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ABSTRACT 
Some of the results of a rigorous analysis of the Chandrasekhar semiclassical theory of stellar collapse are 

presented here. They are of two kinds. The first concerns the Chandrasekhar equation itself; we prove the 
uniqueness of the solution and also prove that the solution has certain properties not noted before. The 
second is a derivation of the Chandrasekhar equation from quantum mechanics (in the limit of small gravita- 
tional constant) without making a priori assumptions about the smallness of correlation effects. A parallel 
derivation is made for stars composed of bosons (such as axion stars, if they are ever found to exist); the 
resulting equation is quite different from the Chandrasekhar equation, for it is of the Hartree type and 
involves density gradients. 
Subject headings: stars: collapsed — stars: interiors 

I. INTRODUCTION 
It is a well-known fact that stellar collapse is a complicated 

phenomenon involving many different factors, e.g., nuclear 
interaction, thermal radiation, general relativity, etc. However, 
a fundamental observation that led Chandrasekhar (1931a, b, 
c, 1984) to obtain his famous mass formula for white dwarfs is 
the consideration of the equilibrium between the pressure of a 
degenerate Fermi gas and classical gravitational attraction. In 
this elementary model, the equilibrium of a nonrotating star is 
governed by the equation (where p is the density and P is the 
pressure) 

— r2P(r) = GM(r)p(r), (1) 

and where M(r) is the mass within radius r. The pressure P(r) is 
determined by assuming a local equation of state P(p) which is 
that of a degenerate Fermi gas. Equation (1), which is what 
concerns us in this paper, has no general relativistic effects in it, 
i.e., the Tolman-Oppenheimer-Volkoff equation is not being 
considered. 

It is a remarkable fact that this simple equation predicts 
collapse and gives the mass limit, Mc æ 0.7745m~2G-3/2, 
which is at least approximately correct. Although equation (1) 
was formulated more than half a century ago, and the equation 
has been analyzed numerically in many cases, especially the 
polytropic case leading to the Lane-Emden equation, there are 
several questions which we regard as basic problems concern- 
ing equation (1) and which remain to be answered. For 
example : 

1. Given a mass M with 0 < M < Mc, is there a solution to 
equation (1) with the total mass M(oo) = 47rJo rzp(r)dr = M? 
If a solution does exist, how many solutions are there? 

2. Does every solution to equation (1) describe a stable equi- 
librium state? More generally, is it an absolute ground state or 
merely a local minimum (this can be viewed as a question of 
“global” stability)? In particular, is it true that the spherically 
symmetric solution (implicit in eq. [1]) has the lowest energy 
and is therefore the most stable configuration? 

3. Is the radius always finite and, if so, what is its dependence 

1 Work partially supported by US National Science Foundation grant 
PHY 85-15288-AOl. 

2 Work supported by Alfred Sloan Foundation Dissertation Fellowship. 

and that of the central density on the stellar mass M ? In partic- 
ular, is the radius (central density) a decreasing (increasing) 
function of the mass? Although there exists a simple mass- 
radius-central density relation for “polytropic stars” obtained 
by scaling, it is not obvious that monotonicity holds in the 
physically interesting, nonpolytropic case of the Fermi gas 
pressure. It turns out that the radius is finite in the fermion case 
but not in the boson case. 

4. What is the role played by quantum mechanics? More 
precisely, is it possible to derive equation (1) from a 
“relativistic” Schrôdinger equation? Of course, one expects 
this quantum-classical correspondence to be exact only in the 
limit Af -► oo, G -► 0, but this limit is certainly reasonable 
physically since N « 1057 and m2G « 10-38. Historically, it 
has been realized since the beginning of quantum mechanics 
that quantum effects are essential for the stability of stars, e.g., 
“ The black-dwarf material is best likened to a single gigantic 
molecule in its lowest quantum state” (Fowler 1926). Up to 
now, however, quantum mechanics entered only through the 
use of a local equation of state, P(p). A first attempt to incorpo- 
rate the “ relativisitie ” Schrôdinger equation into the study of 
the stellar collapse problem was made by Lieb and Thirring 
(1984). The Chandrasekhar value of the critical mass (with the 
correct exponent, G_3/2) was proved in Lieb-Thirring (1984), 
but only up to a factor of 4. Note that a proof of the exact 
Chandrasekhar value for Mc is only one aspect of the 
“derivation” of equation (1); one also wants to show that 
equation (1) gives the correct stellar density p(r) when M < Mc. 
We are aware of the fact that the Schrôdinger Hamiltonian we 
consider here (see eq. [9] below) does not define a Lorentz 
invariant theory, not to speak of a complete relativistic theory. 
This would require a formulation of quantum gravity, which is 
beyond present theoretical technology. 

