particle 2.19, weighing
169 mg, from 60002,734) into smaller pieces and analyzed
eight individual chips weighing 2-15 mg each (2.19A-2.19H).
I also broke the other (particle 2.34, weighing 25 mg, from
60002,736) into smaller chips and analyzed four subsamples,
three consisting of single 3-5 mg chips (2.34A-2.34C) and one
consisting of all remaining residue (2.34D). Analytical results
for these samples are presented in Table A5. In total, I obtained
data for 49 samples of 60002 particles, 44 from >1-mm
fractions and 5 removed from <1-mm fractions. After chemical
analysis, thin sections of 15 of the particles were prepared.

2.1.3. Other <I-mm fines. For comparison with the
core soils, I analyzed 19 samples (50-60 mg) of <1-mm fines
taken at the surface or from trenches at Apollo 16. Several of
these have not been well characterized previously. These
samples included six replicates of 60601, which was taken at
the surface near the site of the 60013/14 core (Fig.1;
Table A6); the rest are from other stations (Table A7).

2.2. Analytical Methods

I have determined the concentrations of 20-25 chemical
elements by instrumental neutron activation analysis (INAA)
using the following procedures. Samples and standards were
encapsulated in high-purity silica tubing, usually with an
outside diameter of 4 mm (5 mm for some particles) and an
inside diameter of ~3 mm (T21 Suprasil, Heraeus-Amersil Inc.,
Buford, Georgia). Batches of about 50-70 tubes were
irradiated with a thermal neutron flux of 3.9 - 10" cm%sec!
in the second reflector ring of the University of Missouri
Research Reactor (Columbia, Missouri). All <1-mm fines
samples were irradiated for 48 hours. During irradiation the

sample package was rotated about its cylindrical axis at a rate
of 0.1 rpm (revolutions per minute). After irradiation, the
tubes were washed in 6 M HNO; for 15 min.

Samples were radioassayed by gamma-ray spectrometry in
the tubes in which they were irradiated using four high-purity
Ge detectors with horizontal cryostats and an ND9900
spectroscopy system (Nuclear Data Inc., now Canberra Nuclear
Products Group, Schaumburg, Illinois) and associated
MicroVAX II computer (Digital Equipment Corporation).
During radioassay the sample tubes were spun about the
cylindrical axis at a rate of 10rpm to minimize possible
geometry effects. Gamma-ray spectra were acquired at count
rates of 5-12kcounts/sec over the energy range of 30-
1800 keV and accumulated digitally into 8192 channels at
0.22 keV/channel. The FWHM for the 1332-keV peak of ®Co
ranged from 1.75-1.90 keV under operating conditions for the
four detectors, and sample-to-detector distances were typically
5-10 cm. Spectral data were reduced using new versions of
the TEABAGS programs of Lindstrom and Korotev (1982),
which Lindstrom and I have totally rewritten to take full
advantage of the computing capacity of the MicroVAX.
Elemental standards for the <1-mm fines are AN-G (IWG-GIT
Greenland anorthosite; Govindaraju, 1980) for Na and Ca,
synthetic multielement standards for Cr, Ni, Zr, Ir, and Au, and
NBS 1633a (coal flyash) for all other elements (Korotev,
1987a). For the particles, fragments of synthetic glass standards
were used. Blank contributions from the silica tubes, which
are each typically 0.7 g in mass, are negligible for all elements
when sample masses exceed 1 mg.

The <1-mm fines from 60009 and 60010 were each
irradiated in a different batch with its own set of standards.
The two batches were sealed in a single can for irradiation.
Both batches were radioassayed simultaneously (two detectors
per batch), with each sample radioassayed only once for
approximately 1.3 hours between 7 and 10 days following
irradiation. The <1-mm fines from 60001-7 were divided into
six batches of approximately 59 stratigraphically consecutive
samples each. One sample of surface soil 60601 was included
in each batch, along with the standards. The 60001-7 samples
were analyzed in three experiments in which two batches
were irradiated together and radioassayed simultaneously. Two
radioassays were done on each sample, the first between 7 and
10 days following irradiation for about 1.7 hours and the
second between 3 and 4 weeks following irradiation for about
2 hours. For these samples, data for 22 elements are reported.
Because the 60009/10 samples did not receive a second
radioassay, analytical data for some elements determined via
nuclides with long half lives (Ni, Sr, Zr, Eu, Tb, Hf, Ta, and
Ir) are not as precise as those for the 60001-7 samples, which
received a second radioassay. Data for Sr and Zr in 60009/10
are too imprecise to be of value and are not reported. All
remaining <1-mm fines samples (surface and trench soils)
were analyzed in a separate experiment and received three
2-6-hour radioassays; only for these samples are data for Cs,
Ce, and Nd reported (25 elements total).

The >1-mm particles were irradiated in four different
experiments with durations of 48 to 120 hours. Each particle
received one or two radioassays of several hours at 6-10 days
and another at 3-4 weeks following irradiation.
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3. 60009/10 RESULTS
3.1. <1-mm Fines

Several layers of compositionally distinct soil are evident in
the concentration profiles for 60009/10 (Fig. 2). Most of the

& inflections in the profiles correspond to breaks between

stratigraphic units (SU) recognized by Duke and Nagle (1976)
during processing of the core (Fig. 3). The 60009/10 core
shows greater compositional variation with depth than any
other lunar core yet studied. I discuss the most obvious
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3.1.1. Surface layer. Soil from the top 13 cm of the
core (60010, SU5-7) is relatively uniform in composition. For
concentrations of most elements, sample standard deviations
in the 27 samples from this region of the core are only about
a factor of two greater than the sample standard deviation for
the six replicates of 60601 (Table AG). (For the precisely
determined elements Na, Sc, Cr, Fe, Co, La, Sm, and Eu, the
variations in the results for 60601 represent real compositional
differences among the unground subsamples, not analytical
imprecision.) The average composition of the uppermost

features below. 13 cm of soil is almost identical to that of surface soil 60601,
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Fig. 2. Depth profiles of element concentrations and concentration ratios for <1-mm fines from 60009/10 [depth scale from Table 3.1 of
Fruland et al. (1982); data from Table Al of this work]. The horizontal dotted lines indicate the boundary between the 60009 and 60010
sections of the core; the vertical dashed lines indicate the mean concentration or ratio of all 121 samples. The analytical precision is indicated
by the bar plotted at 59 cm depth.
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which was collected near the site of the 60013/14 core, 30-
40 m to the northwest of 60009/10 (Fig. 1).

3.1.2. Unit at 18-21 cm depth. In the 60010 section,
the most distinctive feature is stratigraphic unit 2 (SU2) at 18-
21 cm depth. The seven samples from this unit are all similar
to each other in composition but are distinctly different from
soils in adjacent units. SU2 contains the highest concentrations
of incompatible trace elements (ITEs), e.g., Sm and Th, and
elements associated with mafic mineral phases (Sc, Cr, Fe)
found in the core (Fig. 2; section Al.1). The SU2 samples are
slightly enriched in Sc relative to Cr (Fig. 2, Cr/Sc ratio).

3.1.3. Unit at 54 cm depth. The concentrations of all
analyzed lithophile elements generally decrease with depth in
the core, except for that of Ca, which increases. The most
striking compositional feature of the core occurs in SU3 in
60009, a distinct layer near the bottom at about 54 cm depth
in which most elements reach a minimum concentration and
CaO reaches its maximum concentration, as does Al,O; (Al
and Ebmann, 1976). This soil is whitish in color. Previous
studies show that the anomaly results from a concentration of
coarse-grained, nearly monomineralic plagioclase in this unit
(Duke and Nagle, 1976; McKay et al., 1976; Blanchard et al,,
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Fig. 2. (continued).
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1976; Ali and Ebmann, 1976; Simon et al, 1978). The soil
at 54 cm depth in 60009 is the most feldspathic yet found
among Apollo 16 regolith samples; no other Apollo 16 soil is
comparably poor in Sc and other elements associated with
mafic mineral phases.

There is a less extreme, but compositionally similar layer in
SU7 of 60009 at 43 cm depth. This whitish layer contains
anorthositic breccia fragments in addition to some plagioclase
crystals (Duke and Nagle, 1976; McKay et al, 1976). It was
not so evident in previous studies that this unit is composi-
tionally distinct because only one sample from this zone was
studied.

Korotev: Apollo 16 cores

3.1.4. Unit at 58 cm depth. Below the white layer at
54 cm depth there is an abrupt change in the concentrations
of most elements. At the very bottom of the core, at 58 cm
depth, is a unit (SU1 of 60009) that is similar in composition
to the soil near the surface. The deepest four samples depart
from the general trend of decreasing concentration with depth
for most lithophile elements.

3.1.5. Sideropbile elements and Fe-Ni metal. Sidero-
phile clements show f{ittle systematic variation with depth
(Fig. 2). Minima in the concentrations of Ni, Co, Au, and Ir
occur at 43 and 54 cm depth as a result of dilution by the
coarse-grained, feldspathic components in these units. Several
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Fig. 2. (continued).
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Fig. 3. The stratigraphic units (SU) of Duke and Nagle (1976) for
60009/10 keyed to the Sc depth profile of Fig. 2. The arrows indicate
the intervals from which the >1-mm particles were obtained (Table 1).

“spikes” occur in the siderophile-element profiles, most
notably at 25 and 57 cm depth. These samples have high
concentrations of Ni, Co, Ir, and Au, yet stratigraphically
adjacent samples are normal. Thus, the anomalies probably
result from single large grains of Fe-Ni metal of meteoritic
derivation in the analyzed subsample (Korotev, 1987b). Several
of the samples between 12 and 17 cm depth are moderately
enriched in siderophile elements, indicating a slight excess
concentration of meteoritic material in these units (SU3 and
SU4).

Ali and Ebmann (1977) report that sample 60010,40 (3-
4 mm depth; section A1.B) had exceptionally large concentra-
tions of Ni (10,600 ug/g) and Co (142 pg/g) as a result of
a large grain of metal containing 93.2% Fe, 6.4% Ni, and 0.36%
Co, which they recovered from the sample. This is a typical
composition for metal grains in Apollo 16 soil (Koroter,
1987b). Both the size of the grain (~1 mm, longest dimen-
sion) and the anomalously high concentrations of Fe and Co
they report for the bulk soil sample are consistent with an
~1.5-mg grain of metal of the composition they report (in a

50-mg soil sample, i.e., 3% by weight of the analyzed sample).
However, there appears to be some discrepancy in the
reported results because the expected Ni concentration of the
bulk soil sample would be only 2400 ng/g, not 10,600 ug/g
as reported.

3.1.6. Binary mixing. The concentration profiles for
elements compatible with mafic mineral phases such as Fe, Sc,
and Cr are similar to each other as well as to those of ITEs
like Sm. Figure 4 shows that throughout the wide variation in
Sc and Sm concentrations among the soils, the two elements
are well correlated. As discussed in more detail below, the
correlation line is a binary mixing line between the most Sc-
rich (mafic), ITErich soils in the core and plagioclase
fragments, such as those that dominate in the unit at 54 cm
depth (Blanchard et al, 1976). For plagioclase, the concen-
trations of all elements analyzed except the “plagiophile”
elements Na, Ca, Sr, and Eu are very low compared with the
concentrations in most of the fines. As a result, plagioclase acts
as a diluent resulting in mixing trends that extrapolate toward
the origin in most two-element plots such as the Sc-Sm plot
of Fig. 4. For consistency, Sm will be used to represent the
ITEs and Sc will be used to represent elements associated with
mafic components in much of the subsequent discussion and
many of the figures. Because of the mutual correlation among
concentrations of those lithophile elements not associated with
plagioclase in Apollo 16 fines, conclusions about mixing
relationships based on Sc-Sm plots are usually valid when other
lithophile elements are considered; exceptions will be noted.

3.2. >1-mxm Particles

I studied individual soil particles for the purpose of
identifying the lithologies responsible for the compositional
variations observed in the <1-mm fines. Thin sections were
prepared of many of the particles after INAA, and with the aid
of B. L. Joliiff, the particles were categorized by lithologic type,
e.g., impact-melt rocks, regolith breccias, etc. Detailed
petrographic description of these particles is beyond the scope
of this work. Petrography of the particles will be discussed in
more detail in subsequent papers on 1-4-mm soil particles
from Apollo 16 (B. L. Jolliff, R. L. Korotev, and L. A. Haskin, in
preparation). For this report, however, I compare the
compositions of the <1-mm fines and the particles with the
advantage of knowing, in most cases, the rock type represented
by the particles.

The >1-mm particles from 60009/10 include 20 from the
Sc- and Sm-rich layer at 20 cm depth, 10 from the Sc- and Sm-
poor anorthositic layer at 54 cm depth, and 10 from the Sc-
and Sm-rich layer at 58 cm depth (Table 1). The particles were
selected to represent the range, but not necessarily the relative
distribution, of lithologies present at each depth interval
However, because a large fraction (36-53%) of all available
particles in each parent split was studied (Table 1), it is
unlikely that the actual distribution of large particles in each
depth interval is significantly different from that of the subsets
studied here. It is important to keep in mind that the relative
distribution of lithologies in the >1-mm grain-size fraction may
be different from that of the <1-mm fraction (Korotev, 1989).
Analytical results for the >1-mm particles are listed in Table A2.
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The compositional variation among the >1-mm particles is
large and greatly exceeds that of the <1-mm fines, particularly
for ITEs like Sm (Fig. 5a). This is to be expected because each
analyzed sample of <1-mm fines is a mixture of many such
particles. We can assume that the lithologies observed among
the >1-mm particles occur as well in the <1-mm fines and that
the <1-mm fines contain at least a small proportion of
lithologies not represented among the 40 >1-mm particles
studied here. The linear trend of <1-mm fines on Fig 4
indicates that the mixing is systematic in some way; this topic
will be discussed in more detail below.

Petrographic examination of the particles shows that they
consist of a variety of lithologies (Fig. 5a). The single
agglutinate (McKay et al, 1972), particle 58-F, plots on the soil
mixing line in the vicinity of <1-mm soils from 58 cm depth
(“Aggl,” Fig. 5a). This is to be expected if the particle formed
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from fusion of local soil during a micrometeorite impact
(section 4.3.1). Three regolith-breccia particles (20-E 20-R,
58-J) plot on the extension of the soil mixing line, at slightly
greater Sc concentrations than the most Sc-rich soils. These
particles are fragmental breccias consisting of lithified soil,
perhaps of local derivation, that apparently contain even less
plagioclase than the most mafic <1-mm fines. A fourth regolith-
breccia particle (20-B) is anomalous in having the greatest
concentrations of ITEs of any particle studied (Sm: 21 ug/g).
It has a glassy matrix and contains a large clast of poikilitic
impact-melt breccia. This particle was probably not formed
from regolith such as that presently occurring at the surface
of the Apollo 16 site. Impact-melt breccias span a range of
compositions; ITE concentrations are particularly variable, but
all particles with high Sm concentrations, except 20-B, are
impact-melt breccias. Many of these have poikilitic textures

8

121
i r2 = 0.935

Sm (ug/g)

W
I

plagioclase
particles

0 2 4

6
Sc (ug/qg)

Fig. 4. Variation of Sm and Sc concentrations in <1-mm fines from 60009/10 (data from Table A1). The symbols are keyed to depth and
are the same as those in Fig. 3. The solid line is the best fit to the 121 data points (excludes circled triangles; see section A2 for discussion
of fitting of the line). The dotted portion of the line indicates that the trend extrapolates to plagioclase such as that found as single grains
in the >1-mm grain-size fractions. This mixing line is reproduced in subsequent Sm-Sc plots. The two circled triangles are for grain-size fractions
of soil at 54 cm depth (60009,457 from Blanchard et al, 1976). The “+’ represents the composition of the Cayley soil component used
in the mixing model (Tables 3 and 4).
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Fig. 5. Variation of Sm and Sc concentrations in >1-mm particles
from three depth intervals in 60009/10 (data from Table A2). The
symbols are consistent with Fig. 3 and the solid line with dashed
extension is the mixing line for the <1-mm fines from Fig. 4. (a) The
dotted lines encircle fields for petrographically similar particles:
“RgBx” = regolith breccias; “IMBx” = impact-melt breccias; “Aggl” =
agglutinate; “FrBx & GrBx” = fragmental breccias and granulitic
breccias (some of the impact-melt breccias have granulitic textures).
(b) Comparison of the 6 plagioclase particles to 18 samples from large
ferroan anorthosites from Apollo 16 (open squares; data from
compilation of Haskin et al, 1981). The broken line is the simple
least-squares regression to all 24 points (Sm = 0.01083 - Sc + 0.0745).
(c) Expansion of (a) in the vicinity of the origin showing the
plagioclase grains. The mixing line of Fig. 4 and the regression line
of (b) are shown; their intersection provides an estimate of the
composition of the ferroan-anorthosite component of the <1-mm fines
at 54 cm depth in the core. (See section A2 for discussion of un-
certainty in the extrapolation of the <1-mm fines mixing line.)

and probably correspond to the “poikilitic rocks” lithology that
McKay et al. (1977) found to be most abundant at 20 cm
depth in the core in their study of modal petrography of
submillimeter grain-size fractions. Particles with less than
2 pg/g Sm and greater than 1 ug/g Sc are mostly feldspathic
fragmental breccias, granulitic breccias, and feldspathic impact-
melt breccias.

Thin sections of the remaining six particles have not been
prepared. However, all are white in color and have compo-
sitions consistent with nearly pure (>99%) plagioclase feldspar
(Palme et al, 1984). Although at least one such particle
occurs in all three depth intervals, three of the six plagioclase
particles are from the immature, feldspathic unit at 54 cm
depth. It is clear from the photograph provided by the curator
that of the 19 >1-mm particles occurring in this depth interval
(60009,214, Table 1), 8 are plagioclase grains. The three
analyzed particles are virtually identical to each other in
composition but are slightly different from the particles from
20 and 58 cm depth (Figs. 5b and 6). Under the binocular
microscope all three are translucent and appear to be single
crystals. These almost certainly correspond to the “plagioclase
single crystals” lithology that dominate this immature layer in
the modal petrographic studies of McKay et al. (1976) and
Simon et al. (1978). The two plagioclase particles from 20 cm
depth are also very similar to each other in composition and
are more mafic (greater Sc, Fe, Cr), slightly more anorthitic
on the average (Angy; vs. Anggs, based on INAA data, Fig 6),
and have lower Eu concentrations than the other four. Under
the binocular microscope these two are opaque white grains,
suggesting that they are cataclastic or remelted.

Except for the abundance of plagioclase grains at 54 cm
depth, there is no overwhelming evidence in the data
presented here that any particular lithology is more prevalent
in one depth interval than another among the >1-mm particles.
For example, mafic (>8 ug/g Sc), Sm-rich (>10 ug/g), impact-
melt breccias are about equally abundant in all three depth
intervals.

