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Abstract. A cosmological model is discussed which replaces the
Friedmann singularity in the very early universe by a de Sitter
solution with a closed spherical space metric stretched by a
quantum vacuum. This model contracts from past infinity to a
minimum radius and then re-expands (Big Bounce).

After passing the minimum, a phase transition is required
which converts the quantum vacuum into the primordial rela-
tivistic matter. During this process the exponential de Sitter
expansion turns into a Friedmann-Lemaitre model.

This model is compared with a similar singularity-free model
proposed by Israelit & Rosen (1989), which starts from a cosmic
egg at the Planck time with “prematter” of Planck density.
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1. Introduction

According to the singularity theorem of Hawking & Ellis
(1968) and Penrose (1965), see also Kundt (1968), the
Friedmann-Lemaitre models lead to a singularity in the very
early universe. However, the energy condition assumed by the
theorem

e+3p=>0

need not be satisfied by all forms of matter fields and depends on
the equation of state. Moreover, the usual concept of separating
space-time and matter may be violated during the very early
universe (Einstein 1954), when the curvature of space varies very
significantly on the scale of a Planck time. At this time quantum-
gravitational effects become dominant. The typical size of a mini
universe emerging from the space-time foam (Misner et al. 1973)
is assumed to be of the order of the Planck length Lp . The
energy density should then be of the order of the Planck density
epL=pp . Attempts to describe the quantum creation of the
universe as quantum tunnelling from “nothing” (i.e. no classical
space-time and matter) have been made e.g. by Starobinsky
(1980), Atkatz & Pagels (1982), Vilenkin (1988).

If we extrapolate the Friedmann models back to the Planck
time tp; — the assumed threshold of classical cosmology — we are
faced with an enormous discrepancy with respect to the initial
dimensions assumed in the concept of quantum creation.

Send offprint requests to: W. Priester

On the one hand, the density of the Friedmann models at the
Planck time differs only slightly from the Planck density while,
on the other hand, the size R of the Friedmann models measured
by the worldline of the (z=>5)-quasar horizon at p; shows an
enormous excess compared to the Planck length Ly, of the mini
universe:

Rp(tp )~ 1030 Ly,

with  Lp =1610733cm and tp, =54 10" **s.

To eliminate this discrepancy, a mechanism of exponential
expansion is required to reconcile the classical model with its
possible quantum origin. An exponential expansion can be re-
alized when the universe is dominated by a substrate with posit-
ive energy density ¢ but negative pressure p= —¢ (Gliner 1966).

In order to achieve the rapid expansion, the inflationary
scenario (Guth 1981; Linde 1983) uses the scalar Higgs field of
the Grand Unified Theories. When the energy density of the
Higgs field &y (With gy =pyc? and  py;= —py;c?  with
Ppui~107% gcm ™ 3) dominates the matter density at t~ 10735 s,
an exponential inflation takes place. Then the required phase
transition transforms the Higgs energy into the primordial ele-
mentary particles at about t~10733s. For a critical review see
Borner (1988). The inflationary scenario does not imply a solu-
tion to the conundrum of the origin of matter in a Big Bang or at
the Planck time. Furthermore, it does not explain the required
exceedingly large expansion rate in the beginning. Big Bang
models assume both infinitely large energy density and expansion
rate as unexplained initial conditions.

2. Big Bounce

Our approach is based on the assumption of a primordially
homogeneous and isotropic space-time, in which all fields exist
in their ground state.

The lowest energy state of the quantized fields defines the
energy level of the quantum vacuum. This picture is supported by
quantum field theory, in which real matter (elementary particles)
represents the excited states of the space-filling matter fields.
Thus, the vacuum is the more fundamental entity, which can exist
independent of real particles. Therefore, it seems a natural hypo-
thesis that the quantum vacuum was the primordial stage before
elementary particles came into being (Priester & Blome 1987).

