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Abstract. An element set is advocated that is familiar (in traditional terms), and yet applicable to every type of
conic-section orbit without loss of accuracy. It is not free of singularity, but this is not a serious deficiency.
Conversion procedures, to and from position and velocity, are outlined, with Fortran-77 listings appended.
Tests have indicated that the errors in the pair of procedures are minimal, accuracy being limited only by
computer precision and the (fixed) number of iterations used in the Kepler-equation solutions.

1. Introduction

There has long been the goal, in celestial mechanics, of subsuming the solutions of the
classical two-body problem, particular to the ellipse, parabola and hyperbola, in
a universal solution, valid for the rectilinear orbit of each type as well as the general
orbit. Steps towards this goal have been taken by Sundman (1912), Stumpff (1947),
Goodyear (1965), Herrick (1965), Pitkin (1965) and Shepperd (1985), among others,
and some elegant mathematical formulations have been achieved. The aesthetic
attractions of the universal approach have to be weighed against a number of
computational disadvantages, however, and the latter are often disregarded.

An important distinction must be made between universality associated with orbital
elements, on the one hand, and the formulae and working variables of computing
procedures, on the other. The case for universal elements is undeniable, but it does not
automatically extend to algorithms such as those involved in the conversion of
elements to and from position and velocity; the user of such an algorithm is naturally
concerned with its generality, as well as with its accuracy and efficiency, but
a requirement for generality does not imply that the algorithm has to be internally
‘blind’ to orbit type.

The foregoing distiction is at the heart of the present paper, which is a shortened
version of a recent RAE Report (Gooding, 1987). Section 2 discusses what is actually
meant by a set of universal (or universally applicable) elements, and introduces the set
to be used in the rest of the paper; this set suffers from certain singularities, but the
singularities are found to lead to no real difficulty in the conversion algorithms. Based
on the assumed element set, Section 3 describes a computing procedure for the
conversion to position and velocity; this involves, in particular, separate algorithms for
solving Kepler’s equation and the corresponding hyperbolic equation, as currently
described by Gooding and Odell (1988). Section 4 describes the reverse procedure;
here the algorithms for ellipse and hyperbola need to be formulated with great
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care, since serious inaccuracy can arise if a formula for hyperbolic orbits is based on
direct transmutation of the corresponding elliptic formula. Section 5 of the paper is
concerned with the testing and performance of the two conversion procedures, each of
them having been implemented by a pair of Fortran-77 subroutines, one to cover the
two-dimensional (in-plane) part of the conversion and the other the three-dimensional
aspects.

There are situations in which the orbital-element singularities present more difficulty
than in the conversion algorithms. Section 6 indicates how such difficulties may be
dealt with.

2. A Set of Universally Applicable Elements

We seek to define a set of universally applicable elements for motion in unperturbed
orbits about a centre of Newtonian attraction of strength u. We restrict our attention to
non-redundant element sets, for convenience denoting by { the sextuple of quantities
that such a set must comprise; further, we make the usual assumption that the first five
elements of { define the orbital path, whilst the sixth is a phase specifier. Since our main
concern is with computing procedures for converting from orbital elements to position
and velocity, and vice versa, we let x denote the sextuple of components of position and
velocity in a convenient system of rectangular coordinates, with origin at the attraction
centre; we introduce f as the function converting from ¢ to x, so that

x=£(£). (1)

We shall also refer to the Jacobian (partial-derivative) matrix of x with respect to {, and
denote it by J.

If a particular element set can be chosen that covers every type of orbit, then in
principle we regard these elements as universal. It is implied that the function f is
surjective, with range covering all possible x, but this is not enough. We also require
that J is defined (exists) over the domain of valid {, with no occurrence of discontinuity
or infinity.

Ideally, f would be injective as well as surjective, so that it would have a unique
inverse, with the matrix J never singular. Since non-singularity seems to be
incompatible with universality, however, we must give up the extra requirement, but for
many purposes (in solving Lambert’s problem, for example) this is of little consequence.
From the surjective property, we can always define a (non-unique) function, f ~!, such
that the composition of f ~ ! followed by f is the identity over x-space, and this is enough
to demand of the function f ~'. Looking ahead to Section 5, however, we can express
this relation more conveniently (and symmetrically) as a property based on {-space, viz.