4. 60009/10 DISCUSSION

Soil samples from the top 13 cm of the core are all similar
to each other in composition as well as to most other surface
soils collected in the vicinity of the lunar module (Stations LM,
1, and 2; Korotev, 1981; Ali and Ebmann, 1977). Soil in this
region of the core is the most mature; among 60009/10 soils
it has extreme values for most indices of surface exposure
[highest fraction of agglutinate particles, small mean grain size,
and the highest values for L/FeO (section 4.3.1); McKay et al,
1977]. It is relatively rich in Sc and Sm (Figs. 2 and 4). To
a first approximation, all the compositional variation in
lithophile elements among the 121 samples of <1-mm fines
analyzed here can be explained by addition (or subtraction)
of a plagioclase-rich component, such as the plagioclase grains
discussed in the previous section, to (or from) a relatively
mafic soil, such as that found at the top of the core. This is
essentially the conclusion of previous compositional studies
(Blanchard et al, 1976). 1 expand on the significance of that
mixing relationship below.
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Fig. 6. Variation of Na,O, CaO, and Eu concentrations with Sc in
<1-mm fines from 60009/10 and comparison with >1-mm plagioclase
particles. The lines have been fit to the data from samples in the 36-
57 cm depth interval only (filled triangles). The percent anorthite
concentrations of the plagioclase particles listed in (a) was calculated
from the bulk concentrations of Na,O and CaO.

4.1. Ferroan Anorthosite (Sc-poor) Component

4.1.1. Extrapolation of the mixing lines. The simple
two-component model is demonstrated by the mixing line on

the Sc-Sm plot of Fig. 4 (sectionA2); the same mixing
relationship is indicated by any pair of lithophile elements. In
this section I use mixing lines to constrain the composition
of the Sc-poor component.

Korotev: Apollo 16 cores

At one extreme the Sc-poor component may be represented
by the soil with the lowest Sc concentration because any of
the soils of intermediate composition can be modeled
reasonably well as a mixture of soils of more extreme
composition. However, the low-Sc component may be any rock
type or soil of lower Sc concentration, as long as it plots along
the dashed (extrapolated) portion of the mixing line on Fig. 4
and provides satisfactory mass balance for other elements as
well. This excludes soils such as those found at North Ray
Crater (Fig. 1; Table A7) because these do not plot on the
60009/10 mixing line (Korotev, 1981, 1990b). As developed
below, the lithology ferroan anorthosite, however, does satisfy
the requirements; thus, even if the low-Sc component is a “soil
component” (section 4.2), it almost certainly is dominated by
ferroan anorthosite and not more mafic anorthositic rocks such
as those typical of North Ray Crater. Nonetheless, it is useful
to consider this extreme. The most Sc-poor sample analyzed
here, 60009,3118 from 54.3-54.8cm depth, is similar in
composition to the sample analyzed from this same depth
interval by Ali and Ebmann (1976), who obtained data for
major elements. Although these data are not precise, they
constrain the Sc-poor component to contain at least 93 vol%
plagioclase; thus the Sc-poor component is clearly some type
of anorthosite.

Compositional data for Apollo 16 anorthosites indicate that
the Sc-poor component is an anorthosite considerably richer
in plagioclase than even the most Sc-poor soil. The six >1-mm
plagioclase particles (section 3.2) are indistinguishable in
composition from some large samples of Apollo 16 anorthosite,
but several Apollo 16 anorthosites have Sc concentrations
much greater than those of the plagioclase particles because
they are more mafic (Fig. S5b). Samarium concentrations are
very low in Apollo 16 anorthosites, averaging about 0.08 ug/g.
Because the mixing trend for the <1-mm fines extrapolates
directly into the range of the anorthosites and because
anorthosite particles of similar composition occur in the soil,
it is reasonable to assume that the Sc-poor component is an
anorthosite such as those plotted in Fig. 5b. The intersection
of the regression line of Fig. 5b and the mixing line of Fig. 4
represents the best estimate of average composition of the low-
Sc component. The lines intersect at a point corresponding to
0.5 ug/g Sc and 0.08 pg/g Sm (Fig. 5¢).

The concentration of Sc in the anorthosite component is an
important parameter because it is useful for establishing the
plagioclase concentration of the anorthosite. Unfortunately, the
uncertainty in the Sc concentration at 0.08 ug/g Sm is relatively
large, 0.5 + 0.3 ug/g (95% confidence) because of the degree
of scatter of the <1-mm fines about the mixing line and the
long extrapolation (Fig. 4). Thus, within uncertainty, the three
>1-mm plagioclase particles from 54 cm depth (Fig. 5¢)
account for the mixing trend, which is defined primarily by
<1-mm fines from 36-57 cm depth (Fig. 4).

More information about the nature of the anorthosite
component can be obtained from plots of the “plagiophile”
elements Na, Ca, Sr, and Eu. In Fig. 6, the compositions of soils
in the anorthositic zones (36-57cm) trend toward a
plagioclase composition that does not exactly match that of
any of the six separated plagioclase particles, but is within the
range defined by the six particles. Extrapolation of the mixing
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lines in Fig. 6 to 0.5 ug/g Sc indicates that plagioclase in the
soils between 36 and 57 cm depth has an average composition
of Anggg, compared with Angs4 for the mean of the three
>1-mm plagioclase grains from 54 cm depth. Electron micro-
probe analyses of plagioclases from this zone indicate that most
have a composition of Angg g7, but that they range from Angs 5
to Anggo (Vaniman et al, 1978). Thus, a portion of the scatter
about the low-Sc end of the mixing lines in Fig. 6 results from
variation in the mean anorthite content of the plagioclase in
the analyzed samples. This variation is exacerbated by the fact
that the plagioclase is coarse grained and the sample masses
are small.

4.1.2. Plagioclase content of the anortbosite compo-
nent. The analysis above indicates that the anorthosite
component of the 60009/10 soils contains 0.5 + 0.3 ug/g Sc
and thus is very poor in Sc-bearing phases (primarily pyroxene
and ilmenite). Iron-oxide concentrations for Apollo 16
anorthosites containing 0.5 ug/g Sc are typically 0.3-0.4%
(Haskin et al, 1981) and plagioclase from Apollo 16
anorthosites typically contains 0.1% FeO (Hansen et al,, 1979,
Palme et al, 1984). Thus, if the nonplagioclase phases in the
anorthosite average at least 20% FeO, the anorthosite
component responsible for the principal compositional
variation in the 60009/10 soils contains at least 99%
plagioclase.

4.1.3. Ferroan anorthosite and Apollo 16. The lunar
crust is rich in plagioclase and a variety of plutonic and
polymict anorthosites have been identified [especially if any
rock containing >77.5% modal plagioclase is regarded as an
“anorthosite” (Warren et al, 1990)]. However, (1) the coarse
grain size and high plagioclase concentration of the anortho-
site, (2) the high anorthite content of the plagioclase, and
(3) the ferroan nature of the associated mafic silicates
(Vaniman et al, 1978) identify the anorthosite component at
54 cm depth in 60009/10 as the plutonic rock type known
as “ferroan anorthosite” (Dowty et al, 1974). This is
confirmed by the relative concentrations of rare earth elements
(REE; section 5.2.4) and the low Eu concentration of 0.8 pg/
g (Fig 6), which is the typical concentration for ferroan
anorthosite from the Apollo 16 site (Korotev and Haskin,
1988). Other types of “pristine” lunar anorthosite, e.g., alkali
anorthosite and magnesian anorthosite, have higher concentra-
tions of REE, including Eu (Warren and Wasson, 1981; Warren
et al, 1983a; Lindstrom et al, 1984). [The strikingly large
positive Eu anomalies of lunar ferroan anorthosites are
misleading: with ~0.8 ug/g Eu, ferroan anorthosite has the
lowest absolute concentration of Eu of any common lunar rock
type (Korotev and Haskin, 1988). Only very plagioclase-poor
rocks have lower Eu concentrations.]

Since the previous studies of 60009/10, ferroan anorthosite
has come to represent one of the two principal “suites” of
lunar plutonic rocks (Warner et al, 1976; Warren and
Wasson, 1977) and be regarded as the principal lithologic
component of the earliest lunar crust (Warren and Wasson,
1979). An important, but unknown, parameter for models of
lunar crust formation, however, is the fraction of plagioclase
in the anorthosite of the early lunar crust (Korotev and
Haskin, 1988; Warren, 1990). With an average Al,O;
concentration of 26%, the present crust averages 75-80 vol%

plagioclase (Warren, 1985; Korotev and Haskin, 1988). Based
on Eu mass balance for a large number of polymict samples,
Korotev and Haskin (1988) argue that the anorthosite
component of the lunar crust is, in the strict sense, a noritic
anorthosite, i.e., 77.5 to 90 modal percent plagioclase (Stdffler
et al, 1980), and other arguments lead to a similar conclusion
(Warren, 1990). Although samples of noritic anorthosite are
common, nearly all are polymict breccias. Most samples of
“pristine” ferroan anorthosite contain greater than 95%
plagioclase and some well-known large specimens contain at
least 99% (e.g., 15415, 60015). Perhaps the numerous hand
specimens of nearly pure plagioclase found in the Apollo 16
regolith may not be representative of their source_rocks, but
are merely the plagioclase-rich fraction of comminuted
anorthosites that are really more noritic or troctolitic, and for
some reason our sampling of a finite number of discrete
samples is biased in favor of the most plagioclase-rich samples
(Haskin and Lindstrom, 1988). However, Warren (1990)
calculates that even when only “large” samples (>10g) of
pristine ferroan anorthosite are considered, the modal fraction
of mafic silicates averages 8.1 +8.6wt% (93.7vol% plagio-
clase). All but one (15415) of the 17 samples considered by
Warren (1990) are from Apollo 16. Thus, even the largest
anorthosite samples from Apollo 16 are much more feld-
spathic, on the average, than the average lunar crust.

The <1-mm fines from 60009/10 contain a large number
of small mineral grains. The arguments presented above show
that the ferroan anorthosite component of the <1-mm fines
is ~99% plagioclase. Because of “differential comminution,”
ie., the varjation in mineral proportions with grain size in a
comminuted rock resulting from differences in the intrinsic
grain size and mechanical properties of the various minerals,
the source anorthosite may be somewhat more or less mafic
than the anorthosite component of the <1-mm fines (Korotev,
1976; Horz et al, 1984). However, there is little evidence that
mafic minerals are concentrated in coarser (>1 mm) grain-size
fractions of the regolith. Among more than 200 >1-mm soil
particles from Apollo 16 studied in this lab, we have only
encountered one particle dominated by mafic minerals (a
single olivine grain, section 5.2.2). Some of the large ferroan
anorthosites with >95% plagioclase from the LM/ALSEP
Station, e.g, 60015, 60055, and 60215 (97-99% plagioclase;
Warren, 1990), may derive from the same source as the
60009/10 anorthosite. However, if more mafic anorthosites
such as 60025 and 60135 (90vol% and 77 vol% plagioclase;
Warren, 1990) also derive from the same source, then the
60009/10 data argue that either (1)these samples are
atypically mafic and do not represent the source of the
anorthosite or (2)the mafic minerals are preferentially
excluded from the <1-mm grain-size fraction of the regolith.

Ferroan anorthosite in any form is scarce at all other
sampled highland sites. None of the nonmare lunar meteorites,
all of which are regolith breccias of unknown provenance,
suggest that rocks containing 99% plagioclase are an important
constituent in their source regions (Korotev et al, 1983;
Ostertag et al., 1986; Goodrich and Keil, 1987; Bischoff et al,
1987; Takeda et al, 1989; Jolliff, 1990). Thus, the Apollo 16
region may be atypical of the lunar crust in containing such
highly plagioclase-rich rocks.
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4.2. Cayley Soil (Sc-rich) Component

4.2.1. A well-mixed soil component. By analogy, we
might expect that extrapolation of the regolith mixing lines
of Figs. 4 and 6 in the high-Sc direction might also intersect
the field of some prevalent rock type. However, this would
require that Apollo 16 soils are composed principally of only
two lithologies, ferroan anorthosite and a single high-Sc
(mafic) lithology, and this is unrealistic because petrographic
studies, as well as the data for the >1-mm particles (sec-
tion 3.2), indicate that Apollo 16 soils consist of many different
rock types with a wide variety of compositions. Also, there is
no common rock type at Apollo 16 that plots on the
extrapolation of the regolith mixing lines in the high-Sc
direction (other than breccias composed of regolith, eg,
Fig. 5a), thus the extrapolation has no significance other than
to show the geometric effect of removing anorthosite from the
most mafic soils, which probably do contain at least a small
component of ferroan anorthosite.

The deceptively simple mixing trends of Figs. 4 and 6 show
that the mixing event(s) represented by the trends involves
two components, ferroan anorthosite and a soil composed of
a previously well-mixed assortment of various lithologies. A
principal conclusion of this work is that soils plotting at the
high-Sc and high-Sm end of the distribution in Fig. 4 (i.e., about
10.5 pg/g Sc and 7 pg/g Sm) represent, at one level, an
endmember mixing component in the same sense that the
“Apennine Front soil component” is an end member at
Apollo 15 (Korotev, 1987d). I will call this component the
“Cayley soil component” because soils of this composition
appear to be the dominant surface material associated with the
Cayley Plains west of the landing site (below). The various
more mafic subcomponents of the Cayley soil component must
occur in relatively constant proportions among the various
soils from 60009/10. For example, the ratio of Sm-rich impact-
melt breccias to Sm-poor granulitic breccias (section 3.2;
Fig. 5) must not vary greatly. If it did, then the data for the
<1-mm fines would be more scattered within the area
bounded by the data for the >1-mm particles in plots such
as Fig. 4.

The Cayley soil component is generally finer grained than
the anorthosite component that dominates at 54 cm depth.
This leads to variation in composition of the soil with grain
size. Blanchard et al. (1976) analyzed grain-size fractions of
soils throughout the core. Both the 90-150-um fraction and
the <20-um fraction of the soil from 54 cm depth (60009,457)
plot on the mixing line of Fig. 4. This suggests that the variation
in composition with grain size does not result from differential
comminution (section 4.1.3), but from the mixing of compo-
sitionally distinct components with different grain-size
distributions (Korotev, 1989).

Does soil with the composition of the most mafic soils in
the 60009/10 core represent the Cayley soil component or
is the Cayley soil component better represented by a
composition plotting at higher concentrations of Sc and Sm
along the mixing trend of Fig. 4? There are several pieces of
evidence to suggest that soil containing significantly less
plagioclase does not occur in the vicinity of the Apollo 16 site.
First, the most Sc-rich soils in 60009/10 are almost identical
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in composition to the most Scrich of the surface and trench
soils from Apollo 16, those from Stations 5 and 6 (Korotev,
1981). Second, soils plotting along the mixing trend of Fig. 4
but with higher Sc and Sm concentrations do not occur either
in the Station 4 core (Korotev et al, 1984) or in the deep
drill core (section 5), although both cores contain samples of
similar composition to the most Sc-rich soils from 60009/10.
(Samples containing >10.5 ug/g Sc occur in both these cores,
but they plot off the Sc-Sm mixing trend as a result of a
component of mare basalt or mare glass, not as a result of less
anorthosite; section5.1.4.) Third, Th is strongly correlated
with Sm in Apollo 16 soils (Fig. 7). Soil samples plotting at the
high-Sc and high-Sm end of the mixing trend contain about
2.5 ug/g Th, which is the average Th concentration of the
Cayley Plains immediately west of the landing site as
determined from orbit (Metzger et al, 1981). Because of the
strong correlations between pairs of ITEs and between
incompatible and compatible lithophile elements in Apollo 16
soils (Figs.4 and 7; Korotev, 1981), knowledge of the Th
concentration of the Cayley Plains effectively fixes the average
concentration of other lithophile elements. The only evidence
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Fig. 7. Variation of Sm with Th in samples from the two cores. The
vertical lines represent the range in Th concentration obtained. from
the Apollos 15 and 16 orbiting gamma-ray experiments for the Andel
region, which consists mostly of the Cayley Plains immediately west
of the landing site (Metzger et al, 1981). The small arrows locate
the concentrations at the surface of the LM Station based on the top
10 cm of soil from the two cores and 60601 (Fig. 1). The data show
that the most Th- and Sm-rich soils in the cores (excluding a few
anomalous samples) are typical of the surface of the local Cayley Plains.
Soil as poor in Th as the most Th-poor soils in 60009/10 is found
at the surface immediately east of the Apollo 16 landing site [Descartes
and Kant regions; Metzger et al. (1981)]. The regression line [method
of York (1969); see section A2] excludes the four data points that are
most deviant.
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TABLE 2. Petrographic data for three depth intervals in 60009/ 10 from McKay et al.
(1976, 1977); values in modal (volume) percent .

Sample Number: 60009,457 60010,3107 60009,458
Nominal Depth (cm): 54 20 58
Scandium Concentration: low high high
raw minus plag. raw raw
(1) Metamorphosed Breccia 4.7 16. 11.0 11.7
(2) Poikilitic Rocks 3.0 10. 28.1 125
(3) Plagioclase Single Crystals 73.8 113 115 11.1
SUM (1-3) 81.5 375 50.6 35.3
(4) Brown Matrix Breccia 24 82 8.1 13.8
(5) Agglutinates 5.0 169 109 26.1 N
SUM (1-5) 88.9 62.6 69.5 75.2

*Mass weighted mean of three size fractions (90-500 um). The column labeled “minus plag.” results
from mathematically removing “plagioclase single crystals” until the normalized percentage is 11.3, the

mean value of the other two depth intervals.

suggesting that the Cayley soil component may be slightly more
mafic than the most Sc-rich soils in 60009/10 is that the three

>1-mm particles from 60009/10 identified as regolith breccias
plot on the mixing trend at slightly higher concentrations of
Sc and Sm (Fig. 5a; section 3.2). However, most Apollo 16
regolith breccias are less mafic than the three particles from
60009/10 (section 6.2). \

4.2.2. But not perfectly well mixed. In their study of
the core, McKay et al. (1977) concluded that modal
petrographic variations among soils from different depths
involved mainly three components. In this section I show that
some of the scatter about the binary mixing line of Fig. 4 is
caused by variation in the proportions of the components
identified by McKay et al. (1977) and that the Cayley soil
component does not have a unique chemical and mineralogical
composition, but is variable within limits.

The modal petrography of McKay et al. (1977) is summar-
ized in Table 2. The table lists percentages of five components
that account for 70-90% of the volume of the core samples.
McKay et al. (1977) argue that most of the petrographic
variation involves three lithologies, “plagioclase single crystals,”
“poikilitic rocks” (Simonds et al., 1973), and “metamorphosed
breccia.” At one extreme is the soil from 54 cm depth in
60009, which contains >70% plagioclase single crystals. Within
the 60009 section, the other extreme is at 58 cm depth, which
contains the lowest fraction of plagioclase single crystals, 11%,
and the highest fractions of poikilitic rocks and metamor-
phosed breccia. The two latter components are approximately
equally abundant. Other soils in 60009 (not listed in Table 2)
appear to be mixtures of these two extreme soils in that the
ratio of poikilitic rocks to metamorphosed breccias remains
fairly constant at 1 to 1 and only the ratios of plagioclase single
crystals to the sums of the other two components change. This
variation defines one mixing trend. Another petrographic
mixing trend occurs in the 60010 section of the core. The
most extreme soil in 60010 is that at 20 cm depth, which
contains the lowest fraction of plagioclase single crystals,
11.5%, which is nearly identical to that of the soil at 58 cm
depth in 60009. However, the ratio of poikilitic rocks to
metamorphosed breccia is 2.4 to 1 and other soils in 60010

maintain this ratio. On triangular plots on which these three
components are normalized to 100%, two distinct mixing
trends occur, one for 60009 and the other for 60010 (Figs. 8
and 9 of McKay et al., 1977).