This hypothesis implies the decoupling of the origin of “ordi-
nary” matter (quarks, leptons, photons, etc.) from the creation of
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space—time. A phenomenological description of the quantum
vacuum by an equation of state for the pressure p,= —p,c? was
given by Zel'dovich (1968). With this assumption the de Sitter
solutions follow as possible cosmological models from the
Einstein equations.

For'a homogeneous and isotropic universe the Einstein equa-
tions reduce to the Einstein—Friedmann equations:

(R(t)>2_8nG Lo ke? :
R/ 3 PO R M
R 4G 3 1

%% —”T<p(z)+$>+§/\c2 2

Here R(t) is the time-dependent scale factor. The curvature index
is k= +1 for a spherical space metric and 0 or —1 for Euclidean
or hyperbolic metrics, respectively.

The cosmological constant A occurs in the Einstein equations
if derived in a general way using the Hamilton variational
principle. It is convenient for comparison with the density to
replace A by its equivalent density p, = Ac?/(8nG).

The density p(t) and the pressure p(t) are combinations of
several components, which represent the (nonrelativistic) matter
(index M), the radiation (relativistic matter) (index R) and the
quantum vacuum (index V).

Except for the short time intervals of phase transitions the
interaction between the components can be neglected. Thus, the
density and pressure can in general be expressed as a sum of the
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Fig. 1. Three evolutionary scenarios of the very early universe: The
curvature radius R(t) as function of time. (a) Big Bang and Big Bounce (k
= +1): The scale of R(t) is given on the left-hand ordinate and the time
scale in the lower abscissa. (b) Israelit—-Rosen model (k= + 1): R(¢) on the
right ordinate and time scale in the upper abscissa. This model begins its
expansion from a homogeneous “cosmic egg” with almost Planck density
and a radius of 0.56 1033 cm. The de Sitter models for open space [k=0
(Euclidean metric) and k= —1 (hyperbolic metric)] are given for com-
parison

components. Only the time intervals of phase transitions require
special considerations. These are:

(a) The assumed phase transition between the quantum
vacuum and the radiation (relativistic particles) at a very short
time interval, somewhere between t=10"%2 and 107 3%s
(Friedmann time).

(b) The quark-hadron phase transition with subsequent
annihilation of the antimatter at t~10°s.

(c) The transition from the radiation cosmos to the era
dominated by incoherent matter (“dust” model, galaxies) at
t~10° to 10° yr. With these restrictions we have

p(t)=pu(t)+pr(t) +py(t),

p(1)=pu(t)+ pr(t) +p,(1), ©)]
with the equations of state

p=(y—1)pc*: @)
=0 for incoherent matter (y=1),

for relativistic particles (e.g. photons,
neutrinos and all particles in the early
universe) (y =4/3),

for the quantum vacuum (y=0).

pr=(1/3)pgc?

py=—p,c

The local energy balance
'+3R< +2 ) 0 5)
PoR\PT )~

allows one to calculate the dependence of the density on the scale
factor R, resulting in

Ly \¥
p=ppL (—;) (6)

for the various equations of state (with Ly, = Planck length and
ppL = Planck density).

The energy density of the quantum vacuum is assumed to be
constant from the inifinite past until the phase transition begins.
At that time the quantum vacuum energy is converted into
relativistic particles and is thereby reduced to zero or to an
insignificant amount.

The concept of the Big Bounce implies that there is no matter
and no relativistic matter and radiation (p, > pg =0, pyy=0) be-
fore the phase transition. Thus, the dynamics of the universe are
driven solely by the stress of the quantum vacuum.

Under these circumstances Eqgs. (1) and (2) have as solutions
the de Sitter space-time:

R(t)=§sinh(Ht) for k=—1, (7a)
R(t)=% exp(Ht) for k=—0 (7b)
R(t)=%cosh (H)  for k=+1, (70)

with the expansion rate

_R’(z)_ 8nG
"RV 3 P

for p,=const. The characteristic time is ty; =1/H.
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Figure 1 shows appropriate examples of the de Sitter solu-
tions for p,=210"%gcm~® and for p,=5210">gcm™3
( = Planck density).