Ff=f )

We now proceed to the identification of a particular set of universally applicable
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elements. Our starting point is the set (a, e, i, Q, w, M) of familiar elements used for
elliptic orbits. The elements i, Q and w, which operate as Euler angles relating the
orbital plane to the chosen axis system, are already universal, applying as well to
parabolas and hyperbolas as to ellipses. The element M is manifestly not universal, on
the other hand, since it is identically zero in the parabolic limit. It becomes universal on
divison by n (mean motion), however, the result being a new element (time from
perifocus) that we denote by Tt; clearly, T is just the negative of the element T,
traditionally used as an alternative to M. The four elements so far considered are all
involved in indeterminacies (non-uniqueness) due to singularity (and the associated
non-injectivity of the function f), the sources of singularity being rectilinear orbits,
circular orbits, and orbits for which i=0 or i = 7.

It just remains to consider the first two of the original elements: the combination of
a and e cannot be universal, since a parabola’s perifocal distance, given by g = a(1 — e),
and parameter, given by p = a(1 — ¢?), would not then be defined. (There is, in fact, an
unnecessary degradation of accuracy for any orbit with an eccentricity close to unity.) If
we replace e by g, however, the new pair of elements (a and q) would be universal if we
allowed a to be infinite. To avoid this difficulty, we replace a by «, where

o= u/a, 3)

and then the set (a, g, i, Q, w, 7) is a universal set. It is noted that the definition of a by (3)
maintains the desirable feature of the original element set that makes one element
a function only of energy; indeed « is twice the negative energy per unit mass, since

V2 —2u/r=—au. 4)

The incorporation of the factor p in (3) leads to certain simplifications in computing; as
can be seen from (4), it also permits the element a to be well defined in the ultimate
limiting case in which p= 0. It would not be satisfactory to replace q by p, since
(because 0q/0p =1/2e, for a fixed value of a) a circular orbit would then involve
infinities in J.

In terms of a and g, the following complete classification of orbits becomes possible:

a>0 =0 a<0
q>0 general ellipse general parabola general hyperbola
q=0 rectilinear ellipse rectilinear parabola rectilinear hyperbola

Figure 1 shows how q varies with a/u (= 1/a) for selected values of e. The curves are all
rectangular hyperbolas, and it is easily seen how rectilinear orbits (points on the
horizontal axis) may be distinguished from parabolic orbits (points on the vertical axis),
though e =1 in both cases.
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Fig. 1. Variation of q with a/u(=1/a) for selected values of e.

3. Conversion of Elements to Position and Velocity

The procedure to be described converts from the assumed element set («, g, i, Q, w, T) to
position and velocity (x, y, z, X, y, Z). It has been implemented by a pair of Fortran-77
subroutines, listed in Appendices A and B. Subroutine ELS2PV (Appendix A) covers
the purely two-dimensional (in-plane) part of the conversion, in which the polar
coordinates r and u (u being ‘argument of latitude’, assuming the normal interpretation
of the axis system), together with the radial and transverse velocity components V; and
Vr, are derived from the elements a, g, @ and 7, plus u. The definition of V7 is such that
Vr = 0; also it is assumed that r > 0, avoiding the polar-coordinate singularity at r =0,
though ELS2PV operates accurately for all points of a rectilinear orbit other than the
centre of attraction itself. Subroutine ELS3PV (Appendix B) first calls ELS2PV, and
then uses the angles u, i and Q to perform the appropriate rotations to complete the
conversion.

Details of the computing procedure will be omitted here. The relevant formulae have
been given, without proofs, by Gooding (1987), and further detail can be obtained from
text-books. Some comments on particular aspects of the procedure are called for,
however.

First, in much of ELS2PV, different algorithms are used for the ellipse, hyperbola
and parabola, the control parameter being the sign of «. The function procedures
EKEPL and SHKEPL are used to solve Kepler’s equation and a reformulated
hyperbolic equation, respectively, as described by Gooding and Odell (1988); the
guaranteed accuracies (relative truncation error) for these procedures, in two iterations
of a quartic convergence process, are 14 decimal digits for E (eccentric anomaly) and 20
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digits for S(=sinh H, where H is the hyperbolic anomaly). For the parabola, Barker’s
equation, in the form

d® + 6uqd = 6u’n, (5)

is solved directly for d, where d = r¥. Care has been taken to obtain maximum accuracy
in the solution of this cubic equation, in particular by the use of a refined cube root.

The next point concerns the value of v (true anomaly), computed as a working
variable of ELS2PV. For hyperbolas and parabolas, we must have |v| < 7, so that the
subroutine can accommodate an arbitrary value of @ unambiguously, with included
multiples of 27 carried directly into u. For ellipses, on the other hand, an arbitrary value
of v can arise, reflecting the number of orbital periods present in 7, so that the mapping
(w,7)—> u is no longer one-one. This is an aspect of the non-injective nature of the
function f of Section 2, quite apart from the singularity issue, and it will be referred to
again in Section 4.