Why are the two mixing trends, which are strikingly obvious
on the plots of McKay et al. (1977), not apparent in the
compositional data? The principal criterion distinguishing the
two trends on the plots of McKay et al. (1977) is the ratio
of poikilitic rocks to metamorphosed breccias. In order for the
petrographic mixing trends to be apparent on compositional
plots, these two components must be (1) volumetrically
significant constituents of the soil and (2) compositionally
distinct. The triangular (normalized) plots of McKay et al.
(1977) obscure the fact that the only significant difference
between the soils at 20 cm and 58 cm depth is that the soil
at 20 cm depth contains a higher concentration of “poikilitic
rocks”; concentrations of the other two components are nearly
the same in the two mafic soils. The difference of 15.6% in
the concentration of poikilitic rocks between the two mafic
soils is small compared with the range of 11% to 74% in the
concentration of “plagioclase single crystals” between the
mafic soils (Sc-rich) and the feldspathic (Sc-poor) soils. Thus,
the volumetric importance of the petrographic difference
between the 20-cm soil and the 58-cm soil is not as great as
the volumetric importance of the difference in plagioclase
concentration of these two soils and the 54-cm soils. Only if
the “metamorphosed breccia” and the “poikilitic rocks”
components were significantly different in composition would
we expect to see a compositional difference.

The >1-mm particles were studied in large part to associate
chemical compositions with the poikilitic rocks and meta-
morphosed breccia components of McKay et al. (1976, 1977).
All the particles with poikilitic textures are impact-melt
breccias with relatively high Sc concentrations and Sm
concentrations exceeding 10 ug/g (Fig. 5). Rocks such as this
are common at Apollo 16 (Vaniman and Papike, 1980) and
are a major carrier of Sc and the principal carrier of ITEs such
as Sm in the soil; no other common Apollo 16 lithologies are
richer in Sc or ITEs or have a higher Sm/Sc ratio. Thus, the
compositional fingerprint of the relative enrichment of the soil
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at 20 cm depth in “poikilitic rocks” is that the seven samples
from this zone tend to plot on the high-Sm side of the mixing
line (Fig. 4), but only slightly.

The three samples of <1-mm fines from 58 cm depth plot
on the low-Sm side of the mixing line at a relatively high Sc
concentration in Fig. 4. This suggests that the “metamorphosed
breccia” component is a relatively mafic (e.g., noritic
anorthosite) but Sm-poor lithology. Two of the >1-mm
particles from 58 cm depth (58-D and 58-G, Table A2) are
granulitic (granoblastic) breccias that would probably fall in
the “metamorphosed breccia” category of McKay et al.
(1976). Both are poor in Sm (<1 pg/g) but have moderate
Sc concentrations (6-7 ug/g). (These are the two squares in
the “FrBx & GrBx” field of Fig. 5.) Thus, I suspect that many
of the “metamorphosed breccia” fragments reported by McKay
et al. (1976, 1977) are Sm-poor lithologies. However, among
the >1-mm particles studied here are a few Sm-rich particles
that are impact-melt breccias with recrystallized textures that
may also have been classified as “metamorphosed breccias” in
the scheme of McKay et al. (1976, 1977; also Vaniman et al,
1978). Thus, a unique composition for the “metamorphosed
breccia” component of McKay et al. (1977) cannot be
unambiguously assigned.

In summary, most of the compositional variations in the
60009/10 soils result from varying proportions of an
anorthosite containing a very high percentage of plagioclase
feldspar (~99%) and more mafic soil, the Cayley soil
component. The mafic subcomponents of the Cayley soil
component are generally fine grained and reasonably well
mixed, but vary slightly in proportion with depth in the core.
This variation is small compared with the large variation in the
fraction of modal plagioclase among the samples, but it causes
most of the scatter about the mixing line in Fig 4. Variation
in average plagioclase composition also causes some of the
scatter for “plagiophile” elements in plots such as those in
Fig. 6. Considering the wide variation in the composition of
the constituent particles of the soils (Fig. 5), the trends of
Figs.4 and G are strong evidence that the more mafic
components of the soil were well mixed prior to admixture
of the anorthosite component.

4.3. Magnetic Fractions and “Ancient” Fe-Ni Metal

I diverge here to discuss a once-popular topic that a review
of early literature on 60009/10 reveals was abandoned, but
never completely resolved—that of magnetic fractions of lunar
soils. Magnetic separates are typically enriched in Fe
(expected) as well as Sc, Cr, and ITEs (not necessarily
expected) compared with nonmagnetic fractions (Rbodes et
al, 1975; Blanchard et al, 1976). Rbodes et al. (1975) argued
that magnetic separates are enriched in agglutinates (below)
and that the compositional differences between magnetic and
nonmagnetic fractions resulted from some chemical
fractionation process that occurred during the formation of
agglutinates. This idea fell from favor when electron
microprobe studies showed little difference in composition
between the glassy matrix of agglutinates and the soils in
which the agglutinates occurred (Gibbons et al., 1976; Hu and
Taylor, 1977). However, the observation that magnetic
fractions contained higher concentrations of nonferromagnetic
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elements was never satisfactorily explained, although Via and
Taylor (1976) noted that magnetic fractions contained
“magnetic nonagglutinates consisting of glass-free micro-
breccias with 30-60 pm native FeNi grains.” As magnetic
separation techniques may be used in the future to separate
metal from lunar soils at a lunar base, I reexamine this issue
in this section. The discussion also introduces the subject of
“ancient” Fe-Ni metal, which is important in a subsequent
discussion.

4.3.1. Agglutinates and single-domain iron. Agglu-
tinates are small glassy-matrix particles containing mineral and
lithic clasts and are believed to be produced at the surface
of the regolith by melting of fines during micrometeorite
impact (McKay et al, 1974; Papike et al, 1981; McKay and
Wentworth, 1990). The fraction of agglutinates (Table 2) is a
measure of the maturity (duration and extent of surface
exposure) of a soil (McKay et al, 1974). Agglutinates contain
fine-grained (<30 nm) particles of nearly pure, single-domain
Fe metal that is produced by exposure-related reduction
(micrometeorite impact or solar-wind protons) of Fe(Il) in
iron silicates (Housley et al, 1974; Morris, 1976, 1980). The
parameter I/FeO, which is a measure of the amount of single-
domain iron normalized to total iron concentration (Morris,
1976), increases with surface exposure. Rbodes et al. (1975)
used magnetic separation to obtain “agglutinate fractions” of
several lunar soils. These “agglutinate fractions” were, more
precisely, magnetic fractions containing agglutinate particles.

Blanchard et al. (1976) analyzed both “magnetic fractions”
and “nonmagnetic fractions” in their study of 60009. They
never explicitly declared their purpose in studying the
fractions, but in their modeling they implied a relationship
between the proportion of “magnetic fraction” and soil
maturity. The magnetic fractions were considerably enriched
in Ni and Co compared with the nonmagnetic fractions, as they
were in the study of Rbodes et al. (1975). If the metal in
magnetic fractions is derived only from the reduction of Fe
silicates, an enrichment of Ni and Co would be unexpected
because the metal produced in this manner is nearly pure Fe
(Morris et al, 1975). However, as shown below, much of the
metal in the magnetic separates is Fe-Ni metal of meteoritic
derivation.

4.3.2. “Ancient” Fe-Ni metal. Iron-nickel metal alloys
are a common component of Apollo 16 soils. This metal is
generally believed to be of meteoritic origin, although most
of it is considerably different in composition from metal in
ordinary chondrites. A common composition, particularly at
Apollo 16, is metal containing ~6% Ni (H, L, and LL chon-
drites: 8-30%) with a Ni/Co ratio 15.5 + 3 (most chondrites:
21+2) and a Aw/Ir ratio as high as 1.0 (chondrites: ~0.3)
(Korotev, 1987b; Anders et al, 1973; Wiotzka et al, 1973;
Goldstein and Axon, 1973). Metal of identical composition is
prevalent (up to 1-2%) in mafic impact-melt breccias from
Apollo 16 (Korotev, 1987b,c, 1990a). These breccias were
formed 3.8-3.9 Ga ago during formation of the major lunar
basins. Much of the Fe-Ni metal in the soil is contained in
fragments of these ancient melt breccias. For example, the Sm-
rich (>10 pg/g), impact-melt breccias among the >1-mm
particles (Fig. 5a) have a high average Ni concentration,
710 ug/g (Table A2), which corresponds to about 1% Fe-Ni
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metal (Korotev, 1987¢). However, some Fe-Ni metal in the soil
is also found as free grains (e.g., section 3.1.5) that were either
formed directly as molten droplets at the time of the ancient
impacts (Goldstein et al, 1975) or released from the breccias
by subsequent impacts.

The soils also contain a meteoritic component from more
recent crater-forming impacts (Anders et al, 1973), some of
which may also be Fe-Ni metal. For example, there are many
samples of glass “impact-melt splashes” from Apollo 16 that are
believed to have formed during the South Ray Crater impact
(Fig. 1), about 2 Ma ago (Morris et al, 1986). The Au/Ir ratios
of these glasses are chondritic (Ganapathy et al, 1974) and
the Ni/Fe® ratio in many of these samples is ~0.4, consistent
with an LL chondrite (Morris et al, 1986,) but inconsistent
with Fe-Ni metal found in the melt breccias (Ni/Fe® = 0.06).

To distinguish it from metal that may derive from more
recent crater-forming impacts, I will refer to Fe-Ni metal such
as that found in ancient melt rocks as the “ancient” Fe-Ni metal
component. I use the term “ancient” because this metal has
been a component of the regolith longer than metal from
meteorites causing local craters. Also, it is the carrier of the
siderophile-element signatures of those “ancient meteorite
groups” of Hertogen et al. (1977) that are characteristic of
Apollo 16 (Korotev, 1987b,c).

4.3.3. Correlation of nonferromagnetic elements
with ancient Fe-Ni metal. - Nickel and Co concentrations
indicate that a large portion of the metal in the magnetic
separates of Blanchard et al. (1976) is ancient Fe-Ni metal.
For the 90-150-um grain-size fractions, the ratio of the
difference between the Ni concentrations in the magnetic and
nonmagnetic fractions to the corresponding difference for Co
averages 15.1 for the five samples analyzed. Thus, the “excess”
Ni and Co in the magnetic fractions compared with the
nonmagnetic fractions is consistent with ancient Fe-Ni metal,
but not with metal from ordinary chondrites. As expected, the
magnetic fractions also have higher concentrations of Fe than
the nonmagnetic fractions (total Fe reported as FeO). If the
excess Ni in the magnetic fractions is carried by Fe-Ni metal
containing 6% Ni, then on the average about half the excess
Fe in the 90-150-um grain-size fractions results from Fe-Ni
metal and the other half from exposure-related reduction of
Fe*. For the <20-um grain-size fractions, the magnetic
fractions are also enriched in Fe, Ni, and Co, but the Ni/Co
ratio of the excess averages 18.5, more nearly the chondritic
ratio. The <20-um fractions probably contain both ancient Fe-
Ni metal (Ni/Co=15.5) and a chondritic meteorite com-
ponent (Ni/Co = 21). Blanchard et al. (1976) acknowledge
that the Ni/Co ratios of the <20-um material were more nearly
“meteoritic,” but mention only that the 90-150-um fraction
requires a different kind of Ni-rich material (i.e., lower Ni/Co,
as in ancient Fe-Ni metal).

Thus, magnetic separates of Apollo 16 soil preferentially
contain metal-bearing fragments of mafic, ITE-rich, impact-melt
breccias as well as free Fe-Ni metal. This is the reason magnetic
separates of Apollo 16 soils are enriched in ITEs and elements
associated with ferromagnesian minerals at the expense of
elements associated with plagioclase in the data of Rbodes et
al. (1975) and Blanchard et al. (1976). The physical
association of Fe-Ni metal with the most mafic and ITE-rich

components of the soil leads to correlations among siderophile
elements, ITEs, and elements associated with mafic mineral
phases (Korotey, 1990a). Correlations such as these would not
be expected to result from igneous differentiation processes.

The effect of meteoritic material on the siderophile elements
can be seen in Fig. 8. Four components are represented in the
plots: (1) ferroan anorthosite with effectively zero concen-
trations of all four elements, (2) mafic silicates that contain
appreciable concentrations of Co as well as Fe and Sc, but little
Ni, (3)ancient Fe-Ni-Co metal, and (4) chondrites. Soil
samples with greater than ~30 ug/g Co (Fig. 8a) are usually
submature to mature. They contain a large proportion of
Cayley soil component and thus derive a high proportion of
their mafic silicates from ancient melt breccias of which they
are in part composed. They also contain both a chondritic
component from accumulation of micrometeorite material and
debris from occasional impacts of larger ordinary chondrites
(e.g., South Ray Crater; section 4.3.2), and an ancient Fe-Ni
metal component from the melt breccias (Korotev, 1987b).
Addition of ferroan anorthosite, such as for the anorthositic
soils from 60009, simply dilutes the concentrations of all four
elements in Fig. 8. Thus, although four components are
represented in the plots, linear trends occur because both the
Ni-rich components are associated with the Cayley soil
component and not with the anorthosite component.

As a result of large metal grains that occur infrequently,
samples with anomalously high concentrations of Ni and Co
deviate from the main cluster of points along a trajectory more
consistent with an Fe-Ni metal component than a chondritic
component (Fig. 8a). These same samples are enriched in Fe
to such an extent that a significant fraction of the total Fe in
the sample is of meteoritic origin (Fig. 8b). On the Fe-Sc plot,
the main trend of the data is simply the anorthosite mixing
trend discussed above; the deviations from this trend in the
high-Fe direction result from grains of Fe-Ni metal or other
meteoritic material (Haskin et al, 1973). The unreliability of
the total Fe concentration as an indicator of the mafic silicate
concentration is why I choose to plot the trace element Sc
instead of the major element Fe on plots such as Figs. 4 and 6.

4.4. Mixing Model

To demonstrate the mixing concepts discussed above, I have
modeled the <1-mm fines from 60009/10 as mixtures of two
primary components, an anorthosite component and the
“Cayley soil component.” 1 have also included three minor
components to account for siderophile elements and
deviations from the mixing line. The compositions of the
components are listed in Table 3. Below, I describe how those
compositions were obtained and discuss the model results.

4.4.1. Model components. Because the anorthosite
component of the 60009/10 soils is ~99% plagioclase and
indistinguishable in composition from the plagioclase particles
separated from the >1-mm grain-size fraction (section 4), I use
the mean composition of seven plagioclase particles for the
anorthosite component of the model. These include the six
plagioclase particles discussed above (sections 3.2 and 4.1.1)
and particle 2.25 from 60002 (section5.24). For elements
with concentrations below detection limits (e.g., Au),
concentration values were assumed.
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A composition to represent the Cayley soil component is not
so directly obtained because none of the analyzed >1-mm
particles represents the Cayley soil component. One of the
<1-mm fines samples from 18-21 cm depth that plots at the
extreme end of the mixing line could be used to represent
this component. However, these samples were each
radioassayed only once (section 2.2), and for a mixing model
component, a more precisely known composition is preferable.
Thus, the mean composition of the six replicate samples of
60601 (Table A6; each was radioassayed several times) serves
as a starting point for establishing a composition for the Cayley
soil component. Soil 60601 plots very near the mixing lines
of Figs.4 and 6 (not shown), but it does not plot at the
extreme high-Sc end, i.e., it contains a small component of
anorthosite. Thus, for the purpose of the model, I define the
Cayley s0il component as that composition that, when mixed
in seven parts with one part of the anorthosite component,
yields the mean composition of 60601. The choice of these
proportions was somewhat arbitrary, but they were selected
such that the Sc concentration of the Cayley soil component
(“+” on Fig. 4) is just slightly greater than the most Scrich
soil sample; there is no particular necessity that the
proportions be integer values.

Variation in the ratio of the anorthosite component to the
Cayley soil component accounts for most of the variation in
lithophile-element concentrations in the soils, but does not

Co (ug/9)
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account for the siderophile-element variations. Most mixing
models for lunar soils contain a component of catbonaceous
chondrite to account for “extralunar” siderophile elements
derived from the continuous flux of micrometeorites striking
the surface (e.g, Boynton et al, 1975, 1976; Morris et al,
1989), and this is usually adequate for soils from mare sites.
However, as discussed in section 4.3, a significant fraction of
the siderophile elements in Apollo 16 soils is not derived from
micrometeorites, but is carried by ancient Fe-Ni metal
associated with the mafic impact-melt breccias formed 3.9 Ga
ago. For example, in a typical submature to mature (Cayley)
soil from Apollo 16, 50% of the Ni is carried by the
carbonaceous chondrite component and 50% by the ancient
Fe-Ni metal component (Korotev, 1987b). Thus, I include two
meteorite components in the model. One, designated the CI
component, represents both carbonaceous chondrites
(primarily micrometeorites) as well as debris from larger,
ordinary chondrites (Anders et al, 1973; Morris et al, 1986).
The other, the ancient Fe-Ni metal component, represents the
metal associated with mafic impact-melt breccias. For the CI
component, the composition used is the “mean C1 chondrite”
composition of Anders and Grevesse (1989), but with all
concentration values multiplied by 1.36 to convert to a volatile-
free basis. For the Fe-Ni component, I use the average
composition of metal separates from three Apollo 16 impact-
melt breccias (Korotev, 1990a).
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Fig. 8. Variation in Ni and Co concentrations and FeO and Sc concentrations in <1-mm fines from 60009/10; the symbol key is the same
as in Figs. 3-6. (a) The lines indicate the effect of adding carbonaceous (CI) chondrites (Ni/Co = 21; the Ni/Co ratio of ordinary chondrites
is essentially the same) or “ancient” Fe-Ni metal such as found in Apollo 16 mafic impact-melt breccias (Ni/Co = 16) to the average composition
of the 60009/10 soils. Typical submature to mature Apollo 16 soil (32 ug/g Co, 460 ug/g Ni) receives about half its Ni from each of these
two sources (Korotev, 1987b). For the <1-mm fines, the low-Ni part of the linear trend is caused mainly by the dilution effect of plagioclase
in these plagioclase-rich soils (36-57 cm depth; Fig. 4); the high-Ni part of the trend is caused primarily by the variation in the amount of
Fe-Ni metal. (b) FeO should correlate well with Sc if iron were carried only by mafic silicates, but Ni-rich samples contain excess Fe (total
Fe as FeO). For these samples, a large fraction of the total iron is carried by Fe-Ni metal
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TABLE 3. Compositions of mixing model components.
Unit Weight Cayley Anor- CI Ancient Mare Sodic Impact
Factor Soil thosite Fe-Ni Basalt Plag. Melt

Na,O % 2 0.468 0.368 0917 0.500 1.05 0.522
CaO % 3 153 189 177 105 17.7 13.9
Sc Hg/g 2 10.79 0.34 792 829 0.78 108
Cr rg/g 2 856. 10. 3618. 2184. 21. 970.
FeO % 2 5.30 0.23 33.31 120.7 20.2 0.87 642
Co ug/g 2 93 04 683. 3600. 273 09 29.1
Ni rg/g 5 48. 1. 14960. 57800. 2.0 1. 412.
Sr vg/g 5 181. 170. 106 170. 342. 160.
Zr ug/g 10 218. 03 54 435. 5. 380.
Ba ug/g 4 167. 7.0 32 310. 52. 262.
La Hg/g 2 14.86 0.15 0319 26.9 2.05 274
Sm ug/g 2 6.90 0.058 0.200 209 0.547 12.3
Eu ug/'g 2 1.273 0.810 0.076 229 2225 143
b Hg/g 4 1.36 0.01 0.049 46 0.08 246
Yb ng/g 2 4.88 0.02 0.221 169 0.22 846
Lu rg/g 2 0.677 0.003 0.033 246 0.026 1.17
Hf bg/g 2 5.23 0.04 0.141 15.6 0.14 9.18
Ta ug/g 5 0.62 0.006 0.019 25 0.02 1.09
Ir ng/g 5 0. 0. 654. 1380. 0. 0.001 9.
Au ng/g 5 0. 0. 190. 1315. 0. 0.001 8.
Th ug/g 3 2.53 0.01 0.040 26 0.05 452
U ug/g 5 0.66 0.003 0.011 0.50 0.01 1.22

Weight factor: Approximate analytical uncertainty of soil concentrations in percent (Boynton et al,, 1975).