The solution (7c) for a spherical space metric avoids the
singularity and represents a closed universe, which contracts
from infinity and re-expands after the Big Bounce.

The selection of a de Sitter solution with spherical metric as a
mathematical model of the very early universe is quite natural
within the context of quantum transitions from a pre-Planck
stage at the threshold of classical cosmology (see eg. Vilenkin
1988).

Moreover, observations of the present universe are com-
patible with Friedmann-Lemaitre models with spherical space
metric (k= +1), in agreement with the limits of the observed
boundary conditions (H,, py, o) (Blome & Priester 1985). The
curvature index k is a topological constant which cannot change
in the course of the evolution of the universe. Therefore, the space
of the precursor stage modelled as a de Sitter solution should also
be closed (k= +1).

The transition from the de Sitter stage into the Friedmann—
Lemaitre radiation cosmos is characterized by a very brief phase
transition during which matter is created from the energy of the
quantum vacuum.

As the vacuum energy density decays, the universe experi-
ences a rapid transition from the vacuum state with p, = —¢, into
a cosmic epoch dominated by the energy density & of relativistic
matter with pressure pg =(1/3) &g. It is worth mentioning that the
matter production in quantum field theories [see Parker (1988)
for a review on these problems] can be treated by classical
general relativity if pressure is allowed to be negative (Gunzig &
Nadone 1987). This can be seen directly by the local energy
balance equation in the form (pR?)+p(R?) =0, or m+pV =0,
where m~ pR3 is the mass and ¥ ~ R? is the volume. Thus, >0
requires p <0 in an expanding cosmos (V> 0).

During the process of matter creation, the exponential
growth of the scale factor R~exp(t/ty) slows down and ap-
proaches the usual Friedmann relation, R ~t!/2, for a radiation
dominated cosmos. This phase transition must occur within a
very short time interval.

The exponential expansion explains the initially very large
expansion rate of the subsequent Friedmann radiation cosmos.
This is another advantage over the conventional Big Bang model
which simply has to assume the unexplained boundary condi-
tions at the Planck time tp; :

(a) the energy density corresponding to the Planck density
pp =510 gem ™3,
(b) the extreme expansion rate H=1/(2tp;)=10%3s"1.

The boundary conditions for the closed Friedmann radiation
model (k= + 1) can be derived from the range of possible cosmo-
logical models at the present time (Blome & Priester 1985).

3. The present universe as consequence of an early Big Bounce

The allowed range of realistic closed Friedmann-Lemaitre mo-
dels can be divided into two model classes which are compatible
with the presently observed boundary values (Hubble parameter
44 <Hy<110kms™ ! Mpc™!, a lower limit of the age of the
universe of t,~ 14 10° yr):

Class A (A=0): High-density models with 44<H,<47 km

45

s~ Mpc~! and ages 9 10° yr<t,<14 10° yr. These k= + 1 mo-
dels require a contribution of unobserved, non-baryonic matter
which amounts to 90% or more of the average density.

It should be noted here that at present there is no tangible
evidence for such a high amount of dark matter, neither from the
flat rotation curves of galaxies nor from the overdensities in
clusters of galaxies.

Class B (A>0): Low-density models with 47<H,<
110 kms~! Mpc ™! and ages t,> 14 10° yr. These k= + 1 models
are based on a density py o which has been derived from the
analysis of the Helium—deuterium production in the early uni-
verse in comparison with the observed helium content (see
Fig. 2). We obtain for the baryonic density a range of
0.11073° gem 3 < py 0<0.9 107%° gem 3. Here we shall use
oum.0=0.51073% gem 3. This figure accounts also for the pos-
sible mass contribution by brown dwarfs and neutron stars in the
galactic halos. There is no significant amount of non-baryonic
matter required in these models.

In Fig. 3 we have shown 4 examples of k= + 1 models. The model
of class A with Hy=46.5km s~ ! Mpc ™! is favoured by Israelit &
Rosen. We further present three models of class B with H,
=75kms ™! Mpc~! and ages between 19.8 and 24 10° yr which
are classified by the general density parameter Q&, defined by

+ 4 >1for k= +1
QA = PMoTPROTPA o 4 o4 ig =1 for k=0 ©)
Pe.0 <1fork=—1.