As a third point, we note that, for the ellipse, r and v are computed from formulae in
sin3E and cos 1E, but that the corresponding formulae (in sinh #H and cosh1H) are
not available for the hyperbola, as it is S(=sinh H) that is provided by SHKEPL. There
is no difficulty, however, as both r and v can be expressed in terms of C — 1, where
C = cosh H; to minimize rounding error, we compute

C=./(1+8%,
followed by
C—1=S2/(C+1).

A final comment may be helpful in interpreting the listings in the Appendices (it
applies in Section 4 as well as here). As a corollary of the appearance of u in definition
(3), an appropriate (integral) power of u is naturally asociated with other quantities
also; thus the Fortran variables E and M refer to ue and uM, respectively, not just e and
M. (This scaling role of u preserves the validity of both the conversion procedures when
u=0. When p <0, implying the operation of a repulsive force with e< —1, the
procedures still work appropriately, though a large rounding error can arise when
e ~ — 1; it would be necessary to replace the element g, equal to a(1 — e), by a(1 + e) to
avoid this error.)

4. Conversion of Position and Velocity to Elements

We are now concerned with the procedure for converting from position and velocity
(x, y, z, X, ¥, Z) to the element set («, g, i, Q, ®, 7). Whereas the procedure described in
Section 3 constitutes the unambiguous function f of Section 2, the procedure to be
described here merely defines a particular inverse function, f ~*, of the many satisfying
(2). It has been implemented by a pair of Fortran-77 subroutines, listed in Appendices
C and D, that are the natural counterparts of those from Section 3. Subroutine
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PV2ELS (Appendix C) covers the purely two-dimensional part of the conversion,
computing «, ¢, @ and t from r, u, V; and V; (together with u), whilst PV3ELS
(Appendix D) implements the overall procedure, deriving i and Q as well as the input
required for PV2ELS, which it calls.

Mainly because of the semi-arbitrary nature of the procedure, the f ~! subroutines
are a good deal more complicated than the f subroutines, and more extensive
commentary is necessary — there is one simplification, on the other hand, since there is
no longer a transcendental equation to be solved. The first comment refers to the
control parameter, in PV2ELS, for the type of orbit. This is a (as in ELS2PV), computed
from (4). To minimize arbitrariness, the orbit is only deemed to be parabolic if « is
exactly zero, and this condition is very unlikely to occur in practice; because of
rounding error, this is true even when f ~! follows an f that operated on an exactly
parabolic orbit. There is no lessening of accuracy in the handling of near-parabolic
ellipses and hyperbolas, however, so it is only the efficiency associated with the
parabolic formulae that is lost; if this were considered important, then PV2ELS could
be modified to decree ‘parabolic orbit’ whenever |ra/u| is less than some suitable
criterion value.

A similar situation (still in PV2ELS) applies to the recognition of a circular orbit,
which only happens if an exactly zero value of e (which is just a working variable) is
computed. This special case has to be covered because it constitutes a singularity, with
the values of w and t both becoming indeterminate; PV2ELS sets 1 and v (another
working variable) arbitrarily to zero, after which w is set to u — v as with every other
type of orbit. There is a degree of arbitrariness associated with all elliptic orbits, of
course, due to the non-injective nature of the mapping (w, t) — u, as remarked in Section
3. The two obvious options, for PV2ELS, were to select for minimum || or minimum
|w|. The former is the better choice, because it reduces rounding error in certain
circumstances, in particular for near-rectilinear ellipses, and this option has been
implemented in the subroutine; the other option can be obtained, however, by changing
the value of a built-in logical variable (L).

It was remarked in Section 1 that the use of directly parallel formulae, for the ellipse
and hyperbola, can lead to inaccuracy. The reference was to rounding error, and a good
example of such error arises with the computation of e, required so that g can be
computed from

qg=p/1+e). (6)
If we define

c=rV?/u—1
and

s=rVelal'?/p,

then the elliptic interpretation is that ¢ = e cos E and s = e sin E, so that e is given by
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e? = c¢? + s%. For the hyperbola, however, the interpretations of c and s are as e cosh H
and e sinh H, so that the parallel formula is e? = ¢? — s2. The potential sensitivity to
rounding error, when | H| is large, is obvious, yet this is a formula frequently given in
textbooks. The formula appropriate for hyperbolas is simply e? =1 — ap/u, where
(since a is negative) it is really an addition, not a subtraction, that is implied. This
formula would, in turn, be inappropriate for ellipses (cf. the remark in Section 2 that
o and p, as opposed to a and g, would be an unsatisfactory pair of elements for orbits
approaching circularity), and PV2ELS uses the optimum formula for each case.