Cayley soil: Based on 60601 (Table A6), see text.

Anorthosite: Ferroan anorthosite containing ~99% plagioclase: mean of particles 20-L, 20-M, 54-G, 54-H, 54-1, and 58-I from 60009/10 (Table A2)

and 2.25 from 60002 (Table A5).

CI: Volatile-free CI chondrite: values of Anders and Grevesse (1989) times 1.36.
Ancient Fe-Ni: Fe-Ni metal from ancient impact melt breccias: mean of three from Korotev (19902).

Mare basalt: Apollo 11 high-K basalt: mean from Beatty et al. (1979).

Sodic plag.: Ang.; plagioclase from 60002: mean of particles 2.13 and 2.31 (Table A5); used to model MPU-A soils only.
Impact melt: ITE-rich mafic impact melt breccias: mean of particles 1.05, 1.06, 2.24, and 2.32 from 60001 and 60002 (Tables A4 and A5);

used to model MPU-A soils only.

The need for two meteoritic components can be seen in
the Au/Ir ratio profile of Fig. 2. The Au/Ir ratio of carbon-
aceous and most ordinary chondrites is 0.3, whereas the Au/
Ir ratio of Fe-Ni metal in the ancient impact-melt breccias from
Apollo 16 is usually greater, with values of about 1.0 being
common (“ancient meteorite groups” 1H and 1L of Hertogen
et al, 1977; Korotev, 1990a). Ratios for the soils are
intermediate; thus, the model’s selectivity for the two
meteorite components results mainly from accounting for the
Au/Ir ratio of the soil (and, to a lesser extent, the Ni/Co ratio).
Because soil sample 60601 contains both meteorite
components, the composition of the Cayley soil component
was further modified by algebraically removing 1.08% CI
component and 0.42% Fe-Ni metal component; these are the
unique proportions that result in concentrations of zero for
Au and Ir. Thus, the Cayley soil component, as used in the
mixing model, is free of extralunar siderophile elements.

I have also included a mare basalt component in the model
for the 60009/10 soils mainly for consistency with the
modeling of the 60001-7 soils, which, as shown below, require
a mare basalt component. The composition used is the mean
composition of several fragments of Apollo 11 high-K basalt

reported by Beatty et al. (1979). (Because the proportion of
mare basalt is so low, the model is insensitive to exactly which
type of mare basalt is used.) Like the anorthosite component
and the two meteoritic components, soil 60601 probably
contains a small fraction of mare-derived material and, for
consistency, it would be appropriate also to remove this
component from the composition of the Cayley soil com-
ponent. However, unlike the other three components, there
is no objective way to know how much mare basalt to remove.
Thus, the model results for the mare basalt component
represent mare basalt in excess of any that may be present in
the Cayley soil component.

4.4.2. Model calculations and results. 1 have modeled
the concentrations of all 20 elements in each of the 121
samples of <1-mm fines from 60009/10 with a multielement,
weighted, least-squares mass-balance model such as that
described by Boynton et al. (1975). Table 4 summarizes the
results for the mean composition of the 121 samples. The best
fit composition (“calc.”) agrees very well with the observed
mean composition (“obs.”). (The agreement for individual
samples is not always this good, however.) The percentages
of the five model components that best fit the mean core
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TABLE 4. Mixing model results for average core soils.

60009/10 60001-7
All MPU(B,CD) MPU-A

Obs. Calc. Obs. Calc. Obs. Calc.
Na,0 % 0.448 0.444 0.456 0.458 0.506 0485
Ca0 % 16.1 16.1 154 154 15.2 15.2
Sc ug/g 7.82 7.80 9.69 9.69 9.80 9.76
Cr Lg/8 639. 654. 786. 792. 812. 801.
FeO % 461 4.63 5.51 5.56 543 547
Co ug/g 265 269 31.2 314 259 260
Ni ug/g 394. 399. 457. 470. 343. 368.
Sr ug/g na na 177. 176. 179. 181.
Zr ug/g na na 196. 188. 247. 208.
Ba ug/g 119. 122. 141. 145. 157. 158.
La ug/g 10.80 10.73 12.90 12.85 14.25 14.35
Sm ug/e 5.01 496 6.05 6.00 6.58 6.69
Fu ug/g 1.12 113 1.20 1.20 122 127
T ug/g 0.96 0.98 119 118 133 1.32
Yb 1g/g 3.54 3.50 425 425 4.68 467
Lu ug/g 0.485 0485 0.589 0.590 0.639 0.648
Hf ug/g 3.82 3.76 4.60 454 5.18 5.02
Ta ug/g 043 0.44 053 0.54 0.602 0.594
Ir ng/g 123 117 14.8 143 11.0 108
Au ng/g 7.2 638 80" 7.7 6.6 62
Th rg/g 1.86 1.83 218 2.18 240 241
U ug/e 0.46 0.48 0.56 0.57 0.62 0.63
Components (%)
Cayley soil 723 +08 857 +06 768 +60
Anorthosite 265 +13 117 +08 70 49
o} 1.03+0.10 137+ 0.07 0.95+0.15
Ancient Fe-Ni 0.36 £ 0.02 0.39 + 0.02 0.26 + 0.04
Mare basalt -02 £02 0.36+0.16 32 +55
Sodic plag. nu nu nu nu 36 +£20
Impact melt nu nu. nu nu. 95 *+15

*Excludes all samples with >20 ng/g Au.

na = not analyzed.

n.u = not used in model.

composition are also listed in Table4. Note that the
concentrations of the two meteorite components, 1.03% CI
and 0.36% Fe-Ni, are nearly the same as the concentrations
removed from the Cayley soil component (above); this is a
necessary consequence of the fact that the mean siderophile-
element concentrations in 60601 (Table AG) are similar to
those of the average 60009/10 soil. Note also that the
concentration of the mare basalt component is zero, within
model uncertainty, for the average soil (-0.2+0.2%). The
proportion of mare basalt component predicted by the model
depends primarily on the concentration ratio of other elements
to Sc (e.g, Sm/Sc, Fe/Sc). Because the mixing line of Fig, 4
passes just slightly to the low-Sc side of the point for the Cayley
soil component, the average soil (which, of course, plots on
the mixing line) is modeled as having a very slightly negative
component of mare basalt (-0.2%).

Depth profiles for the proportions of the five components
as predicted by the model are plotted in Fig. 9. As expected,
the shape of the Cayley soil profile is the same as that of the
Sc and Sm profiles of Fig. 2. The model predicts about 73%
anorthosite component for the most anorthositic soils, those
at 54 cm depth. This is almost exactly the fraction of

plagioclase single crystals observed petrographically in this soil
(73.8%, Table 2). The CI chondrite component varies between
about 0% and 2% with a peak at about 13-15 cm depth and
a minimum in the vicinity of the anorthosite maximum. The
concentration of Fe-Ni metal component is highly variable from
sample to sample and shows no systematic variation with
depth.

The concentration of mare basalt component fluctuates
unsystematically about zero. It is important to note that mare
basalt is the only component included in the model that can
account for deviations from the binary mixing lines of Figs. 4
and 6. The most compositionally distinct aspect of the mare
basalt component is its very high concentration of Sc (and, to
a lesser extent, Fe and Cr). Thus, any sample plotting on the
high-Sc side of the mixing line of Fig. 4 is interpreted by the
model as having a positive component of mare basalt. For
example, the model predicts about 1% mare basalt component
for samples at 58 cm depth. A component of mare basalt
usually lowers the La/Sm ratio as well as the Sm/Sc ratio, and
the La/Sm ratio is remarkably constant among the 60009/10
soils, including those from 58 cm depth (Fig. 2). Although the
58-cm samples may actually contain a small component of
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mare basalt, the actual cause of the low Sm/Sc ratio is more
probably a component of “metamorphosed breccia” with a
very low Sm/Sc ratio, not mare basalt (section 4.2.2). Thus, it
is likely that the range of variation in the true concentration
of mare basalt in the 60009/10 samples is less than that
implied by Fig. 9.

5. 60001-7 RESULTS

5.1. <1-mm Fines

The deep drill core consisted of seven sections numbered
consecutively from the bit (60001) to the topmost section
(60007). A schematic cross section of the core indicating
section numbers, penetration depths, and recovery information

is given in Fig. 10. Unlike that for 60009/10, there is
considerable uncertainty in the depth scale for 60001-7
(Fig. 11). For purposes of discussion of specific samples and
for plotting data in the figures, I use the depth scale of Allion
et al. (1981) and Allton and Waltz (1980), which assumes
that the top of the lower half of the core (top of 60004)
represents 102 cm depth and that the 60006/7 soils represent
a continuous plug with the top of 60007 representing the
lunar surface. I plot the 60005 samples at the depth at which
they were recovered in the core tube, but recognize that this
soil is greatly disturbed and assume that no stratigraphic
information is preserved. In addition, I show below that the
60006 soils are also greatly disturbed and are discontinuous
with the 60007 soils. -

104
Cayley Soll

20 1

30

depth (cm)

40 1

50 1

'
i
60 T T T T T T T

Mare Basalt
(excess)
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100
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Fig. 9. Mixing-model results for <1-mm fines from 60009/10. The five components are those of Table 3. The horizontal line represents the
results for the mean core composition. For clarity, the results for each component except the ancient Fe-Ni metal component have been
subjected to a simple three-point smooth [(1+1+1)/3]. The mare basalt component represents any mare material in excess of that carried
by the Cayley soil component (see text).
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Analytical results for the <1-mm fines samples from the
60001-7 core are listed in Table A3. Depth profiles for several
elements and element ratios are plotted in Fig. 12. Most of the
60001-7 soils plot along the Sc-Sm mixing line (and within
the scatter about that line) defined by the 60009/10 soils

cm .
60007:
60007 o well packed, no
movement apparent
2 %
&
60006: B
60006 80% revovery, void at =
bottom when opened ©
54
KX
o
':::::‘0 60005:
TS d 37% recovery, sparsely
60005 ?::3:3 filled throughout -1
8
102 separated on Moon,
some material lost
102 from 60005
60004
140 z
o
w
60001-4: B
60003 well packed =
throughout
180
60002
216
60001 250

Fig. 10. Schematic cross section of deep drill core 60001-7 (based
on Allton and Waltz, 1980). Because ‘the entire 60001-7 drill string
was 2.4 m long, it was separated into two halves for return to Earth.
When the core was opened in Houston, the lower half (sections
60001-4) was completely filled with soil but the upper half (sections
60005-7) contained voids; the 60005 section contained only 37% of
its capacity and the 60006 section was only 80% full. Discussions of
the taking of the core and various scenarios for why the upper half
is incompletely filled are provided by Carrier (1974), Nagle et al.
(1975), Duke and Nagle (1976), and Allton and Waitz (1980). The
favored scenario is that the lower half (60001-4) is not seriously
disturbed and the upper half is incompletely filled as a result of (1) a
very fast drill rate (2.5 cm/sec) for the first 80 cm and (2) spillage
from the bottom of 60005 on the lunar surface after the halves were
separated (Allton and Waltz, 1980).

Korotev: Apollo 16 cores

MAXIMUM CORE STRATIGRAPHIC MODAL
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Fig. 11. Correlations of the maximum depth scale (Allton et al,
1981), core tube numbers (6000X), stratigraphic units (SU) of Duke
and Nagle (1976), and modal petrography units (MPU) of Vaniman
et al. (1976) in 60001-7. The maximum depth scale of Allton et al.
(1981) differs slightly from the preliminary maximum depth scale of
Duke and Nagle (1976) that was used by most previous workers.
Thus, statements in the text such as “. .. samples between 177 cm and
187 cm in depth . . .” may not refer exactly to the same samples plotted
within this depth interval in other work (e.g., Gose and Morris, 1977).
However, Table A2 lists parent split numbers as well as the
stratigraphic units (SU) of Duke and Nagle, which allow cross
reference of data from this work with the work of others. The most
important discrepancy of this type involves the location of the
boundary between MPU-A and MPU-B. This boundary occurs between
SU12 and SU13, which is at 189.7 cm maximum depth on the scale
of Duke and Nagle but 186.8 cm depth on the scale of Aliton et al.
(1981). In their study of modal petrography based on the continuous
thin sections, Vanéiman et al. (1976) put the boundary between their
MPU-D and MPU-C at about 9 cm; they do not give an exact value
for the boundary because of gaps in the thin sections. Gose and Morris
(1977) put the boundary between MPU-C and MPU-D boundary at
13 cm because they observed a discontinuity in their Fe concentration
profile at this depth (see also Heymann et al, 1978). In the high-
resolution concentration profiles of Fig 12, no sharp break occurs
within 60007 for any element, only a gradual change with depth, thus
there is no distinct compositional boundary between these units. For
consistency with Gose and Morris (1977), the boundary between
MPU-C and MPU-D is plotted at 13 cm depth in all figures.
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Fig. 12. Depth profiles of element concentrations and concentration ratios for <1-mm fines from 60001-7 [depth scale of Allton et al. (1981);
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data are plotted on a logarithmic scale.
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Fig. 12. (continued).
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Fig. 12. (continued).
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(Figs. 13 and 14), indicating that mixing between anorthosite
containing about 99% plagioclase and the Cayley soil
component dominates the compositional variation in lithophile
elements in this core as well. However, some of the 60001-7
samples show deviations from the 60009/10 trend. Below, I
discuss features of the profiles and deviations from the mixing
trend, starting from the top and proceeding downward.

5.1.1. 60007 (MPU-C and MPU-D). Like the 60009/10
core, there is little variation in composition with depth for the
first 10 cm. In this zone Sc and Sm concentrations average
about 2% lower than for soils from the top of 60009/10. Most
soils from the surface of StationsIM, 1, and 2 (Fig. 1) are
indistinguishable from each other in composition (Korofev,
1981).

The largest compositional changes in the core occur just
below the surface layer, in the 60007 section. Between about
10cm and 17 cm depth the concentrations of all elements
except Ca decrease systematically with depth while Ca
concentrations increase. Between 17 cm depth and the bottom
of the 60007 section at 22 cm depth, soil compositions remain
relatively constant. The zone of greatest change in composition
with depth (10-17 cm) corresponds to one of the two major
stratigraphic boundaries recognized in previous studies of the
core, that between MPU-D and MPU-C (MPU = modal petro-
graphy unit, Fig. 11).

The soils at the bottom of the 60007 section (MPU-C) are
compositionally the most anorthositic soils in the core. By
analogy with 60009/10 we would expect these soils to contain
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the greatest proportion of anorthosite, and that is indeed the
case. Petrographically, MPU-C is distinguished by large, single
plagioclase grains that are absent in MPU-D above it (Nagle
et al, 1975; Vaniman et al,, 1976).

5.1.2. 60006 disturbance. A sharp discontinuity occurs
in most element profiles at the break between the 60007
section and the 60006 section of the core (Fig. 12). Within
the 60006 section, ITEs and elements associated with mafic
mineral phases (Sm and Sc) show a bow-shaped profile,
increasing toward the middle of the section and then
decreasing toward the bottom. Soil from the bottom of the
60006 core section is distinctly different from the average
material in the 60005 section (Fig. 15), which was mostly void
when opened and known to be highly disturbed (Fig. 10). The
60006 section was 20% void (Fig. 10). These data strongly
suggest that as a result of the void space, routine handling of
the 60006 section at JSC caused the contents to be partially
mixed after it was separated from the 60007 and 60005
sections. Duke and Nagle (1976) and Allton and Waltz
(1981) indicate that the void space in 60006 was at the
bottom when processed, but sketches of the X-radiograph
taken before the sections were disassembled clearly show
voids at both the top and bottom (Duke and Nagle, 1976,
Fig. 16-11). Thus, I am forced to conclude that most of the
stratigraphic information in 60006 has been erased, but infer
that the anorthosite-rich layer in 60007 continued into the
region of the core sampled by the 60006 section and that
contact between the bottom of the anorthositic layer and more
mafic underlying soil (60004 ) has not been retained (Fig. 15).

Because of the disturbance in 60005 and 60006 and the
rapid drilling rate during the first 80 cm (Fig. 11), it cannot
be assumed that the stratigraphy of 60007 has been accurately
preserved. In particular, what may be a sharp contact on the
lunar surface may have been degraded into the gradual contact
between MPU-C and MPU-D that appears in Figs. 12 and 15.
If such degradation has occurred, it would affect some
interpretations, such as those of Gose and Morris (1977).

5.1.3. 60004-60003 (MPU-B). There is no indication of
disturbance in the lower half of the drill core. As others have
noted, the compositions of samples from 60003 and 60004
(102-140 cm depth) are remarkably constant (Gose and
Morris, 1977; Ebmann et al, 1977). For most elements, the
variation in the topmost 21 samples of 60004 is less than that
in all 21 samples of 60005 (Table A6), which were presumably
mixed and partially homogenized. This constancy, particularly
when compared with large variations seen in 60009/10, might
be cause to question (as did Heymann et al, 1978) whether
the rotary-percussion drill used to take 60001-7 was less
effective at preserving stratigraphy than the drive tubes like
60009/10. However, lower in the core are some distinct
compositional variations in profiles of several elements that do
not appear to have been “smeared” (Fig. 12).

Before discussing these features, I discuss some minor
features. There is a hint of a compositional discontinuity at
about 145 cm depth, particularly in the profiles of Sc and the
Na/Eu ratio (Fig. 12), just below the break between the 60004
and 60003 core sections. This occurs approximately at the
break between SU28 and SU27 of Duke and Nagle (1976)
(SU = stratigraphic unit; Fig. 11). Heymann et al. (1978)

review a variety of data and conclude that a stratigraphic break
probably occurs at the SU27/SU28 boundary. They note that
this boundary was “visually . . . quite striking”; SU28 is uniform
and massive whereas SU27 is marbled and laminated (Duke
and Nagle, 1976). Heymann et al. (1978) also argue, on the
basis of the petrographic data of Vaniman et al. (1976), that
a discontinuity occurs somewhere near the 60003/4 boundary,
but they could not locate the exact position because of gaps
in the thin sections.