Here py o is the baryonic matter density, p. ,=3H3/(8nG) is the
critical density, p, = Ac?/(87G) is the A-equivalent density and
Pr. o the equivalent density of the background radiation. Q is the
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Fig. 2. The mass ratio of helium (*He) and deuterium (*H) relative to the
total mass (H + *He) produced by primordial synthesis. The curves are
calculated using the formulae given by Olive et al. (1981) and (1989).
Nowadays, the number of neutrino species is restricted to three. The most
recent experimental value of the neutron lifetime ¢, is 10.13+0.12 min
(Paul et al. 1989). A comparison with the observed ratios for “He (23 to
25%) and 2H (10™* to 10~ 3) yields the present baryonic matter density
(see also Blome & Priester 1984)
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Fig. 3. Friedmann-Lemaitre models with spherical space metrics result
from both scenarios of the very early universe. The normalized curvature
radius (scale factor) R/R, is given as function of time. Israelit & Rosen
(1989) favour A=0, a present Hubble parameter H,
=464kms~'Mpc~! and age t,=13.710° yr. This model requires a
present matter density of 4.7 1073° gecm ~3, containing a high percentage
of “dark matter”. The three models on the right-hand side are examples
of the solutions with positive values of the cosmological constant. They
are based on the observed matter density and an age of the universe
above 14 10° yr

present matter density parameter. 4, is the normalized cosmo-
logical term:
. A p,
A= =—".

3H (2) pc.O
w, is the present density parameter for photons and other
relativistic particles. Since w,<Q,, it can often be neglected.
Q& is the appropriate parameter which represents the type of
space metric in Friedmann-Lemaitre models. With this para-
meter the curvature radius for k= + 1 and k= — 1 models retains
its well-known form:

R c\/ k
T Ho\ QA-1'

All these models assume that the quantum vacuum was
completely converted into the primordial matter. The cosmo-
logical constant has often been identified as a residual of the
primordial vacuum density. In the original interpretation,
however, A is a quantity which contributes inherently to the
curvature of space-time. Therefore, it must be regarded as a
fundamental constant of nature, which by no means must be
assumed to be zero as done in the standard cosmological models
[see recent discussions by Weinberg (1989) and Priester et al.
1989]. Here, for instance, a positive A assures a spherical space
metric even in a low-density universe, while in standard cosmo-
logy with A=0 the low densities imply a hyperbolic metric,
exclusively. The term “low density” is, of course, meant in com-
parison to the critical density p, o=3H}/8rG.

(10)

4. Models without singularity

A singularity-free cosmological model has been proposed by
Israelit & Rosen (1989). According to their assumptions, the
universe emerges from a small bubble (“cosmic egg”) at the

bounce point of a de Sitter model filled with a cosmic substrate
(“prematter”) characterized by an equation of state p= — pc? (see
Fig. 1).

The cosmos springs forth from the quantum epoch and starts
at the Planck time t,; modelled by a de Sitter solution for k= +1,

with a prematter density p;=p,=pp.=5210°3gcm ™3 and a
constant expansion parameter

8nG
H=\/Tppl_=5.37 10%3s7 1, (11

The model starts from a finite size R;=5.58 10~ >* cm, with a zero
expansion rate, R(¢;)=0.

With these initial conditions the Israelit-Rosen model under-
goes a very rapid expansion (Figs. 1 and 4) in the course of which
a transition takes place from the prematter period with expo-
nential inflation to the radiation-dominated period. The phase
transition is modelled by an ad hoc assumed interpolation for-
mula for the equation of state:

o,
p=Zpc—
3 3ppL

p2ct.

(12)

According to the proposed model, the parameters characterizing
the present stage of the universe are t,=13.710%yr, H,
=46.5kms™ ' Mpc™!, Qu=1.16 and A=0.