The remaining comments refer to the computation of the quantities i, Q and u by
subroutine PV3ELS, prior to the calling of PV2ELS. The main problem is singularity
again, though (as in PV2ELS) there is the additional source of arbitrariness associated,
in particular, with the convention that the value determined for Q should always satisfy
—n<Q<m

The predominant singularity relates to rectilinear orbits, and it is deemed to arise
only when the angular-momentum vector is exactly zero. As no ‘orbital plane’ is then
defined, it was necessary, for the operation of PV3ELS, to fabricate one, and it was
decided to do this, in principle, by taking the plane that contains the orbit and for which
i =4n. For an ‘axial orbit’, perpendicular to the reference plane, there is a subsidiary
singularity, however, with the general principle inadequate to define a unique plane; for
definiteness in this case, the value of 2 is decreed to be zero.

For the general (non-rectilinear) orbit, superficially the only difficulty arises with the
singularity that occurs when the orbital plane exactly coincides with the reference
plane, and this is easily dealt with, again by decreeing Q to be zero — this is just like
setting w and 1 to zero (in PV2ELS) for an exactly circular orbit. But there is another
difficulty; it arises with near-rectilinear orbits, for which the rounding error in
computing the components of the angular-momentum vector, h, can be serious. The
problem here disappears at once, however, if instead of just computing h(=r x ) we
compute

r*h=rx [(r x ) xr];

further detail has been given by Gooding (1987).

5. Testing of the Computing Procedures

The basic philosophy for testing was that the two conversion procedures, as
implemented by the subroutines ELS3PV and PV3ELS, would be used to test each
other. The validity of this philosophy emanated from two considerations: first, that the
subroutines were essentially independent, with (for example) Kepler’s equation only
arising in a subroutine subordinate to ELS3PV and rectilinear orbits only having to be
recognized in PV3ELS; secondly, that advantage could be taken of the different
formulae used for different types of orbit, to make a careful study of continuity across
the transition lines. The obvious property to test, in the notation of Section 2, was that
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ff ~* (the composition of f ~* followed by f) should be the identity over x-space, with no
corresponding requirement for f ~! f; but the need to make the testing systematic and
efficient pointed to the use of input from {-space rather than x-space, and this is why the
testing was actually based on the property specified by Equation (2). The testing has
been restricted to the verification of (2), to within tolerable rounding error, at fixed
instants in time, but this restriction does not limit the efficacy of the subroutines or the
testing, since to proceed from x at ¢t,, say, to x at ¢,, we merely have to increment the
t-component of {, =f ~1(x,), by t, —t,, before deriving x, from f({,).

To attach a meaning to ‘tolerable rounding error’, we separate the sextuple x into the
pair of vectors r and . Also, for each ‘input’ x (derived from an actual input {), we write
ff ~1(x)as x + Ax. Then the relative errors in the final position and velocity are taken to
be |Ar|/r and |Ak|/V, respectively, where r = |r| and V = |i|. It might be hoped that the
ff ~* operation would not produce relative errors more than about a (decimal) order of
magnitude greater than the limiting precision of the computer used; since this was
a PRIME 750, of limiting accuracy (double precision) about 10~ #, it was therefore
reasonable to look for a maximum relative error no greater than 2 x 10~ 3. This goal
has been met for |Ar|/r without difficulty, but for |[Ak|/V only in a modified manner.
Before explaining this, we remark on the range of test cases covered.

There are seven degrees of freedom associated with the input to ELS3PV, since u is
an argument as well as the sextuple {. It was obviously impracticable to carry out
exhaustive tests over a seven-dimensional space, so most of the testing concentrated on
the in-plane algorithms, using fixed values of i, Q and w. In these tests, the quantities p,
a, g and 7 had to be covered, but it was not necessary to vary them all independently, if
the assumption was made that orbits of the same shape produce, at corresponding
points, relative errors of the same order of magnitude. Thus, orbits having the same
value of ag/u may be regarded as equivalent in shape, this being the value of 1 —e,
whilst points with the same value of a3 1?/u? may be regarded as in correspondence, this
being the value of M? for elliptic orbits. On this basis, it was legitimate, for
non-rectilinear orbits, to test with fixed values of x and g, taken (arbitrarily) as 64 and
1 respectively; these tests, with two degrees of freedom (« and t), then had to be
supplemented by one-degree tests (on a only) for rectilinear orbits, with g now set to
zero and 7 given a fixed value. A wide range of values for « and t was covered: o varied
from an extreme negative value of —10%° to its maximum permissible value of 64 (for
the given p and g), with test values clustered in particular around zero (parabolic orbit)
and close to 64 (circular orbit); test values for t also clustered about zero (perifocus),
with a maximum value of 10%°,