5.1.4. Mare basalt in 60003 and 60004 (MPU-B). At
132 cm depth, the subsample of 60004,214 analyzed here is
anomalously enriched in Sc and Sm, but has low La/Sm and
Sm/Sc ratios. This is almost certainly the result of a fragment
of mare basalt with relatively high ITE concentrations. The
composition of this sample can be duplicated by mixing 10%
Apollo 11 high-K basalt (Table 3), for example, and 90% soil
from adjacent depth intervals. The geochemical signature of
mare basalt is high Sc and Cr concentrations and a low La/Sm
ratio. Scandium and Cr concentrations reach their maximum
in the 60003-5 core sections because (1) these soils contain
less anorthosite than soils higher in the core and (2) they
contain a small component of mare material. The La/Sm ratio
reaches a minimum in this unit (Fig. 12) and is lower than
that of any samples from the 60009/10 core (Fig. 2). Also, the
MPU-B soils plot distinctly to the high-Sc side of the mixing
line defined by the 60009/10 soils in Fig. 14. The enrichment
in mare material is slightly greater below the SU27/SU28
discontinuity (145-187 cm) than above it (104-145 cm).

5.1.5. Litbopbile element anomalies. In addition to the
sample containing an anomalously large amount of mare
material, some samples contain an excess of Sm with respect
to the amount of Sc (Figs. 12 and 13). These almost certainly
result from large particles of ITE-rich impact-melt breccias in
the analyzed subsamples because such rocks are the only
components of the Apollo 16 regolith having high Sm
concentrations as well as high Sm/Sc ratios (e.g, Fig 5).
Curiously, of the five fines samples with Sm/Sc exceeding 0.8,
three occur in the disturbed 60006 section of the core. The
two others are from the bit (60001), which consisted only
of coarse-grained material (section 2.1.2). A sample of 60003
(139 cm depth) has an anomalously high Cr concentration (as
does a sample of 60009 at 33 cm depth; Fig. 2). This may result
from a single grain of chromite or from contamination from
the drilling or processing hardware (a Cr anomaly was also
reported from a sample at 147 cm depth in 60003 by Korotey,
1982). Several samples contain concentrations of Zr and Hf
that are anomalously high compared with trivalent ITEs like
the REE (Table A3). These probably result from small zircons
(Morris et al,, 1989).

5.1.6. Siderophbile-element anomalies. Throughout the
core there are samples with anomalously high concentrations
of siderophile elements compared with adjacent samples.
Nickel concentrations exceed 0.25% for the analyzed
subsamples of 60006,89 (plotted at 34 cm depth; Fig. 12) and
60004,244 (126 cm). As Ni/Co ratios for both samples are
subchondritic at 15-16, these anomalies are probably caused
by large grains (2-3mg) of Fe-Ni metal (section4). The
sample at 34 cm depth has a chondritic Au/Ir ratio of 0.32,
but the ratio for the sample at 126 cm depth (Au/Ir = 0.76)
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contents of the partially full 60006 core tube were mixed affer it was disconnected from the other two sections. The actual profiles through
this core section probably resemble those suggested by the dotted lines. The boundary between MPU-C and MPU-D is indicated at 13 cm

depth, as advocated by Gose and Morris (1977).

is more similar to metal from ancient impact-melt breccias
(typically about unity; Table 3). Several samples, most notably
two from 60003 at 171 and 178 cm depth, have very high
concentrations of Au compared with other siderophile
clements.

5.1.7. Sideropbile-element enricbment at the bottom
of MPU-B. All samples between about 177 and 187 cm
depth (ie., those from SU13 at the top of 60002 and SU14
at the bottom of 60003) are strongly enriched in Ni, Co, Ir,
and Au and slightly enriched in Cr (Fig.12). High
concentrations of siderophile elements occurring over several
stratigraphically consecutive samples have not been observed
in previous high-resolution studies (Korotev et al, 1984;
Morris et al, 1989), although there is a hint of such an
enrichment in 60010 (section 3.1.5). Ebmann et al. (1977)
also report Ni and Co enrichment in two samples from the
bottom of 60003, but because of the wider spacing of the

samples they analyzed, it is not evident that a zone of
enrichment occurs.

The enrichment in siderophile elements in SU13 and SU14
is accompanied by an enrichment in metallic iron (Gose and
Morris, 1977), suggesting that the siderophile elements are
carried by Fe-Ni metal of meteoritic origin. However, the
enrichments are not the result of a concentration of ancient
Fe-Ni metal (section4.3), but of a component of ordinary
chondrite. This is demonstrated by the data in Table 5 where
mean siderophile-element concentrations and ratios in soils
from SU13 and SU14 are compared with those from SU18 and
SU19, which are about 16 cm higher in the core and have
more nearly “normal” concentrations of siderophile elements.
The differences in concentrations between these two levels are
the “excess” attributed to the meteoritic component causing
the anomalies.

The enrichment in Cr as well as siderophile elements argues
that the anomaly is not simply the result of a concentration
of Fe-Ni metal. The Cr/Fe,, ratio of the component causing
the enrichments is 0.0063 + 0.0016. Although this is only
about half the chondritic ratio (Table 5), the data are still
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TABLE 5. Siderophile-clement ratios for meteoritic component in region of high siderophile-element
concentration (SU13 and SU14) estimated by comparison with nearby region
with “normal” concentrations (SU18 and SU19).

Normal Enriched Difference Meteorite

SuU: 18& 19 13 & 14 (excess)

Depth (cm): 164-169  177-187 a H

Fe? mg/g 6.1 122 6.1
+ 0.7 1.1

Feoul mg/g 44.2 50.7 65
+ 03 0.8

Ni mg/g 041 0.89 048
+ 0.02 0.05 0.05

Co 1g/g 274 492 22.
+ 1.0 . 3.

Ir ng/g 125 265° 14.1 -
+ 0.6 . 1.6

Au ng/g 6.2 116" 5.4
+ 0.5 . 0.7

Cr mg/g 0.836 0877 0.041
+ 0.006 0.006 0.009

Fe¥/Feo g/g 0.93 ~0 0.6
+ 0.21

Ni/(Ni+Fe®) g/g 0.073 ~0 0.092
+ 0.016

Ni/Co g/g 22, 21.1 197
+ 4.

Au/Ir g/g 0.39 0.31 0.28
+ 0.06

Cr/Fe o mg/g 6.3 14.6 13.3
+ 1.6

*Data from 2 of 17 samples are excluded for Ir and Au because of anomalously high Au concentrations

(Fig. 16).

Fe® (metal) data from Gose and Morris (1977); meteorite data from Wasson (1985), Wasson and

Kallemeyn (1988), and Rambaldi (1977).

consistent with a component of ordinary chondrite if there has
been some separation of metal and silicate, namely, relative loss
of silicate material.

The Ni/Co ratio of 22 +4 is consistent with a chondritic
component, but inconsistent with ancient Fe-Ni metal
(Table 3). A representative Au/Ir ratio for the meteoritic
component is more difficult to determine because the ratios
are highly variable among the individual samples. Most of the
samples between 177 and 187 cm depth deviate from “normal”
samples (164-169 cm) along a trend more consistent with a
chondritic component than with ancient Fe-Ni metal, but two
samples with anomalously high Au concentrations (>20 ng/g)
clearly do not follow this trend (Fig. 16). For the purpose of
Table 5 these two samples were excluded from the mean.

The Ni concentration of the metal phase (assuming that the
Ni excess is contained entirely in the metal phase) is
calculated by dividing the excess Ni by the sum of excess Ni
and Fe®. This leads to 7.3 + 1.6% Ni in the metal (Table 5).
For low concentrations of Ni such as this, the concentration
of Fe® reported by Gose and Morris (1977) is actually the total
concentration of alloyed metal (Pearce et al, 1973; Morris,
1976); thus, the Ni concentration of the metal may actually
be as high as 0.48/6.1 = 7.9%. Among ordinary chondrites this
value is consistent only with the H group. The Fe’ concen-
trations reported by Gose and Morris (1977) were determined

on fewer samples and samples that were distributed differently
throughout SU13 and SU14 than those analyzed here, but if
the data are taken at face value, then nearly all the meteorite-
derived Fe is in the metal phase, ie., Fe/Feyy is 90 + 20%
(Table 5). This is a large value for ordinary chondrites, even
H chondrites (typically 60%). As with the Cr/Fey,, ratio,
however, the data are consistent with an H-chondrite source
if the metal/silicate ratio of the meteoritic debris is higher than
average, perhaps as a result of selective loss of silicate material.
The constraints posed by the Cr/Fe, and the Fe’/Fe g, ratios
can both be achieved with a component of H chondrite that
contains ~40% metal instead of the usual 15-20%.

Other data confirm that the zone of siderophile-element
enrichment is enriched in meteoritic lithophile elements as
well as siderophile elements. The only three samples from the
deep drill core studied by Boynton et al. (1976) are,
coincidentally, from the top of 60002, right in the peak of the
zone of siderophile-element enrichment (parent splits 23, 25,
and 27 at about 181-182cm depth). In addition to being
enriched in Fe, Cr, and siderophile elements, the 60002 soils
of Boynton et al. (1976) also have high Mg concentrations
for Apollo 16 soils (mean: 7.4% as MgO). Similarly, the single
sample from this zone in the data of Nava et al. (1976)
(60002,206, parent split 31 at ~183 cm depth) contains 7.04%
MgO, compared with a mean concentration of 6.29% for 11
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Fig. 16. Variation of concentrations of the siderophile elements (SE)
Au and Ir in <1-mm fines from the SE-rich region of 60002 and 60003
(177-187 cm depth, SU13 and SU14) compared with a nearby region
of “normal” SE abundances (164-169 cm depth, SU18 and SU19). The
open circles represent the mean concentrations of soils in each region,
except that the two high-Au samples (Au> 20 ng/g) were excluded
from the SE-rich mean. The dashed line is defined by the two means
(open circles). As in Fig. 8, the solid lines indicate the effect of adding
Fe-Ni metal such as found in mafic impact-melt breccias from
Apollo 16 (Au/Ir = 1) or CI chondrites (Au/Ir = 0.3) to the mean com-
position of the “normal” soils. The plot shows that the zone of SE
enrichment is more consistent with a chondritic component than with
Fe-Ni metal.

samples of 60002 below 187 cm depth. I avoid applying any
arguments such as used for Table 5 to these data to further
constrain the nature of the meteoritic component for two
reasons. In the data of Boynton et al. (1976) no “normal” core
soils were studied with which to compare the results, and
there are indications of some systematic differences between
their data and those obtained here. Chromium and Fe
concentrations (INAA) are 12-13% higher than those obtained
here for samples from the same parent splits and were
obtained on different subsplits than were the siderophile-
element abundances (RNAA). Magnesium concentrations (not
determined well by INAA) are high compared with the values
of Nava et al. (1976) (well determined by atomic absorption
spectrophotometry). Systematically high values for Fe and Mg
are the probable cause of the high mixing-model sums
(103-108%) obtained by Boynton et al. (1976) for these
three soils.

The phase carrying the siderophile elements in SU13 and
SU14 has not been positively identified, aithough there is some
evidence that it is a form of vesicular, glassy breccia. Samples
from SU10 and SU15 were studied petrographically, but none
from SU13, the zone of greatest siderophile-element

Korotev: Apollo 16 cores

enrichment (Meyer and Tsai, 1975; Meyer and McCallister,
1976). There are no striking petrographic anomalies for this
zone in the data of Vaniman et al. (1976) based on the set
of continuous thin sections of the core (primarily, sections
389, 390, and 391 of 60002). The description made during
core processing of SU13 indicates that it is “finer [grained]
than the rest of the core” and that “frothy to vesicular spattered
glassy agglutinates are especially abundant in this sub-unit”
(Duke and Nagle, 1976). Although agglutinates are thought
to be the product of micrometeorite impact, agglutinate
particles are not necessarily enriched in siderophile elements.
For example, agglutinate particles from Apollo 17 and Luna 24
have Ni concentrations similar to typical <1-mm fines
(Blanchard et al.,, 1975; Korotev, 1989). The single agglutinate
particle studied from 60009 (particle 58 section 3.2) and
one of the two studied from 60002 (particle 2.02, sec-
tion 5.2.3) have lower Ni concentrations (250 and 295 ug/g;
Tables A2 and A5) than the average core soil (394 and
439 ug/g; Tables A1 and A3). However, the other agglutinate
particle identified among the >1-mm particles from 60002,
particle 2.16, is highly enriched in siderophile elements
(1550 ug/g Ni). Similarly, regolith breccia 63507 is unusual
among Apollo 16 regolith breccias in containing both a high
proportion of agglutinates as well as high concentrations of
siderophile elements (McKay et al, 1986). In fact, con-
centrations of all lithophile and siderophile elements in both
particle 2.16 and regolith breccia 63507 are quite similar to
those in the 60002 soils with the highest concentrations of
siderophile elements, and both have chondritic Au/Ir ratios.
Although not conclusive, these observations suggest that the
siderophile-element enrichment between 177 and 187 cm
depth results from an agglutinate-like component (see also
section A1.3).

5.1.8. Boundary between MPU-B and MPU-A. The
zone of siderophile-element enrichment is gradually
terminated at the top, but abruptly terminated at the bottom
exactly at the boundary between SU12 and SU13 at 187 cm
depth (Fig. 17). The boundary between these two stratigraphic
units is the second of the two major stratigraphic boundaries
recognized in the core in previous studies, that between
MPU-A and MPU-B (Fig. 11). Below 187 cm depth distinct
changes occur in modal petrography (Vaniman et al, 1976),
I,/FeO (Fig. 12), and “°Ar/3Ar ratios (Heymann et al, 1978).
The data obtained here show that these changes are also
accompanied by distinct compositional changes. In addition to
the abrupt decrease in siderophile-element concentrations,
discontinuities occur in the concentrations of some lithophile
elements across the boundary. A compositional discontinuity
was not discerned in previous studies because of vagaries in
spacing and allocation of samples and the limited number of
samples and elements determined (Nava et al, 1976; Gose
and Morris, 1977). [Based on one sample from above the
boundary compared with several below, Heymann et al.
(1978) suspected that differences in Fe and Mg concentrations
in the data of Nava et al. (1976) represented a concentration
change associated with the boundary.]

5.1.9. Sodium enricbment in MPU-A. For all elements
determined here except Na, the soils from MPU-A have
concentrations generally typical of Cayley soils. Below 187 cm

© Lunar and Planetary Institute * Provided by the NASA Astrophysics Data System

257


http://adsabs.harvard.edu/abs/1991LPSC...21..229K

258

Proceedings of Lunar and Planetary Science, Volume 21

depth, concentrations of ITEs become more variable from
sample to sample. This is probably a grain-size effect resulting
from the greater proportion of coarse-grained fragments in this
unit (Nagle et al, 1975). On the average, however, the MPU-A
soils plot at the high-Sc end of the Sc-Sm mixing line defined
by the 60009/10 soils and slightly to the high-Sm side of that
line (Fig. 14). Thus, the MPU-A soils probably do not contain
the component of mare basalt that occurs in MPU-B soils.
Because the MPU-A soils have slightly lower Sc concentrations
(also Fe and Cr) and slightly higher ITE concentrations (Sm)
than the MPU-B soils, there is a distinct discontinuity in the
profile of the Sm/Sc ratio at the boundary at 187 cm (Fig. 12).
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Fig. 17. Depth profile for Ni in the lower half of 60001-7 (detail
from Fig. 12).

The most striking compositional change, however, is that
MPU-A soils are richer in Na than soils above this depth
(Fig. 12); the average MPU-A soil is enriched in Na by a factor
of 1.08 compared with the average of all samples above MPU-A.
Such a change requires only a small increase in the average
albite concentration of the plagioclase (e.g, from Abs; to
Abs ;). Curiously, there is no change in the Eu concentration,
which usually increases with increasing Na,O concentration in
plagioclase (Fig.6). To help assess the cause of the Na
enrichment, I studied a number of >1-mm particles from
MPU-A in 60002.

5.2. 60002 and Other Particles

Like the particles from 60009/10, the particles studied from
60001-7 (mostly from 60002) encompass a wide variety of
compositions and lithologies. Although most of the particles
are not directly relevant to the question of why the <i-mm
fines from MPU-A are compositionally distinct, some of them
relate to other issues discussed here, so I briefly discuss the
particles below.

5.2.1. Subsamples of particles 2.19 and 2.34. Two of
the 60002 particles were too large to analyze conveniently as
single particles, so they were subdivided into several smaller
subsamples (section 2.1.2). Under the binocular microscope
particle 2.34 was identified as a breccia with a very dark, fine-
grained matrix containing a portion of a large, lighter-colored
clast that appeared glassy and heterogeneous. The four
subsamples of particle 2.34 differ greatly from each other in
composition (Fig. 18). Samarium correlates well with Sc,
suggesting binary mixing. This is substantiated by the sample
descriptions. The subsample with the lowest concentrations of
Sc and Sm (2.34B) is nearly pure dark matrix; the subsample
with the highest Sc and Sm concentrations (2.34C) contains
the largest amount of the glassy clast. The other two
subsamples are intermediate. Thus, the glassy clast must carry
an ITE-rich component.

The large particle designated 2.19 was a breccia with a fine-
grained, light gray matrix and veins of lighter material. Upon
being broken into smaller pieces for analysis, the particle
tended to fracture along the veins. The eight subsamples of
particle 2.19 are similar to each other in composition, but
systematic differences occur (Fig. 18). The Sm concentrations
are low, similar to those from ferroan anorthosites, but the Sc
concentration are much greater (Fig. 5b). Scandium and Sm
concentrations are correlated, again suggesting that the
correlation results from varying proportions of two
components in the different subsamples (matrix and vein
material?).

The mass-weighted mean concentrations for particles 2.19
and 2.34 are listed in Table A5 and single points corresponding
to these values are plotted in subsequent figures.

5.2.2. Unusual particles. 'The particle with the greatest
concentrations of Sc and Sm (particle 4.03, Fig. 19) is a
poikilitic impact-melt breccia from 60004. This particle is one
that I removed from the <1-mm fines because it was large
(section 2.1.2); smaller particles similar to this that were not
removed are the likely cause of some of the positive anomalies
in ITEs, like Sm, in Figs. 12 and 13. Although not examined
petrographically, particles 1.05, 1.06, 2.24, and 2.32 (Fig. 19)
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are probably also mafic impact-melt breccias because they are
compositionally similar to melt breccias from 60009/10 and
large samples of melt breccias from Apollo 16 (Vaniman and
Papike, 1980).

Particle 2.15 is a single crystal of olivine, which accounts for
the high Co concentration (59 ug/g). The low Na,O, CaO, and
Eu concentrations (0.02%, 0.3%, and 0.033 ug/g) are expected
for a particle containing no plagioclase. Particle 2.29, which
has the highest Sc concentration of the particles studied, is a
medium-grained anorthositic gabbro.

The spherical particles, which are presumably impact melts
shaped during free fall, show a wide range in compositions.
For spheres 2.35 and 3.02, the low concentrations of Sc, Cr,
and Fe and relative concentrations of REE suggest that they
have only a small mafic component and probably derive from
plagioclase-rich rocks. Sphere 2.20 is a nearly colorless glass
containing many vesicles and is similar to the MPU-A soil in
composition, except that it is not enriched in Na. Sphere 2.01
has no Eu anomaly and is relatively enriched in heavy REE
compared to the typical soil. Sphere 2.36 has an unusually high
Co/Ni ratio and its Hf concentration is high compared with
other ITEs. Because the compositions of many of these spheres
are unusual and are not those of average materials, they are
probably not portions of large melt volumes; they are more
likely to be small melts derived from special targets.
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Fig. 18. Variation of Sm and Sc concentrations in subsamples of two
large particles from 60002 (sections 2.1.2 and 5.2.1). A simple linear
regression of Sm against Sc for the subsamples of particle 2.19
(expanded scale in the upper left corner) yields a line that crosses
the Sc axis at 0.9 ug/g Sc.