This is the signature of a cosmos with spherical space metric.
It will reach its maximum extension of about Ry,x = 3.6 102° cm
in the future at ty,x =6 10'! yr. From then on it will recollapse.

In Fig. 4 the model I on the left side is the one given by Israelit
& Rosen (1989) and the model II describes our model. The
corresponding densities can be considered as the maximum
possible requirement in case I (Planck density) and the minimum
requirement in case I1. The latter density of 2 107¢ g cm ~3 corres-
ponding to energies of 10'* GeV is necessary for the production
of X-bosons which are assumed to transform into quarks and
leptons and, thus, provide the matter of the universe. According
to the assumptions by Israelit and Rosen, the universe begins its
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Fig. 4. Curvature radius R(t) as function of time for the Israelit-Rosen
model (I) (marked by open circles) and the Big Bounce model (II) (marked
by black dots). The models cover the allowed range for the energy density
of the quantum vacuum in the very early universe: pp; > p, =107 gcm 3.
After phase transition (particle creation) both models merge into
Friedmann models
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expansion from a homogeneous and isotropic “cosmic egg”, with
the Planck density, in the form of a closed 3-dimensional space
without a singularity. The expansion is driven by a prematter
substrate with p= — pc? (see Figs. 1 and 4).

In our model the universe is described by a singularity-free,
closed de Sitter solution of the Einstein equation (Big Bounce).
This implies a space-time dominated by a vacuum energy density
&, =p,c2, with p,=2107° gcm 3 and p, = — ¢, in the infinite past.
The solution reaches a maximum of curvature at a bounce point
the time of which is taken corresponding to the zero point of the
Friedmann time. The curvature radius Ry at the bounce is

R \/ 3c?
MIN= 872G o,

Here we have used for p, the minimum requirement discussed
above.

One important and unsolved problem remains in the model
of Israelit and Rosen. It concerns the production of magnetic
monopoles at energies of 10!® GeV, corresponding to densities of
about 1083 gcm ~ 3. Since at these densities this model is already
in the Friedmann radiation stage, there is not enough dilution to
diminish the huge number density of magnetic monopoles which
are expected to be produced at these energies. This problem does
not exist in our model as the maximum energy density remains
well below the values required for the formation of magnetic
monopoles.

After the phase transition at about t=210"*%s, the
Israelit-Rosen model merges into a closed Friedmann cosmos
the present density parameter of which is Q8=0Q,=1.16. It was
assumed that the cosmological constant is zero. This assumption,
together with a Hubble constant of Hy=46.4kms ! Mpc~!,
results in a cosmic age of t,=13.7 10° yr.

In our solution we do not assume an a priori fixed value for
the cosmological constant A. We leave open the question
whether the effective cosmological constant for the present uni-
verse contains still a part which accounts for the possible incom-
plete cancelling of the zero-point energies from fermionic and
bosonic fields, which contribute to the vacuum energy with
different signs (Zel’dovich 1968). In any case, this remaining part
must be extremely small as compared to the primordial energy
density.

In Fig. 4 we give three examples for models with positive
values of the cosmological constant. They cover a range of
possible solutions for the Friedmann radiation cosmos after the
phase transition, which in our case takes place at t=10"33s.
These models do not recollapse but expand into infinity in
the future. The uppermost of the three lines of the radiation
models in Fig. 4 corresponds to a present general density
parameter Q4=1.003 and an age of t,=19.8 10° yr. This value
is close to the Euclidean case, with Q8=1.000 and an age of
to=19.710° yr. These models are based on a Hubble
parameter Hy=75km s~ ! Mpc~! and a matter density of py
=0510"*"gem™3.

All the four models given in Fig. 3 are possible examples for a
present universe which resulted either from the Israelit-Rosen
model or from our Big Bounce model.

=3.10"2"cm=2 108 Ly, .