The essentially in-plane tests, just described, were carried out with the fixed value of
in for i. Tests for a wide range of i were obviously important, however, in particular
with values clustered close to the limiting values of 0 and r; these tests were carried out
with « varied over its full range, but 7 (as well as the other quantities) held fixed. Finally,
it seemed enough to carry out a limited (non-systematic) set of tests with the values of
Q and w varied.
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As already indicated, all the tests met the goal set for position error, as measured by
| Ar|/r. The goal was also met for velocity error, as measured by |AF|/V, in most of the
tests, but it was not met in a number of cases involving proximity to the apofocus of
near-rectilinear ellipses. Since V is very small in such circumstances, the requirement
becomes severe, but failure to achieve it can be ascribed to a specific technical point:
when E is close to m, it is impossible to restrict the relative error in sin E; but Vy is
proportional to sin E, so when f is dominated by V; (because V; = 0) the loss of
(relative) accuracy in F is inevitable; another way of putting this point is that V/ér is
large in comparison with V/z, so the relative error in computing 7 (within PV2ELS) gets
magnified in the subsequent return to velocity. If we measure relative error by |Ak|/W,

however, where W is max(V, \/&), not just V, then the goal of 2 x 10712 is met in all
cases. A similar problem might have been expected with position error when r is very
small; but for values of E close to zero, the relative error in sin E is kept low, whilst
values of E close to 2m, 47, etc, cannot arise with the composite function f(f ~1(x)), since
f 1 selects for minimum 7, as explained in Section 4.

6. On the Singularities

Not counting the rectilinear-orbit singularity (defined by g = 0, but of little practical
interest), there are three singularities that have long been recognized as possible sources
of difficulty in computational analysis based on the usual elliptic elements: the
singularity at e = 0; and the pair of singularities at i = 0 and i = =. Itis easy to transform
the elements so as to eliminate any one of these singularities, and it is not hard to find
a transformation that simultaneously eliminates the eccentricity singularity and one of
the inclination singularities — this is achieved with the ‘equinoctial elements’ of Broucke
and Cefola (1972), for example. The elimination of all three singularities together is
much more difficult, however, though it was achieved by Cohen and Hubbard (1962)
with the element set defined by

go =p'* cos}icos3(Q+w+0), g, =p'* sindi cos3Q—w — o),
g, =p'* sindisind(Q—w—0), g5 =p'* cos}isin}(Q+ w + ),

e, =ecoso and e, = —esing,

where ¢ is the mean anomaly at epoch.

The trouble with the partial or total elimination of singularity, in element sets such
as the ones just referred to, is that it only applies to elliptic orbits and is incompatible
with universal applicability. By the same token, there is no simple transformation of
the universal elements recommended here that eliminates singularity whilst retaining
universality. We have already seen, on the other hand, that singularity is of little
consequence so far as conversion procedures are concerned. But up to now we have
only been concerned with fixed values of the relevant elements; when variations in these
elements are considered, we cannot dismiss the singularity question so lightly.
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Suppose we have a large computer program involving differential changes in the
values of a set of orbital elements subject to singularity; these changes may arise, in
particular, from the evaluation of perturbation formulae, or from the use of
observations in orbit determination. If the program is used with an element set in the
vicinity of a singularity, it is likely that unacceptable error will result, and the first time
this occurs it may seem that we have to rewrite the program in terms of a different
(singularity free) element set. This could be a daunting prospect, and an especially
unattractive one if it could be foreseen that the efficiency of the new progam would be
significantly reduced by the complexity of the new elements. However, such a radical
rewrite is almost certainly unnecessary, as it should be possible to maintain the original
elements with only a short-term switch to non-singular equivalents.

To illustrate the principle, consider just the singularity associated with e =0. For
simplicity, we suppose that the computer program has been written in terms of the
usual elliptic elements, rather than our universally applicable set, but this is a point of
minor consideration. Unless e is exactly zero, we have been able to compute changes in
all the elements, including superficially meaningless values of dw and éM. Applying
these changes directly could lead to serious error in e, w and M, attributable to
truncation effects in the underlying Taylor expansions, but such error could be avoided
by just a temporary switch from the elements e, ® and M to &, n and U, where

(&,n,U)=(e cosw, e sinw, M + w);

the switch is implemented on the basis that ¢/, w’ and M’, the new elements we require,
are recoverable from

e cosw =& =&+ 0E=(e+ de)cos w — (e dw)sin w,

e’ sinw =n" =n+06n=(e+ de) sinw + (e dw) cos w
and
M+ =U=U+06U=M+ M)+ (v + dw).