Korotev: Apollo 16 cores 259

~ A -
18 =
16 — -
1a | | 600012 - o ot
5] A 60004 L T Lo
— - o 22 -
g | e spheres . 23; i
210 = 60009/10 L
£ i s ° m i
o 8 - 8. ° -
] o ' o, | 229 L
6 A =
T MPU-A I
4 — (Ssu2-su12) I~
i = ° <1 mm |
2 u- ; N ] -
4 - A ] L
0 —P&—r T Iﬂ T T T T T T T T T T |
0 2 4 6 8 10 12 14 16 18
Sc (ug/qg)

Fig. 19. Variation of Sm and Sc concentrations in >1-mm particles
and spheres from 60001-7 (section 2.1.2; data from Tables A4 and
A5). Data for >1-mm particles from 60009/10 (Fig. 5) are shown for
comparison. The solid line is the mixing line for <l-mm fines from
60009/10 (Fig. 4). Labels such as “4.03” are particle numbers for
samples discussed in the text (section 5.2). The dotted field shows
the range of <1-mm fines samples from SU2 through SU12 in 60002
(ie., the Na-rich samples from MPU-A). Thin sections were made of
eight of the 60001/2 particles plotting in or near this field; four or
five are regolith breccias.

5.2.3. Regolith breccias and agghutinates. Compared
with 60009/10, a larger fraction of the >1 mm-particles from
60001 and 60002 are similar in composition to the
corresponding <1-mm fines (Figs. 18 and 20). Study of thin
sections of the eight particles that are the most soil-like in
composition show them to be petrographically diverse. Two
appear to be impact-melt breccias; one is crystalline
(particle 2.27) and the other is glassy and clast-laden
(particle 2.06). Both of these have low Ni concentrations
(~70 pg/g). The remaining six are either regolith breccias
(particles 1.04, 2.07, 2.28, and 2.33) or agglutinates (par-
ticles 202 and 2.16). The agglutinates have lower Na,O
concentrations (mean: 0.48%) than the regolith breccias
(mean: 0.54%); the two regolith breccias with the greatest
Na,O concentrations (particles 2.07 and 2.33) each contain
medium-sized clasts (up to 0.4 mm) of shocked anorthosite.

5.2.4. “Sodic plagioclase.” Most of the particles from
60002 have Na,O abundances similar to those of particles from
other regions of the core and to the particles from 60009/
10 (Fig. 21). However, two of them, particles 2.13 and 2.31
from about 204 cm and 194 m depth, have anomalously high

© Lunar and Planetary Institute * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1991LPSC...21..229K

260

Proceedings of Lunar and Planetary Science, Volume 21

12

4 & 2% & 60001-2
10~ @ 2w A 60004 -
e spheres
0.8 — O 60009/10 -
s
§ - L L]
O 06 - o [N L
® a = : ot s =" A
z . L ] o5, &
0.4 _‘? " g oemnd ° =
@ a e }E’] . MPU-A
7 Oe o (SU2-5U12)
> ™ <i mm
0.2 . -
.
u
00 — 11
0 2 4 6 8 10 12 14 16 18
Sc (ug/g)

Fig. 20. Variation of Na,0 and Sc concentrations in >1-mm particles
and spheres from 60001 -7 (like Fig. 19).

Na,O concentrations, 1.0% and 1.1%. Both are whitish particles
consisting almost entirely of plagioclase. Particle 2.13 contains
no visible mafic minerals and only a trace of ilmenite. The
plagioclase crystals are medium grained and most are
recrystallized. Particle 2.31 contains minor (~5%) ortho-
pyroxene and a trace of ilmenite; the plagioclase is weakly
shocked. Based on the INAA data, plagioclase in these particles
is Angyg, (Fig 21), distinctly more albitic than the Angggy
typical of ferroan anorthosite. For comparison, one of the
60002 particles (particle 2.25) is a large fragment of typical
ferroan anorthosite (Angg) that is similar in composition to the
six small particles studied from 60009/10 (Figs.5b and 6).
(INAA results for the three particles are listed sequentially in
Table A5.) The sodic particles are considerably enriched in
REE, including Fu, compared with ferroan anorthosite (Figs. 21
and 22). They are also enriched in Sr and Ba. Although K
concentrations were not determined, the Ba enrichment
suggests a larger component of orthoclase than is found in
typical ferroan anorthosite.

Plagioclase as sodic as that in particles 2.13 and 2.31 is
unusual for Apollo 16 rocks. James et al. (1989) argue that
ferroan anorthosites can be subdivided into four subsets,
including an “anorthositic, sodic” subset. “Type specimens” of

this subgroup are rake samples from the rim of North Ray

Crater with plagioclase of Anggsgs composition; this is
considerably less sodic than the Angyo; plagioclase in
particles 2.13 and 2.31. Petrologically, the sodic plagioclase
grains in 60002 are of special interest because they are
intermediate in composition between ferroan anorthosite and
alkali anorthosite. Alkali anorthosite is usually regarded as a
subset of the magnesian suite of lunar plutonic rocks (Warren
et al, 1983ab). For the present discussion, however, the
particles are important only because they have high Na,O
concentrations and occurred in 60002. Thus I defer a
thorough petrographic description and speculation of their
origin to a more appropriate format. As no large rocks

dominated by plagioclase of this composition are known from
Apollo 16, 1 refer to the particles as “sodic plagioclase” and
not alkali anorthosite.

6. 60001-7 DISCUSSION

The compositional profiles obtained here reveal four
distinctive stratigraphic features in the deep drill core: (1) an
anorthosite-rich unit in 60007 (MPU-C), (2) a small amount
of mare material distributed throughout 60003 and 60004
(MPU-B), (3) a layer of siderophile-element enrichment at the
top of 60002 (bottom of MPU-B), and (4) relatively high
concentrations of Na in 60001 and 60002 (MPU-A). To
facilitate discussion of these features, the 60001-7 data were
subjected to the mixing model described in section 4.4. The
modeling was done in the same way as for the 60009/10 core,
except that data for Sr and Zr were included (section 2.2).
Results for the average core soil, excluding the samples from
MPU-A, are presented in Table 4 [“MPU-(B,.C,D)”]. As with
60009/10, the best-fit model composition (“calc.”) is a very
good match to the average composition (“obs.”). Depth
profiles for the five model components are presented in Fig. 23.

6.1.

The mixing-model results indicate that MPU-C is similar to
the plagioclase-rich units at 43 and 54 cm depth in 60009/10
in having a high concentration of anorthosite, and this is
confirmed by the petrographic data (section 5.1.1). The model
indicates 47% anorthosite component for the most feldspathic
sample in 60001-7 at 18 cm depth (Fig. 23) compared with
59% at 43cm depth and 75% at 54 cm depth in 60009
(Fig. 9). Heymann et al. (1978) conclude that the anorthositic
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Fig. 21. Concentrations of rare earth elements in plagioclase particles
from 60002 normalized to concentrations in volatile-free CI chondrites
(Table 3). The anorthite concentrations of the plagioclases were
calculated from bulk Na,O and CaO concentrations.

© Lunar and Planetary Institute * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1991LPSC...21..229K

“horizons” in the two cores are “almost certainly the same.”
Considering the ubiquity of anorthosite at the Apollo 16 site,
however, there is no certainty that the two cores sampled the
same stratigraphically contiguous unit of anorthosite-rich
material. As the cores were taken only about 35-40 m apart,
the source of the anorthosite is likely to be the same, however.
No surface or trench soils collected in the vicinity of the lunar
module (Stations LM, 1, and 2) are as feldspathic as the most
feldspathic soils in 60007, although 61221, taken from a trench
on the rim of Plum Crater at Station 1, is only slightly more
mafic (Fig. 14).

6.2. Sodium Enrichment in MPU-A

The soil from MPU-A (60001 and bottom two-thirds of
60002) is unusual in several ways. It is relatively immature
(coarse grained, low L/FeO; Fig. 12) compared with soil
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higher in the core (finer grained, high L/FeO). Vaniman et
al. (1976) note several distinct petrographic features. In
addition to an abundance of large, anorthosite “clasts,” the
MPU-A soil contains a large amount of yellow glass and a
scarcity of green glass compared with other units. The single
sample of soil from MPU-A studied by Russ (1973) has suffered
the largest neutron dose of any Apollo 16 soil measured. The
“He/®Ne ratios are lower and “°Ar/3%Ar ratios are higher in
the MPU-A fines than for other soils in the core and all surface
and trench soils from Apollo 16 except trench soil 61221
(Bogard and Hirsch, 1975; Heymann et al, 1978). [Like the
MPU-A fines, trench soil 61221 is also enriched in Na (Figs. 22
and 24); however, the lower Sc and Sm concentrations
indicate that 61221 is less mafic than the MPU-A soil (Fig. 14).]
Bogard and Hirsch (1975) conclude that the MPU-A soil is
old and that its “solar-derived gases and excess “°Ar were
implanted >10° yr ago.”
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Fig. 22. Variation of N2,0 and Eu concentrations in <1-mm fines from 60001-7 (expanded in upper left corner) compared with >1-mm

particles of plagioclase/anorthosite and impact-melt breccias. The “typi

” ferroan anorthosite field includes the six particles from 60009/10

(Figs. 5b and 6) and particle 6.25 from 60002. Soils from MPU-A (60001 and 60002) are distinctly enriched in Na,O, but not Eu, compared
with other soils from the core. Although somewhat counter-intuitive, ferroan anorthosite has the lowest concentrations of Na,O and Eu among

common Apollo 16 materials.
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The simple mixing model, which is successful for the
60009/10 soils and soils from other units in 60001-7, does
not account for the composition of the MPU-A soils, i.e., the
MPU-A soils are not a simple mixture of typical Cayley soils
and ferroan anorthosite (+ mare basalt). In Fig. 23, the best-
fit model results for the mean composition of all MPU-A soils
is plotted (vertical dotted line), but because of the inadequacy
of the model, these results are not quantitatively comparable
with those for soils above this unit. When components
representing the sodic plagioclase particles and mafic, ITE-rich,
impact-melt breccias are included in the model (Table 3), the
fit is improved but is still not adequate. Addition of a sufficient
amount of sodic plagioclase, such as particles 2.13 and 2.31,
to account for the observed Na enrichment causes the Eu
concentration of the best-fit mixture to be considerably larger
than actually observed (Table4); no combination of
components accounts for both the Na enrichment and the
constancy of Eu across the boundary between MPU-A and
MPU-B (Figs. 12 and 22). Thus, either (1)the model is

adequate, but the Na-rich component of the MPU-A soils has
not been identified or (2) the model does not describe the
MPU-A soils.

For two reasons I favor conclusion 2, ie. that the Cayley
soil component is only a minor component of the MPU-A soil
(despite the compositional similarity) and, consequently, that
the MPU-A soil is of a different provenance than other soils
in the core. First, it is unlikely that simple addition of an
unidentified component to typical Cayley soil could account
for the composition of the MPU-A soil because it is difficult
to conceive of even a hypothetical Na-rich component (except,
perhaps, for a vapor phase condensate) that would increase
the Na,O concentration by a factor of 1.08 (on the average)
and not affect the other analyzed elements to any significant
extent. Second, most other Apollo 16 soils with similarly high
concentrations of Sc and Sm are relatively mature and,
consequently, fine grained; the MPU-A soil is relatively
immature and coarse grained. This suggests that it is not a well-
mixed regolith of many lithologies like the Cayley soil
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component, but that it is dominated by a single lithology (in
the way the immature soil from 54 cm depth in 60009/10 is
dominated by anorthosite), which has a composition similar
to the soil. Among the coarse-grained soil particles from MPU-A
(>1 mm) are several that are very similar in composition to
the <1-mm fines (section 5.2.3 and Figs. 19 and 20). Thus,
both the fines and particles may derive in large part from one
(or several lithologically similar) local rock(s). This model is
similar to that of Heymann et al. (1978), who suggest that
the MPU-A fines derived in large part by filleting of boulders
at the bottom of a secondary crater.

If all the >1-mm particles with soil-like compositions were
impact-melt breccias, for example, then that would be strong
evidence that the MPU-A soils derive mainly from comminution
of a single lithology. The actual data are not so conclusive, of
course. Of the eight particles examined with soil-like
compositions, four are regolith breccias and one of the
remaining four is a glassy-matrix breccia that may be lithified
regolith (section 5.2.3). Thus the data are reasonably con-
sistent with a model such as that of Basu and McKay (1989)
in which the MPU-A soils derive mainly from pulverization of
large regolith breccias. The possibility also exists, however, that
the compositional similarity between the <1-mm fines and the
>1-mm particles results because the particles derive from the
lithification of fines and not because the fines derive from
comminution of larger rocks. As soil matures with exposure
to micrometeorite impacts, the grain size generally decreases
because the rate of destruction exceeds the rate of
construction of agglutinate particles (McKay et al., 1974). Two
of the soil-like particles from MPU-A are agglutinates and these
may well have been formed directly from the MPU-A fines.
(Might they instead have been formed by micrometeorite
impact into a regolith-breccia boulder?) However, the other
four do not appear to be the products of near-surface
induration by small impacts. These particles are almost
certainly fragments of larger rocks that were produced by
lithification of a preexisting regolith by a large impact.

There are other similarities between the MPU-A soils and
some Apollo 16 regolith breccias. Like the MPU-A fines, the
ancient Apollo 16 regolith breccias have high “°Ar/3Ar ratios,
although the ratios in many of the breccias are much greater
than those of MPU-A fines (McKay et al, 1986, Heymann et
al., 1978). Also, the Na,O concentration of average MPU-A soil
(and 61221), .although unusual compared with soil from
higher units in the core and to any typical surface soil (e.g,
60601), is typical of that for Apollo 16 regolith breccias
(Fig. 24). In fact, with respect to the large range of Na,O
concentrations observed in Apollo 16 regolith breccias,
fines from above MPU-A in 60001-7 (as well as 60601 and
60009/10) are unusual in having low Na,O concentrations.
These features suggest that the Cayley soils are distinct in time
or provenance from MPU-A soils, which in turn may be related
to the ancient regolith breccias. However, that relationship, if
any, is not straightforward. It is clear from Fig. 24 that both
the MPU-A fines and the regolith-breccia particles from MPU-A
are more mafic (higher Sc concentration) than the suite of
ancient regolith breccias (McKay et al, 1986) and, in this
regard, are more similar to the Cayley soils. If the Cayley soils
(present surface soils at the LM Station) are genetically related
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Fig. 24. Variation of Na,O and Sc concentrations in Apollo 16
regolith breccias and some <1-mm fines. The open squares are for
the >1-mm particles from MPU-A (60001 and 60002) discussed in
section 5.2.3 and 6.2. The filled squares are for large samples from
various stations at Apollo 16. “Ancient” regolith breccias are those with
“Ar/¥Ar> 12 and I/FeO < 1; “young” = “Ar/¥Ar <5 or I/FeO > 5;
intermediate = all others (after McKay et al, 1986). The solid line is
the mixing line for the plagioclase-rich soils between 36 and 57 cm
depth in 60009/10 (Fig.6); the dashed portion represents
extrapolation of the line to higher Sc concentrations. The plot shows
that (1) Na,O concentrations in regolith breccias have a large range
and do not correlate with “ancientness,” (2) regolith breccia particles
and <1-mm fines from 60002 (“MPU-A”) have Na,O concentrations
typical of the large regolith breccias, but are richer in Sc on the
average, and (3) other LM-Station soils (60601), the line representing
60009/10, and all soil above MPU-A in 60001-7 [“MPU-(B,C,D)”] have
Na,O concentrations at the low end of the range for the regolith
breccias.

to the ancient regolith breccias, which they may not be, then
perhaps the MPU-A soil is some intermediate relative in that
relationship.

In summary, the MPU-A soils appear to represent an old
regolith that is probably composed of lithologies generally
similar to, yet distinct from, those composing the Cayley soils
presently at the surface. The average plagioclase composition
of the source lithologies was slightly more sodic than those
of the Cayley soil component, and other minor compositional
differences as well as petrographic differences also occur.
Some large impact event lithified the soil, creating regolith
breccia such as the >1-mm particles of section 5.2.3. At that
point, either of two scenarios can explain the data. In the first
scenario, which is a variation of the model of Heymann et al.
(1978), an impact excavated the breccia and deposited it as
relatively coarse-grained debris at the 60001-7 site, possibly
in a secondary crater. Exposure to micrometeorite impacts at
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the surface reduced the average particle size of this material,
filling in low areas between the larger boulders. Gose and
Morris (1977) argue that the boundary between MPU-A and
MPU-B cannot represent a surface that was exposed for any
substantial length of time because I/FeO remains low and
rather constant throughout MPU-A instead of decreasing with
depth below the boundary (Fig. 12), as expected from in situ
maturation. However, the observed I/FeO profile could be
generated at the surface if MPU-A grew rapidly by degradation
of boulders. This model requires that MPU-B was deposited
on top of MPU-A while the boulders were still sufficiently large
to be producing fillets, in which case the boulders are still
buried at the site. In the second scenario, the regolith breccia
was excavated and exposed at the surface at a different
location. Some maturation of the soil occurred at this time,
perhaps with input of other material. A subsequent impact
deposited this regolith as MPU-A at the 60001-7 site in such
a way to homogenize any L/FeO variation with depth that may
have existed. MPU-B and MPU-C may have been deposited by
the same impact (section 6.4).

What is the significance of the two sodic plagioclase
particles containing plagioclase with Ang, compositions? The
two particles were recovered 10 cm apart in 60002 and I have
not observed similar particles among almost 200 soil particles
studied from Apollo 16 soils (mostly surface). The topmost
sample of <1-mm fines from 60001 is anomalously enriched
in both Na and Fu and this is entirely consistent with
plagioclase such as particles 2.13 and 2.31. However, petro-
graphic studies have not reported a large fraction of Ang,
plagioclase in MPU-A compared with other units of the core
(Vaniman et al, 1976, Meyer et al, 1975). Thus, while the
two particles of Ang, plagioclase are not sampling anomalies,
neither can they be volumetrically important components of
these soils. Vaniman et al. (1976) note, however, that there
is a distinct difference in the nature of the plagioclase in
MPU-A. Compositions of monomineralic feldspar grains in
MPU-A scatter over the same range of compositions observed
in other units (Angyeg), but the cluster of compositions
observed in other units at Angg o7 does not occur, resulting in
a slightly lower average anorthite concentration for MPU-A
(Angs o6). Also, in other units plagioclase single crystals are
“typically unstrained, unsheared and lack polygonal or other
recrystallization textures” whereas feldspar fragments from
MPU-A were “extensively modified by shear and recrystal-
lization features.” Plagioclase such as this is a principal clast
type in some of the regolith breccia particles from MPU-A
(section 5.2.3). Thus, the Na enrichment in the <1-mm fines
from MPU-A almost certainly results from lithologies con-
taining plagioclase more sodic on the average than that from
other units in the core, but particles 2.13 and 2.31 are not
good representatives of that plagioclase. The lithology from
which such sodic plagioclase derives is not known.