(13)

5. Conclusions

The aforementioned Big Bounce model should not be confused
with the bouncing Eddington-Lemaitre models discussed by

47

Ehlers & Rindler (1989) and BSrner & Ehlers (1988). They have
shown that the Eddigton-Lemaitre models can be excluded from
the range of models which are compatible with the recently
observed maximum redshifts (z>4) and a lower limit of the
matter density (Q,(MIN)=0.02). The models can be excluded if

1 Q,

<3 , (14)
1+2z(MAX) \ 24,(MAX)
with

3 R
Ao(MAX)=1 ~QO+§Q/Q(2)(1 —Qo+./1-29Q,)
3 2
+3 Q(1-0Qy—/1-29y). (15)

This equation was derived by Blome & Priester (1985)
for Q,<0.5. A more general formula was given by Felten &
Isaacman (1986).

Figure 5 summarizes the classification of Friedmann—
Lemaitre models. The upper left corner contains the Eddington—
Lemaitre models which nowadays can be excluded. The
permitted solutions lie below the 1,(MAX) curve given in
Eq. (15), which forms the upper limit for Friedmann-Lemaitre
models with a point of inflection. These points are designated by
* in the insets in Fig. 5. All recollapsing models lie below the
Jo(MIN) curve or below A,=0. The so-called standard models
are restricted to the one line with A,=0.

A realistic value of the present density parameter Q, can be
derived from (a) the primordial nucleosynthesis (see Fig. 2) and
(b) the observed luminosity function of galaxies. One obtains Q,
=0.02 (+0.04—0.01) based either on the observed helium mass
ratio or on the observed luminosity density of galaxies
(Schuecker et al. 1989), with a mass to luminosity ratio M/L
=25 hin solar units with the limiting values of 75 and 12, where h
=H,/(100 kms~ ! Mpc™!). These values contain an appropriate
mass contribution by the galactic halos and, furthermore, ac-
count for the virial mass of the clusters of galaxies. Observed
infrared luminosity densities suggest a somewhat larger value for
the density parameter Q.

There is no tangible observational evidence for the often-
quoted large percentage (> 95%) of dark matter. A positive value
of the cosmological constant can easily compensate any amount
of the so-called “missing mass”. The earlier often-publicized
statement that the inflationary scenario could “predict” Q=1
can no longer be maintained. This was shown by Madsen & Ellis
(1988). This implies that all models which are based on the
observed boundary values are restricted to the small range of
0.01 <Q,<0.06 as indicated by the dotted lines in Fig. 5.

This limited range of solutions can be further restricted if the
universe had developed from a Big Bounce. Inevitably, this leads
to a universe with a spherical space metric (k= +1) and a very
limited range for the cosmological constant. Its permitted range
is given by

10y <A < Ao(MAX), (15)

with A,(MAX) following from Eq.(15). For the observed
optimum value of Q,=0.02 the limits are 0.98 <1, < 1.12. Models
within this highly limited range show a point of inflection with a
low expansion rate corresponding to redshifts of about z~4. This
could be envisaged as an epoch of galaxy formation.
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Eddingfon-Lemaitre

)\O:?A R |

Fig. 5. Classification of cosmological models
depending upon the present density parameter
and the normalized cosmological term A4,. The
Eddington-Lemaitre models (upper left corner)
can be excluded. The permitted solutions lie below
the A(MAX) curve, the upper limit for
Friedmann-Lemaitre models with a point of inflec-
tion (see the  in the insets). The observed matter
densities 0.01 < Q, < 0.06 restrict the models to the
small range within the dashed lines on the left. The
Big Bounce scenario limits the models further to the
dotted area with k= +1

At the beginning of the Friedmann expansion two important
boundary conditions must have been provided for a cosmos
which was able to develop into our present universe: the creation
of primordial matter with an extreme energy density and an
extremely large expansion rate at that time. These two funda-
mental requirements can be fulfilled by a Big Bounce scenario. It
provides the extreme expansion rate from a de Sitter solution of
the Einstein equations at the moment of the phase transition by
which the primordial elementary particles orginate. In this scen-
ario the principle of causality is being maintained. Space and
time extend infinitely into the past.

Acknowledgement. We are grateful to Nathan Rosen for his
friendly comments.
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