Truncation error can be entirely avoided by this artifice, with no difficulty even at the
singularity itself if e dw is available as a composite entity. There remains the lesser
problem of rounding error, in particular in the computation of partial derivatives for
use in orbit determination (Gooding and Tayler, 1968). Thus the quantity e ~*(36/0w —
00/0M), where 0 is an arbitrary observed quantity, will be required in place of 60/dw,
to reflect the introduction of U and the use of the composite e dw, but it should be
possible to derive this combination derivative, to full accuracy, by minimal modifica-
tion of the hypothetical computer program. In regard to the application of perturba-
tion formulae, the procedure for singularity avoidance has been indicated before, by
Gooding (1983).
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7. Conclusion

The only truly ‘universal’ elements are perhaps the epochal components of position and
velocity, and papers such as Shepperd’s (1985)* give elegant algorithms for the
propagation (or transition) of these from one instant of time to another. Only one
element of the traditional type figures in such algorithms, namely, the energy-
equivalent inverse of the semi-major axis. However, total universality is not available,
even with an approach as general as this, since the generalized anomaly variable has to
be range-restricted when an elliptic orbit is identified and more than a single revolution
within this ellipse is involved. Though textbooks increasingly reflect the attractions of
the very general approach, they also continue to recognize the utility of traditional
element sets, and in particular of sets for which five of the six elements are independent
of orbital position. It has been the main objective of the present paper to establish that
the most familiar of all element sets is, with only slight modification, of universal
application, so long as the necessary conversion procedures (to and from position and
velocity) are carefully programmed. In particular, optimum numerical accuracy can
only be maintained if the procedures respect the necessity for different types of formulae
to be employed internally, according to the type of orbit.

The universality objective (for an element set) is not compatible with freedom from
singularity, but in the majority of applications singularity is either of little consequence
or can be dealt with easily. Hence the existence of singularities for a universally
applicable element set should not be regarded as a major defect.

The four Fortran-77 subroutines that implement the conversion procedures
described in the paper are listed in Appendices A to D. They could be used, for example,
in the derivation of smoothly varying elements for a comet that changes its orbital type
under the influence of Jupiter and Saturn. At the Royal Aerospace Establishment,
however, the main application to date has been in the solution of Lambert’s problem,;
the RAE solution (Gooding, 1988) yields accurate velocities at the two points specified
in the problem, and the conversion procedures permit these to be related to each other
via universal elements.

* Two points in this generally excellent paper illustrate the weaknesses of computing procedures that are
almost totally blind to orbital type. First, Shepperd recommends the use of a certain universal variable, u, in
terms of which an ‘intermediate parameter’ g, where g = au?/(1 + au?), is the argument of a particular
continued-fraction expansion, Gs(q). For elliptic orbits, g is actually sin? AE, where AE = E — E, so that
dmax = 0.5, as Shepperd remarks. But for this value of g, 18 iterations of the recursive evaluation of G5(g) are
needed to give 14-decimal-digit accuracy, whereas the same accuracy can be obtained with much greater
efficiency if the G function is evaluated, in a specifically elliptic formulation, as 15(6AE — 8 sin AE +
sin 2AE)/96 sin® 2AE. The other point is more serious, in that Shepperd suggests that use of u as argument of
a universal Kepler equation automatically eliminates the slow-convergence problem noted, in particular, by
Odell and Gooding (1986). This is a misconception, however; with Newton—Raphson iteration, the problem
can only be universally eliminated by careful choice of a starting formula.
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Appendix A
SUBROUTINE ELS2PV

SUBROUTINE ELS2PV (GM, AL, Q, OM, TAU, R, U, VR, VT)

c ALGORITHM FOR TWO-DIMENSIONAL CONVERSION
c FROM ORBITAL ELEMENTS TO POSITION AND VELOCITY.
c INPUT ARGUMENTS ARE: GM (G*M), AL(PHA) (GM/A),
c Q (PERI DISTANCE), OM(EGA) (ARG-PERI RELATIVE TO
c ASSUMED REFERENCE DIRECTION) AND TAU (TIME FROM PERI).
o OUTPUT ARGUMENTS ARE: R (RADIAL DISTANCE),
c U (ANGLE FROM REFERENCE DIRECTION), VR (RADIAL VELOCIY)
e AND VT (TRANSVERSE VELOCITY: .GE.O).
IMPLICIT DOUBLE PRECISION (A-H,0-2)
PARAMETER (PI = 3.14159265358979323846264338328D0,
1 FOURPI = 4D0*PI)
IF (AL.EQ.0DO) THEN
c (PARABOLA - GM CANNOT BE ZERO)
D = DCBSOL(0.5D0/GM, Q, 1.5D0*GM*TAU)
R = Q + 0.5DO*D*D/GM
H = DSQRT (2D0*GM*Q)
V = 2DO*DATAN2 (D, H)
ELSE
c ELLIPSE OR HYPERBOLA)