6.3. Mare Basalt in MPU-B

The mixing model indicates that soil at the top of 60001-7
(MPU-C and MPU-D), like the soil in 60009/10, contains on
the average no mare basalt component in excess of that which
may be carried by the Cayley soil component (Fig.23).

However, the Sc enrichment and low La/Sm ratio in MPU-B
requires a model component of about 0.5% to 1.5% mare
basalt. This component is distributed rather uniformly through
the thick unit, although it is slightly more concentrated
between 142 and 172 cm depth. The model also indicates that
the 60005 soils contain a similar concentration of mare basalt
component. Although the soils have the chemical signature of
mare material, compositional data cannot be used to
distinguish whether the material occurs as fragments of basalt,
pyroclastic glass, or some type of impact product. Clearly, some
discrete fragments of mare basalt occur; a number of these
have been recovered and studied from 60003 (Delano, 1975)
and a fragment of mare basalt is the likely cause of the
anomalous sample at 132 cm depth (section 5.1.4). However,
the distribution pattern suggests that most of the mare material
is fine grained, thus the mare glass fragments observed in
petrologic studies (Naney et al, 1976; Meyer et al, 1975;
Meyer and McCallister, 1976) probably carry much of the
chemical signature of mare basalt.

The enrichment in mare basalt component in MPU-B is
reminiscent of the 64001/2 double drive tube at Station 4 on
Stone Mountain, 4 km to the south of the LM/ALSEP site
(Fig. 1). In that core, all material between 48 and 26 cm depth
(possibly higher, as the upper tube was not studied at high
resolution) is enriched in mare material by an average of about
1.5% compared with soil below that (to the bottom of the
core at 60 cm depth; Fig 25) (Korotev et al, 1984). The
unenriched unit in 64001 is “normal” and, in fact, is very
similar in composition to the MPU-D soil at the top of 60007
and to 60601 (section3.1). Within the unit enriched in
mare material in 64001 are two or possibly three thin bands
(1-1.5 cm wide) containing higher concentrations of mare
material (ie., high Sc and low La/Sm; Fig. 25). The band at
42 cm depth contains up to 12% mare material that apparently
occurs in the form of small particles of impact glass or regolith
breccias (J. W. Delano and A. Basu, personal communication,
1990). No similar bands of extreme enrichment of mare
material occur in 60001-7. None of the surface and trench
soils from Apollo 16 are similar to the units enriched in mare
material found in 64001 and 60001-7.

6.4. Siderophile Elements in MPU-B

‘The mixing model results for 60001-7 reflect the arguments
made in section 5.1.7 that the siderophile-element enrichment
at 177-187 cm depth derives primarily from a layer of
chondritic material, not Fe-Ni metal such as found in mafic
impact-melt breccias (Fig. 23). At the peak of the enrichment,
there is a 4% component (CI equivalent) of chondritic
material, compared with about 1% for most of the length of
the core. The model results also suggest a smaller chondrite-
rich layer at the top of 60003, between about 105 and 113 cm
depth. (This is somewhat more evident in the smoothed model
results of Fig. 23 than in the raw data of Figs. 12 and 17.) The
entire MPU-B section (103-187 cm depth) is enriched in the
CI component compared with other units of the core and to
the 60009/10 soils (Fig. 9).

The model does, in fact, indicate a slight increase in the
average concentration of ancient Fe-Ni metal component
between 177 cm and 187 cm depth, but I suspect that this
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Fig. 25. Depth profiles for Sc and La/Sm in the 64001/2 double-drive tube from Station4 (Korotev, 1982; Korotev et al, 1984; Korotev,

unpublished data, 1990). Only 10 samples from 64002 were studied; the dashed lines mark the boundary between the core tubes. The dotted
line represents the boundary between the unit enriched in mare material and “normal” soil below. Within the enriched unit, thin bands of
soil even more enriched in mare-derived material occur at 31, 42, and possibly 47 cm depth.

results more from a failure of the model to distinguish between
the two siderophile-element-rich components than it does
from an actual increase in the fraction of ancient Fe-Ni metal.
It is important to recognize that the ancient Fe-Ni metal
component of the model is not just any Ni-bearing, metallic
iron (such as that in ordinary chondrites), but metal such as
that found in mafic impact-melt breccias with the
characteristic siderophile-element signature of the component
in Table 3.

Another curious aspect of MPU-B is that all the samples with
anomalously high Au concentrations (e.g., Au/Ir ratios
exceeding ~1; Fig. 12 and section 5.1.6) occur within this unit
(except for one sample at the very top of MPU-A at 188 cm
depth and a few samples with marginally high Au/Ir ratios in

60005). Although Au is a notorious contaminant, I suspect that
these anomalously high Au concentrations are not a result of
contamination because I can think of no reason that Au
contamination would be restricted to samples from this region
of the core during handling in our laboratory. As discussed in
section 2.2, the samples were analyzed in three irradiations.
Samples between 84 and 160 cm depth were prepared for
analysis in May 1989 and samples between 160 cm depth and
the bottom of the core were prepared in July 1989. Gold-rich
samples occur in both batches, but only in those samples from
MPU-B. Within each batch, samples were prepared in random
order with respect to stratigraphic position. If the anomalously
high Au concentrations in some samples are not the result of
terrestrial contamination, then they are probably the result of
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some vapor-deposition process, possibly associated with
volatilization during the impact event causing the siderophile-
element enrichments at the bottom (and top?) of the unit.

The constancy of lithophile-element concentrations through
MPU-B plus the enrichment of this soil in both siderophile
clements and mare material confirms the results of earlier
studies that MPU-B represents a thick unit of related fines that
probably all derive from the same source. Much of the eatly
work on the deep drill core addressed the issue of how many
events were required to deposit the various units, whether
MPU-B contained any subunits, and, in particular, whether the
boundary between MPU-A and MPU-B (187 cm depth)
represents an old surface (Russ, 1973; Gose and Morris, 1977,
Heymann et al, 1978). Unfortunately, compositional data do
not provide chronological constraints. Gose and Morris
(1977) observe that the simplest interpretation of their data
is that all soil below MPU-D (ie., below ~13 cm depth) was
deposited in a single event, but caution that this soil may have
been deposited by “a series of closely spaced events.” The data
obtained here cannot be used to distinguish between these
alternatives. Compositional variations with depth such as those
observed in 60001-7 (or 60009/10) could probably occur
even if the entire core had been emplaced in a single impact
event, given an appropriately layered target. Thus, although the
data indicate a major compositional discontinuity at 187 cm
depth and a minor discontinuity at 145 cm depth (sec-
tion 5.1.3), they do not require that these discontinuities
represent old surfaces.

If MPU-A and MPU-B were both deposited in a single impact
event, as preferred by Gose and Morris (1977), the data
obtained here indicate only that a sharp boundary and a
meteorite-rich layer present in the target material were pre-
served during deposition. If, however, MPU-B were deposited
later than MPU-A, then it becomes useful to speculate on the
nature of the deposition events. Either of the models for MPU-A
discussed above is adequate. The observation that the bottom
of the MPU-B layer is rich in siderophile elements constrains
the mechanism of emplacement of that unit. The band of
siderophile-element enrichment is sharply discontinuous
below and grades more gradually into the overlying soil
(Fig. 17). It might be possible to generate such a feature by
some type of direct, but heterogeneous, deposition of fine
material. For example, the model of Heymann et al. (1978)
provides one possible sequence of events: (1) An impact of
an ordinary chondrite excavated a crater and some fine-
grained, glassy debris (section 5.1.7) from the projectile was
concentrated on the walls of the crater (fall back?), (2) MPU-A
was deposited at the bottom of the crater, and (3) MPU-B was
deposited on top of MPU-A by overturning and slumping of
the crater walls in such a way that the meteorite-rich material
was concentrated at the bottom. However, the feature could
also be explained if (1) a2 meteorite-rich breccia or clod, such
as regolith breccia 63507 (section 5.1.7), was deposited on the
MPU-A surface (along with other debris), (2) the breccia was
eroded by subsequent impacts, and (3)the core passed
through the fillet. Unfortunately, a single one-dimensional
regolith sample is not sufficient to constrain what is
undoubtedly a complicated stratigraphic scenario.

7. SUMMARY AND CONCLUSIONS

Fines from the 60009/10 double drive tube are highly
variable in composition. At one extreme is a layer of soil
between 18 and 21 cm depth that has the greatest con-
centrations of ITEs and elements associated with mafic mineral
phases (Fe, Sc, Cr). Relatively mafic and ITE-rich soils such
as these are common at Apollo 16; soils of generally similar
composition occur both as surface and trench samples at
Stations 5 and 6, about 3 km to the south, as well as in other
cores (60001-7 and 64001). Such soils appear to have an
affinity with the Cayley Plains as their composition is similar
to that inferred for the Cayley Plains west of the landing site
based on orbital geochemical data. At the other extreme are
soils between 52 and 55 cm depth, which have very low
concentrations of ITEs, Fe, Sc, and Cr as a result of a large
component of ferroan anorthosite that occurs primarily as
coarse-grained single crystals of plagioclase. None of the
approximately 40 samples of Apollo 16 surface and trench soils
is as rich in plagioclase as the most plagioclase-rich soil in
60009/10. Thus, the vertical variation in composition within
the 0.6-m length of this core exceeds that of soils collected
at the surface of the site over 8 km of lateral traverse.

To a good first approximation, the variation in lithophile-
element concentrations among soils in 60009/10 can be
modeled as binary mixing between an anorthosite component
and a “Cayley soil component.” The anorthosite component is
ferroan anorthosite containing ~99% plagioclase and not some
more mafic variety. The Cayley soil component is represented
by the most mafic, ITE-rich soils. The Cayley soil component
is itself a mixture of various subcomponents such as impact-
melt breccias, fragmental breccias, regolith breccias, granulitic
breccias, and mare material (basalt and glass), each with a
range of compositions. The linearity of mixing lines on two-
element concentration plots argues that the relative
abundances of these various subcomponents are sufficiently
uniform from sample to sample and from region to region in
the core that the mixture behaves effectively as a single
component. Although the soils are complicated mixtures of
many components, the last major mixing event they record is
that between anorthosite with a very high plagioclase content
and a previously homogenized mixture of more mafic com-
ponents.

The scatter about the mixing lines shows, however, that the
various subcomponents of the Cayley soil component, although
well mixed, are not perfectly mixed. Minor variation in the
plagioclase composition of the anorthosite also causes scatter
about the mixing lines in plots involving Na, Ca, and Eu. These
nonuniformities occur at two levels. At a trivial level, an
individual small subsample of soil may contain a volumetrically
significant amount (perhaps a single large grain) of some
compositionally distinct component that draws the sample off
the binary mixing line. This is essentially a sampling problem,
but one that is common among the 50-mg samples analyzed
here. At a more geologically interesting level, a set of
stratigraphically consecutive samples may plot off the mixing
line because they contain a higher (or lower) proportion than
average of some compositionally distinct lithology. For
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1 example, the six samples between 18 and 21 cm depth in
" 60009/10 contain a greater-than-average proportion of
1 poikilitic impact-melt breccias, which causes these samples to
i, plot slightly on the high-Sm side of the mixing line on a Sm
vs. Sc plot. Although deviations such as this are important
because they may suggest a unique source or provenance for

& a particular layer of soil, they have a minor effect on overall

composition compared with the effect associated with the
variation in the concentration of anorthosite. The ratio of
anorthosite to Cayley soil component is large, ranging from
75/25 to 0/100 in the 60009/10 soils. Because the plagioclase
concentration of the ferroan anorthosite component of
60009/10 is very high (~99%), the anorthosites of similarly
high plagioclase concentf®on found as hand specimens at
Apollo 16 are probably typical of their source and not the
result of sampling bias that discriminated against more mafic
samples. Nearly all the large samples of ferroan anorthosite
returned from the Moon are from Apollo 16; such plagioclase-
rich rocks may be atypical samples of the lunar crust.

The 60001-7 drill core was collected about 37 m away from
the 60009/10 drive tube. Data presented here show that the
contents of core section 60006, which was only 80% full when
opened, was physically disturbed and partially mixed after it
was disconnected from the adjacent core sections. Because the
60005 section was also only partially full, the core samples
retain no stratigraphic information between about 22 and
103 cm depth. It is possible that soil in the 60007 section
(surface to 22 cm depth) has also been disturbed and that the
7-cm-wide contact it contains, represented by the gradually
systematic variation of composition and other parameters with
depth observed in samples between about 10 and 17 cm, may
actually be sharper than this on the lunar surface.

Soils from the top half of the core (60005-7) generally
follow the mixing trend defined by the 60009/10 soils,
indicating that the anorthosite component of both cores
contains ~99% plagioclase. A unit rich in anorthosite occurs
at about 20 cm depth. Although this unit is not as feldspathic
as the two feldspathic layers in 60009/10, it is still more
feldspathic (higher Ca, lower Sc and Fe concentrations) than
any surface or trench soil from Apollo 16, including 61221 and
the North Ray Crater soils. The composition corresponds to
about 55% Cayley soil component and 45% anorthosite
component. This unit may be related to the anorthositic units
in 60009/10, but there is no way to know whether a single
stratigraphically continuous layer was sampled by both cores.
No other unit of compositionally distinct soil in 60001-7
correlates with any of those observed in 60009/10, except that
the soils at the top of both cores are similar to each other.

Soils from the bottom half of the deep drill core (60001-4)
also generally follow the Cayley soil-anorthosite mixing trend
defined by the 60009/10 soils, but with some important
deviations. Samples between 103 and 187 cm depth (mostly
60003 and 60004 ) are similar to typical Cayley soils in having
a low proportion of anorthosite component, but are different
from soils of generally similar composition from 60009/10 in
being slightly enriched in Sc as a result of a 1 + 1% component
of mare material (crystalline basalt and/or glass) in excess of
that which may be present in typical Cayley soil. (One sample
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of 60004 analyzed here contains 10% mare basalt.) The
presence of mare material is indicated by higher Sc
concentrations and lower La/Sm ratios in these soils. Although
the mare material causes distinct deviations from the binary
mixing line in the high-Sc direction on two-element plots
involving Sc, it is of minor importance volumetrically compared
with the large variation in the abundance of anorthosite.

A significant compositional discontinuity occurs at 187 cm
depth in the deep-drill core. Compared to the soil between
103 and 187 cm depth (60003/4), the immature soils be-
tween 187 cm depth and the bottom of the core at 220 cm
depth (mostly 60001/2) are enriched in Na by a factor of 1.08,
probably as a result of a slightly lower average anorthite
concentration of the plagioclase. They also have slightly higher
concentrations of ITEs and normal concentrations of Sc (no
mare component). Although generally similar to the Cayley
soils in composition, the 60001/2 fines cannot be modeled as
Cayley soil plus (or minus) anorthosite and small proportions
of lithologies observed as >1-mm particles in 60002. The
60001/2 soils are of a different provenance than the Cayley
soils, a2 conclusion supported by petrographic data. Among
>1-mm particles examined from 60001 and 60002 are a
number of regolith breccias with compositions similar to those
of the <1-mm fines. Both the fines and some of the particles
from 60001/2 probably derive in large part from comminution
of larger regolith breccias.

Siderophile elements in <1-mm fines from both cores are
carried by two components, both ultimately of meteoritic
origin. One is a component of chondritic meteorite. The other
is “ancient” Fe-Ni metal such as that found in mafic impact-
melt breccias that were formed about 3.9 Ga ago. Typical soils
from either core have about 1% chondritic meteorite
component (volatile-free CI equivalent) and about 0.3%
“ancient” Fe-Ni metal component. Concentrations of Fe-Ni
metal are highly variable from sample to sample and
concentrations as high as 5% occur in some 50-mg samples
of <1-mm fines analyzed here as a result of occasional large
metal grains. There is no systematic variation in the Fe-Ni metal
component with depth except that the lowest concentrations
occur in the most anorthositic soils. This is because the metal
is associated with the mafic impact-melt breccias, which are
a principal subcomponent of the Cayley component of the
soils. The mafic impact-melt breccias are.also a principal
carrier of mafic silicates and the principal carriers of ITEs in
the soils. As a consequence of these associations, magnetic
separates made in earlier studies of 60009/10 soils were
enriched in ITEs, siderophile elements, and elements
associated with mafic silicates (Sc, Cr) because they were
enriched in mafic impact-melt breccias at the expense of
ferroan anorthosite.

The unit of soil in the deep-drill core between 103 cm and
187 cm depth that is enriched in mare material is also enriched
slightly in siderophile elements compared with other units in
the core. At the very bottom of this unit, however, is a zone
(177-187 cm depth) that is considerably enriched in
siderophile elements. Ratios among Cr, Fe®, and siderophile
elements in this zone are not consistent with Fe-Ni metal like
that from mafic melt breccias, but are generally consistent with
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an H chondrite in which the metal/silicate ratio is ~40/60.
At the peak of this zone, siderophile-element concentrations
are equivalent to a ~4% CI component. The enrichments
terminate sharply at the bottom of the zone, but diminish
gradually upward. A zone of slight enrichment in siderophile
elements also appears in 60009/10 at 12-17 cm depth. This
zone has about 1.8% CI component at its maximum compared
with the core average of 1.0%.

The observations made here that compositional variations
with depth over distances of a few centimeters are large
compared with variations at the surface over distances of
kilometers have important consequences for interpretation of
data obtained remotely from orbit (eg., Clark et al, 1990),
which is only obtained from the upper few micrometers to
centimeters of regolith.

APPENDIX
Al. Miscellaneous Observations on Previous Studies

Al.1. SU2 in 60010. Samples from SU2 in 60010 were
analyzed by INAA by both Blanchard and Brannon (1977)
and Al and Ebmann (1977). Both of these groups studied
splits of parent sample 60010,89 at 20-20.5 cm depth from
the first dissection column, but the two groups obtained
different results. Blanchard and Brannon (1977) analyzed
three samples of subsplit 60010,3107: two submillimeter grain-
size fractions and a sample of unsieved soil. The 90-150-um
and <20-um grain-size fractions are both similar in com-
position to the seven samples of <l1-mm fines from SU2
analyzed here in having concentrations of Sc, Sm, and related
elements at the high end of the range observed among the
core samples. However, the unsieved sample is dissimilar to
any of the nearly 600 samples of <1-mm fines from Apollo 16
analyzed in this laboratory, being rich in both Sc and ITEs (Sc:
13.2 ug/g, Sm: 8.5 ug/g). These anomalies are probably
attributable to the presence of a single large mineral or lithic
grain in the small sample analyzed (mass not reported, but
probably 20-50 mg), although it is curious that the sample
plots on the extension of the mixing line of Fig. 4 (not shown).
Sample 60010,3107 is an immature soil with a bimodal grain-
size distribution (McKay et al, 1977), so anomalies due to
coarse-grained material of unusual composition are likely (e.g,
Morris et al, 1989; Korotev, 1989). Thus, I believe that the
subsample analyzed by Blanchard and Brannon (1977) was
anomalous.

Unexpectedly, the split from the same sample studied of A%
and Ebmann (1977) (60010,191) is not similar to any of
those studied here or by Blanchard and Brannon (1977)
from SU2. The reported composition is generally similar to that
of the average core soil (e.g., Sc: 8.3 ug/g, Sm: 5.7 ug/g). A
large fragment of anorthosite in the analyzed sample could
account for this difference.

Al1.2. Incorrect depth for 60010,40. Sample 60010,40
of Ali and Fbmann (1977) (section 3.1.5) is plotted at an
incorrect depth on all their figures (at 3.5 cm depth instead
of 0.35cm). The split was obtained from parent sample
60010,11 (0.3-0.4 cm), which was one of a set of special
samples at the top of the core taken at 1 mm intervals instead
of the usual 5 mm intervals (Fruland et al, 1982, Table 3.3).

Al.3. Oblivine quench rock. Vaniman et al. (1976)
describe, in their discussion of hard-to-categorize lithologies
observed in 60001-7, an “olivine quench rock,” although they
do not say at what depth it was found. The fragment may be
rich in olivine because it contains a very high proportion of
meteoritic silicates. The texture of this rock (Fig.5 of
Vaniman et al, 1976) is similar to that of two olivine-rich
glassy particles from 65502 containing over 50% chondritic
material, one of which is a sphere [compositional discussion
in Korotev (1983) and subsequent petrographic examination)].

A2. Sc-Sm Mixing Line for 60009/10

It is not clear, at least to the author, what regression model
is most appropriate for fitting a line to the data of Fig. 4. The
choice is important to the extent it effects (1) interpretation
of the line as a mixing line and (2) extrapolation of the line
in the low-Sc direction to obtain a composition for the low-
Sc mixing component (section4.1.1). Most of the scatter
about the line is sampling scatter, not analytical scatter,
because both elements are determined with high precision.
Simple linear regression (e.g, Sm against Sc) is inappropriate
because it assumes that all the “uncertainty” (analytical or
sampling) is with one element or the other, and this is not
true. For example, simple regression of Sm against Sc (Sm =
0.6416 - Sc-0.007) leads to a line that nearly intersects the
origin, but which is “too horizontal.” I have chosen, somewhat
arbitrarily, to use the regression method of York (1969) with
2% of the concentration value of each element used as the
“uncertainty” (any constant percentage leads to the same
result). This yields the equation Sm = Sc - 0.6756-0.269, which
has a Sc intercept at 0.40 pg/g Sc. This line is used throughout
this work as a reference line for comparing results for other
samples. In Figs. 4, 5, 13, 14, 18, and 19, the solid portion of
the line is bounded by the (Sc,Sm) points (2.82,1.636) and
(10.62,6.906), which are points on the regression line at the
lowest and highest Sc concentrations observed in the <1-mm
fines from 60009/10.
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TABLE A4. INAA results for particles removed from <1-mm samples of 60001-7.

Particle 6000X Parent Lab Mass Na,0O CaO Sc Cr FeO Co Ni Sr Zr Ba
Number Note Split D mg % % pg/s  ug/s % rg/8  pg/g8 K88 kB/8 kB8
6.01 S 6 93 227058 0452 0172 178 875 329 321 25 <50 223 150 143
5.01 S 5 90 223220 0210 0466 153 753 675 403 135 <350 <400 <250 <250
401 4 282 223219 1335 0302 174 120 312 140 63 50 180 <30 14
402 4 207 223292 502 0604 144 778 656 486 194 260 200 160 114
403 4 218 223291 461 053 116 170 1340 874 280 350 170 400 360
3.01 S 3 143 223289 0309 0.121 153 692 740 535 292 240 140 <250 <200
3.02 S 3 120 223290 0613 0605 164 752 681 378 15.1 260 330 <250 <80
2.35 S 2 174 227.020 0058 0267 165 246 156 154 189 360 130 90 <100
236 S 2 84 227019 0036 0523 144 951 1020 705 528 360 180 370 180
237 2 180 227023 2267 0523 217 116 58 055 7.2 21 211 11 14
238 2 21 227021 2243 0643 158 665 483 394 100 64 214 84 98
239 2 3 227022 7989 0225 157 972 782 528 187 173 144 43 46
1.01 1 22 227016 1392 0481 162 746 602 423 175 215 161 101 95
1.02 1 14 227014 3015 0480 158 799 645 425 150 161 190 123 87
1.03 1 26 227017 4961 0327 149 806 541 456 154 57 140 40 44
1.04 1 14 227013 2515 0496 157 101 761 552 307 415 184 180 128
1.05 1 16 227015 4957 0520 143 104 866 620 370 490 162 379 273
1.06 1 28 227018 4087 0510 122 116 1154 663 136 194 142 400 260
TABLE A4. (continued).

Particle La Ce Sm Eu Tb Yb Lu Hf Ta Ir Au Th U

Number  pg/g  ug/g ug/g rg/gs  Hg/8 1g/g ug/g  mg/g  ug/g ng/g ng/g 1g/g ug/g
6.01 10.28 259 491 1.51 0.97 3.73 0.518 391 051 <10. <20. 1.74 033
5.01 5.99 na 2.89 1.23 0.56 217 0.29 2.82 030 <10. <30. 104 <1

401 0.168 na 0074 0727 0017 0059 00077 <0.1 <0.02 15 10 <003 <00
402 8.72 na 4.05 1.40 0.87 2.99 0.426 294 037 11. 3.1 1.50 047
4.03 41.2 na 194 1.61 3.83 122 1.67 9.2 0.94 6. 7. 6.84 1.72
3.01 412 na 1.94 0.99 0.42 1.60 0.220 1.76 017 <l10. <20. 075 <L

3.02 0.92 na. 0.54 1.09 0.15 0.40 0058 <05 <0.3 <10. <30. <04 <1.

2.35 2.62 5.0 0.68 0.82 0.14 0.45 0.072 172 <03 14.9 9.5 0.19 0.21
236 13.70 33.5 5.49 1.12 1.10 3.66 0.531 6.73 0.38 15.0 14.0 197 044
237 0.28 0.7 0.13 097 0.02 0.07 0.010 020 <0.03 <5. 09 003 <01
238 6.67 17.2 3.17 1.44 0.61 213 0.291 2.37 0.27 25 <3. 0.88 0.27
239 3.46 9.0 1.71 0.77 0.33 1.33 0.184 1.25 0.15 6.7 1.7 0.53 0.16
1.01 824 21. 3.82 1.08 0.74 2.69 0.380 273 0.34 66 32 1.55 0.44
1.02 8.15 21. 3.83 1.08 0.73 261 0.365 2.82 0.31 6.0 25 1.22 0.33
1.03 3.13 8.0 1.46 0.79 0.28 1.14 0.161 099 0.13 1.3 <2 045 0.12
1.04 113 29. 5.40 1.18 1.02 373 0.524 434 0.50 14.2 7.0 1.80 048
1.05 285 73. 13.2 1.36 255 9.16 1.271 9.05 1.22 139 102 5.35 1.55
1.06 274 71. 13.0 1.53 247 839 1.183 9.31 1.14 <3. 35 422 1.06

Note: S = sphere; n.a. = not analyzed.
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TABLE A5. INAA results for >1-mm particles allocated from 60002 arranged in order of increasing Sc concentration.

Particle Parent Lab Mass Na,0 CaO Sc Cr FeO Co Ni Sr Zr Ba
Number  Note  Split D mg % % rg/gs  ng/8 % ug/s pg/g  Hg/8 kg/s ug/s
225 147 240032 21.044 0396 184 0371 15 0269 039 <10 175 <20 7
2.13 137 240013 3381 0991 181 0760 16 0468 053 <15 311 <60 56
231 95 240038 4639 1108 173 0805 26 126 130 7 372 <40 48
2.26 147 240033 4221 0541 174 207 127 159 249 12 238 <40 21
2.11 137 240011 3432 0451 187 274 139 0687 211 30 166 15 60
2.04 126 240004 13971 0372 192 431 202 108 155 7 156 <20 14
2.19A 139 240019 14879 0421 173 433 388 239 587 40 180 17 21
2.19B 139 240020 10474 0421 174 441 309 246 522 22 169 15 25
2.19C 139 240021 11833 0449 177 463 338 240 566 28 168 23 24
2.19D 139 240022 2212 0456 177 463 321 251 805 90 192 39 27
2.19E 139 240023 4075 0453 173 480 350 263 108 82 160 33 26
2.19F 139 240024 4250 0417 177 422 304 240 541 48 171 19 21
2.19G 139 240025 6301 0422 176 441 310 240 569 30 172 19 28
2.19H 139 240026 1757 0460 17.1 456 358 223 277 24 195 <50 39
2.19 M 139  240M19 55781 0432 175 446 340 242 599 38 173 19 24
208 124 240008 9812 0700 163 480 470 337 207 331 245 20 37
221 147 240028 2847 0272 152 499 391 690 114 <50 135 <120 8
2.14 137 240014 5757 0403 159 540 530 368 112 60 166 50 44
2.15 N 139 240015 1585 0013 03 570 475 115 591 37 <50 <50 <20
2.18 139 240018 6007 0321 170 592 388 326 770 <50 146 <40 27
2.34A 05 240041 5231 0502 154 658 584 410 208 323 186 200 162
2.34B 95 240042 3361 0467 166 497 410 321 151 251 177 90 86
2.34C 95 240043 3313 0572 145 849 767 466 167 288 160 350 234
234D 95 240044 6308 0516 153 668 588 447 264 453 149 190 166
2.34 M 95 240M34 18213 0513 154 666 586 417 209 348 166 200 162
201 S 126 240001 6664 0413 146 671 816 425 140 86 140 95 119
203 126 240003 15864 0450 149 687 581 408 162 194 173 110 86
223 147 240030 5745 0438 17.1 694 457 342 688 19 166 23 29
2.09 124 240009 6900 0300 172 7.07 411 351 738 22 139 <50 11
222 147 240029 4159 0301 169 710 471 420 862 21 152 24 13
2.17 139 240017 5015 0409 165 720 545 426 160 198 175 32 41
230 95 240037 3388 0675 157 746 593 410 198 247 213 120 105
2.10 124 240010 4031 0488 157 749 604 419 177 228 172 140 124
205 126 240005 3830 0687 148 784 459 644 155 27 187 38 53
2.12 137 240012 1614 0482 155 878 744 517 280 426 161 200 153
233 95 240040 7264 0550 15.1 923 734 510 202 269 194 190 147
2.06 126 240006  7.060 0494 136 934 1155 514 162 66 162 190 153
2.02 126 240002 9.006 0494 153 945 782 534 225 295 168 240 175
216 139 240016 4297 0469 136 957 951 803 816 1550 188 240 158
220 ) 147 240027 7965 0390 15.1 961 771 533 204 168 177 280 177
2.07 126 240007 3198 0559 145 980 844 552 199 258 168 310 202
227 147 240034 7852 0491 14.0 9.83 1032 506 138 72 187 240 202
224 147 240031 16243 0530 138 1017 1056 7.07 480 743 159 360 258
2.28 147 240035 7693 0541 134 1040 1072 661 463 710 176 320 226
232 95 240039 7789 0529 152 1100 801 579 179 223 180 390 256
229 95 240036 4237 058 178 1359 1086 303 736 39 182 110 195
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TABLE AS. (continued).

Particle La Ce Sm Eu Tb Yb Lu Hf Ta It Au Th U

Number  pg/g rg/g ug/g ug/g ng/g rg/g rg/g rg/g 1g/g ng/g ng/g ng/g 1g/g
2.25 0145 034 0051 0827 00090 0028 00040 0050 0006 <2 <1 0.009 <005
213 2.79 62 0.683 208 0096 0215 00237 0172 0015 <2 <2 0.048  <0.06
231 131 29 0411 237 0068 0224 00293 0.115 0026 <1 < 0.043 0.02
226 0557 14 0237 130 0045 0201 00284 0157 0036 13 <2 0033  <0.06
211 193 50 0654 0869 0128 0512 00650 048 0103 <2 <3 0.38 0.16
204 0.552 141 0250 0737 0054 0222 0029 0.121 0009 <1 <1 0020 <03

2.19A 1.23 32 0573 0897 0135 0504 0072 044 0.064 1.6 25 0.18 0.05
2.19B 122 3.1 0578 0875 0131 0498 0070 042 0.058 09 <2 0.17 0.04
2.19C 1.27 33 0596 0900 0144 0551 0073 046 0.073 14 <2 0.20 0.06
2.19D 132 34 0609 089 0141 0565 0077 049 0.058 14 12 0.20 0.08
2.19E 1.47 39 0652 0903 0150 0606 0087 054 0.074 7.9 15 0.23 0.08
2.19F 1.18 3.0 0549 0904 0121 0484 0069 041 0.048 <2 <2 0.17 0.05
219G 127 32 0586 0869 0134 0517 0071 042 0070 <2 <2 0.18 0.05
2.19H 148 39 0649 0989 0155 0616 0080 048 0.050 7.6 <2 0.33 0.07
2.19 127 33 0588 0894 0137 0526 0073 045 0.064 1.8 1.0 0.19 0.05
208 2.04 52 0891 139 0179 0661 0092 063 0094 150 53 0.24 0.05
221 0230 062 0103 0622 0026 0163 0024 0073 <0.06 <3 09 <004 <01

2.14 222 56 0914 0897 0212 098 0.140 094 0.135 23 <2 057 0.16
2.15 222 6.0 0973 0033 019 192 0397 0110 <0.08 <2 <2 0.25 0.08
218 1.03 27 0475 0756 0110 0452 0063 042 0.055 16 0.9 012 <02

234A 123 31. 5.44 1.16 1.14 408 0553 446 0.524 7.9 94 211 0.69
2.34B 6.50 17.7 3.08 1.05 0634 227 0315 240 0.287 58 6.1 1.07 038
234C 245 62. 10.90 130 220 7.59 1002 797 0910 66 89 3.80 1.14
234D 136 35, 6.01 1.15 1.23 448 0595  4.60 0578 73 15.5 223 067
2.34 14.0 36. 6.20 1.16 1.27 452 0605 477 0.569 7.1 10.8 227 0.71
201 6.84 17.1 263 0935 0638 329 0457 265 0511 25 <16 253 0.78
2.03 7.35 19.0 3.18 1.02 0671 243 0341 257 0318 57 26 125 0.38
223 208 54 1.03 0946 0247 090 0124 075 0.105 14 <2 0.24 0.09
2.09 0.81 20 0378 0688 0092 0393 0056 025 0039 <3 <5 0.08 0.03
222 0767 20 0404 0747 0101 0430 0060 030 0035 <4 <4 0.072 0.03
217 2.58 66 117 0896 0279  1.03 0.150 092 0133 58 2.1 043 0.16
2.30 876 220 3.71 1.58 0792 275 0377 290 0.346 82 47 1.29 0.38
2.10 986 261 431 1.10 0935 322 0447 337 0.440 86 42 1.69 047
205 3.21 83 1.67 127 0371 130 0180 122 0204 <4 <3 038 0.10
212 13.0 34, 5.79 1199 119 4.15 0571  4.60 0530 174 59 2.04 0.54
233 125 32. 543 135 118 422 0565 451 0.543 84 34 2.14 046
2,06 125 32, 5.34 116 1.17 443 0624 445 0587 <5 <4 2.26 0.60
202 164 42, 7.11 1.26 148 527 0713 571 0.676 7.6 47 285 0.81
2.16 156 40, 6.79 1.24 143 5.24 0714 541 0650  67. 154 3.78 1.04
2.20 187 48. 7.95 1.27 1.70 577 0781 654 0.739 9.0 28 3.12 0.80
207 176 46. 7.71 128 1.60 5.86 0814 746 0.720 73 43 3.16 097
227 169 43, 7.12 1.28 152 5.85 0797 593 0.721 33 13 3.30 0.90
224 267 68. 11.22 141 2.39 8.28 1.118 895 1.003 159 152 436 117
228 203 52. 856 131 1.90 6.89 0938 726 0914 210 14.2 375 1.04
2.32 270 70. 11.67 1.42 242 7.99 1103 942 1.009 59 33 414 1.08
229 114 29. 6.85 1.74 1.63 5.35 0700 320 0222 <3 <4 121 053

Note: M = mass-weighted mean of subsamples; $ = sphere; N = Na,O value corrected for 2Mg(n,p)*Na.
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TABLE A7. INAA results for 50-60 mg samples of some Apollo 16 sutface soils.

Sample Station Na,O CaO Sc Cr FeO Co Ni Sr Zr Cs Ba
% % ug/g bg/g % bg/8 ug/g Lg/g vg/g bg/8 ug/g
61221,12 1 0.508 159 7.46 563 4.20 16.2 221 176 129 0.12 99
63341,80 13 0.497 15.5 821 616 4.58 174 232 172 137 0.09 112
64501,11 4 0451 16.0 7.48 581 414 209 311 167 129 0.10 124
64801,35 4 0.450 15.7 9.60 756 5.17 254 336 165 193 0.16 136
67481,63 11 0474 16.2 7.25 515 384 11.6 148 189 77 0.06 72
675114 11 0.430 17.0 828 526 427 12.8 75 163 45 0.07 49
67601,15 11 0.509 16.1 7.01 568 4.23 279 363 193 79 0.07 84
67701,18 11 0.510 16.0 731 558 417 16.6 218 171 80 0.07 88
67941,68 11 0.538 154 8.00 684 457 18.2 241 180 144 0.13 118
68841,29 8 0.449 149 9.32 768 537 275 410 180 183 0.11 146
69941,25 9 0.450 154 9.94 802 5.52 263 382 164 177 0.16 158
£(%)" 1-2 3 1 1 1 1 7 8 12 18 5

TABLE A7. (continued).

Sample La Ce Nd Sm Fu Tb Yb Lu Hf Ta I Au Th U
pg/g  pg/s  wug/8  pg/s  ug/s  wpg/gs  wg/gs pg/s 188 ug/g ng/g  ng/g  pg/g  ug/g

61221 853 222 12. 4.05 1.12 0.79 2.86 0.387 3.00 0.357 44 4.0 133 0.36
63341 10.1 26.0 17. 4.61 121 0.94 3.45 0.470 3.27 0.404 7.0 6.2 1.64 046
64501 10.8 28.1 20. 5.06 1.11 0.98 351 0471 3.65 0.439 88 139 1.76 0.54
64801 129 33.1 21 6.00 1.17 118 432 0.591 4.59 0558 103 15.6 2.09 0.56

67481 5.72 14.8 9. 2:75 1.11 0.57 2.02 0.273 195 0.245 4.1 2.0 0.95 0.27
67511 3.49 9.0 5. 1.68 1.01 0.34 133 0.184 118 0.162 20 1.0 0.49 0.14
67601 6.61 17.2 10. 3.12 1.23 0.62 230 0317 217 0278 101 68 1.08 0.28

67701 699 179 10. 3.28 1.23 0.66 239 0329 229 0.300 7.4 5.0 1.15 0.31
67941 109 28.1 19. 5.05 1.27 1.02 3.63 0489 360 0441 7.3 6.0 1.75 0.61
68841 144 37.2 23, 6.65 1.20 1.30 462 0626 489 0.580 122 64 235 0.56
69941 143 36.9 23, 6.66 1.21 1.30 468 0633 487 0574 114 6.8 242 0.65

(%) 1 2 15 2 1 3 2 2 2 4 12 12 3 10
* Estimate of analytical precision (one standard deviation, relative).
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