(

El = AL*Q
E = GM - El1
EPl = GM + E
H = DSQRT(Q*EP1)
ALP = DABS (AL)
RTAL = DSQRT (ALP)

c (LAST 6 ITEMS COULD BE SAVED IF REPEATING GM, AL & Q)
EM = TAU*ALP*RTAL
IF (AL.GT.0DO) THEN

o (ELLIPSE - GM CANNOT BE ZERO)
EE2 = 0.5DO*EKEPL(EM/GM, E1/GM)
S2 = DSIN(EE2)

C2 = DCOS(EE2)

R = Q + 2DO*E*S2*S2/AL

D = 2DO*E*S2*C2/RTAL

V = 2DO*DATAN2 (EP1*S2, H*RTAL*C2)

= EM/GM - V

V = V + FOURPI*DSIGN (DINT (DABS (EMV/FOURPI) + 0.5D0), EMV)

3

t
b
tx

c (HYPERBOLA)
S = SHKEPL(EM/E, -E1/E)
S2 = S*S
C = DSQRT(1D0 + S2)
S2 = S2/(C + 1DO)
R = Q - E¥S2/AL
D = E*S/RTAL
DATAN2 (S¥H*RTAL, -GM*S2 - E1)
F

<
=

END

END IF

c (ALL ORBITS)
U=0M+ V
VR = D/R
VT = H/R
RETURN
END
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Appendix B
SUBROUTINE ELS3PV

SUBROUTINE ELS3PV (GM, AL, Q, EI, BOM, OM, TAU,

1 X, Y, Z, XDOT, YDOT, ZDOT)
ALGORITHM FOR THREE-DIMENSIONAL CONVERSION
FROM ORBITAIL ELEMENTS TO POSITION AND VELOCITY.

IMPLICIT DOUBLE PRECISION (A-H,0-2)

CALL ELSZPV (GM, AL, Q, OM, TAU, R, U, VR, VT)

C = DCOS (U)

S = DSIN(U)

X1 = R*C

Y1 = R*S

X2 = VR*C = VT*S
Y2 = VR*S + VT*C
C = DCOS(EI)

S = DSIN(EI)

Z = Y1*S

Y1 = Y1*C

ZDOT = Y2+*S

Y2 = Y2*C

C = DCOS (BOM)

S = DSIN (BOM)

X = X1*C - Y1%*S

Y = X1*S + Y1*C

XDOT = X2*C - Y2*S
YDOT = X2*S + Y2*C
RETURN

END

Appendix C
SUBROUTINE PV2ELS

SUBROUTINE PV2ELS (GM, R, U, VR, VT, AL, Q, OM, TAU)
ALGORITHM FOR TWO-DIMENSIONAL CONVERSION
FROM POSITION AND VELOCITY TO ORBITAL ELEMENTS.
INPUT ARGUMENTS ARE: GM (G*M), R (RADIAL DISTANCE),
U (ANGLE FROM ASSUMED REFERENCE DIRECTION),
VR (RADIAL VELOCITY) AND VT (TRANSVERSE VELOCITY: .GE.O).
OUTPUT ARGUMENTS ARE: AL(PHA) (GM/A), Q (PERI DISTANCE),
OM(EGA) (ARG-PERI RELATIVE TO REFERENCE DIRECTION)
AND TAU (TIME FROM PERI).

IMPLICIT DOUBLE PRECISION (A-H,0-Z)

LOGICAL L

PARAMETER (PI = 3.14159265358979323846264338328D0,

1 TWOPI = 2DO*PI, SW = 0.25D0, L = .FALSE.)

(ALL ORBITS) .

VSQ = VR*VR + VT*VT

AL = 2DO*GM/R - VSQ

ALP = DABS (AL)

RTAL = DSQRT (ALP)

D = R*VR
H = R*VT
P = H*H

ESQ1 = P*AL
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ES = D*RTAL

ESES = ES*ES

EC = R*VSQ - GM
ECEC = EC*EC

IF (AL.GT.O0DO) THEN

C (ONE ESQ FORMULA SUPERIOR FOR THE ELLIPSE)
ESQ = ECEC + ESES
ELSE
C (DIFFERENT FORMULA SUPERIOR FOR THE HYPERBOLA)
ESQ = GM*GM - ESQ1
END IF

E = DSQRT (ESQ)
Q = P/(GM + E)
IF (AL.EQ.0DO) THEN
c (PARABOLA)
TAU = D#(2D0*Q + R)/(3DO*GM)
V = 2DO*DATAN2 (VR, VT)
ELSE IF (E.EQ.O0DO) THEN

c (CIRCLE)
TAU = 0DO
V = 0DO
ELSE
c (ELLIPSE OR HYPERBOLA)
El = AL*Q
IF (AL.GT.0DO) THEN
c (ELLIPSE)

EH = DATAN2(ES, EC)
IF (GM*EH*EH/6D0 + E1 .GE. GM*SW) THEN
c (GENERAL CASE)
EM = GM*EH - ES
ECESQ = GM*EC - ESQ
ELSE
c (FOR E1 & EH BOTH NEAR ZERO)
EM = GM*EMKEP(E1/GM, EH)
ECESQ = (ESQLl*ECEC - ESQ*ESES)/(ESQ + GM*EC)
END IF
ELSE
c (HYPERBOLA)
EH = DASINH(ES/E)
IF (GM*EH*EH/6D0 - E1 .GE. GM*SW) THEN
c (GENERAL CASE)
EM = ES - GM*EH
ECESQ = ESQ - GM*EC

ELSE
c (FOR E1 & EH BOTH NEAR ZERO)
EM = E*SHMKEP(-E1/E, ES/E)
ECESQ = -(ESQ1*ECEC + ESQ*ESES)/(ESQ + GM*EC)
END IF
END IF
c (ELLIPSE OR HYPERBOLA STILL)

EN = ALP*RTAL
TAU = EM/EN
V = DATAN2 (ES*H*RTAL, ECESQ)

END IF
C (ALL ORBITS)
OM =U -V
IF (L .AND. AL.GT.O0DO) THEN
C (FOR ELLIPSE, ADJUST REVOLUTIONS IF REQUIRED (USING L))

ADJ = TWOPI*DSIGN (DINT (DABS (OM/TWOPI) + 0.5D0), OM)
OM = OM - ADJ
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TAU = TAU + ADJ/EN
END IF

RETURN

END

Appendix D
SUBROUTINE PV3ELS

SUBROUTINE PV3ELS (GM, X, Y, Z, XDOT, YDOT, ZDOT,
1 AL, Q, EI, BOM, OM, TAU)
ALGCRITHM FOR THREE-DIMENSIONAL CONVERSION
FROM POSITION AND VELOCITY TO ORBITAL ELEMENTS.
IMPLICIT DOUBLE PRECISION (A-H,0-Z)
PARAMETER (PI=3.14159265358979323846264338328D0, HALFPI=PI/2DO0)
XSQYSQ = X*X + Y*Y
RSQ = XSQYSQ + Z*Z
R = DSQRT (RSQ)

VR = (X*XDOT + Y*YDOT + Z*ZDOT)/R
HX = Y*ZDOT - Z*YDOT
HY = 2#*XDOT - X*ZDOT
HZ = X*YDOT - Y*XDOT

HSQ = HX*HX + HY*HY + HZ*HZ
IF (HSQ.EQ.ODO) THEN
(RECTILINEAR ORBIT)
EI = HALFPI
IF (XSQYSQ.EQ.O0DO) THEN
(AXIAL ORBIT)
BOM = 0DO
ELSE
(GENERAL RECTILINEAR ORBIT)
BOM = DATAN2(Y, X)
END IF
U = DATAN2(Z, DSQRT(XSQYSQ))
VT = 0DO
ELSE
(NON-DEGENERATE ORBIT)

BX = HY*Z - HZ*Y

BY = HZ#*X - HX*2Z

BZ = HX*Y - HY#*X

HX = Y*BZ - Z*BY

HY = Z*BX -~ X*BZ

HZ = X*BY - Y*BX

W = HX*HX + HY*HY

H = DSQRT (W + HZ*HZ)

EI = DATAN2(DSQRT (W), HZ)
IF (W.EQ.O0DO) THEN
(ORBIT IN REFERENCE PLANE)

BOM = 0DO
U = DATAN2 (Y*DSIGN(1DO,HZ), X)
ELSE

(GENERAL ORBIT)
BOM = DATAN2 (HX, -HY)
U = DATAN2 (H*Z, RSQ*BZ)
END IF
VT = H/(R*RSQ)
END IF
CALL PV2ELS (GM, R, U, VR, VT, AL, Q, OM, TAU)
RETURN
END
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