5. What is the semiclassical equation for bosons? In particu- 
lar, what is the critical mass for “boson stars” (such as axion 
stars, if they exist)? Since the Pauli exclusion principle does not 
hold for bosons, the critical mass for bosons is expected to be 
smaller. It was realized by Thirring (1983) that the correct 
value for the critical mass should be of order mG-1 (instead of 
the mG_3/2 appropriate to fermions), thus leading to collapse 
of objects only the size of a mountain. Other considerations 
however, may lead to different values (e.g., Stecker and Shafi 
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1983). In Ruffini and Bonnazola (1969) and in Lieb and Thir- 
ring (1984) it was conjectured that, for bosons, equation (1) 
should be replaced by a Hartree-type equation. In a sense this 
would mean there is no semiclassical approximation for 
bosons (although we shall continue to employ that word) 
because the Hartree energy involves density gradients dp ¡dr, 
and not just an equation of state. In Lieb-Thirring (1984) the 
Hartree value of the collapse constant was proved to be correct 
up to a factor of 2. 

We shall answer the above and related questions rigorously 
in this paper. Note that equation (1) is a nonlinear differential 
equation [after using the equation of state P = P(p)], and a 
direct attack would involve some complicated mathematical 
machinery (e.g., Ni 1983). Our strategy is to focus instead on a 
variational problem which has equation (1) as its Euler- 
Langrange equation, as done by Auchmuty and Beals (1971a, 
b). Then via a novel interplay between the variational principle 
and the differential equation we are able to answer questions 
1-3. This is explained in § II. 

As for questions 4 and 5, the reader might wonder why there 
is any difficulty in deriving the semiclassical equation (1) from 
quantum mechanics since N is obviously very large («1057). 
The difficulty is an ultraviolet (i.e., short distance) one as we 
shall now explain. Consider one particle with kinetic energy 
T(p) = (p2 + m2)1/2 — m in a gravitational potential 
V(x) = —g/\x\, where gr > 0 is a constant. (We shall hence- 
forth use units in which c = h = 1.) It is a fact that the Hamil- 
tonian H = T(p) + V(x) is a quantum mechanically 
unbounded below (i.e., the ground-state energy is — oo) if 
g > l/n (Kato 1966, see remark 5.12, p. 307; Herbst, 1977). For 
a star, g « Gm2 1, but suppose that, by some fluctuation, 
n = 3/tt (Gm2) -1 particles come together in a very small region. 
Since N » (Gm2) - 3/2, n is a very small fraction of IV, and such a 
fluctuation is not a priori impossible. Then these n particles will 
form a trap for other particles, and eventually the whole system 
will collapse when N is of the order of (Gm2)-1 instead of 
(Gm2)-3/2. [This phenomenon does, in fact occur for bosons, 
and hence iVc = (constXGm2)-1 is correct for bosons.] 
Although it is intuitively clear that this scenario, in the simple 
form given above, cannot occur for fermions because of the 
Pauli principle, it is far from clear that short distance fluctua- 
tions do not produce some significant corrections to the semi- 
classical formula. In fact, they do not do so, but the control of 
the ultraviolet fluctuations is what complicates the proof of the 
correspondence. Our results show that there is excellent agree- 
ment between the two theories when N « 1057, e.g., the dis- 
crepancy in the ratio of the quantum to the semiclassical criti- 
cal mass is less than 10-4. 

All the results stated in this paper are rigorously established 
in a paper of ours (Lieb and Yau 1987). We refer interested 
readers to that paper for more details and rigorous proofs. 

II. THE SEMICLASSICAL THEORY FOR FERMIONS 
We review briefly how to relate equation (1) to a variational 

problem (see, e.g., Auchmuty and Beals 1971; Weinberg 1972; 
Harrison et al 1965). 

Let p(x) be the electron number density and 

M(r)= j d3xp(x) (2) 
J|*l<r 

be the (dimensionless) electron number inside the ball of radius 
r. Let K = G(Me + Yemn)2. Here Ye is the nucleon number per 
electron, Ye&2 for white dwarfs. Let the degenerate electron 

pressure be given by 

«Tr f'CFÍr) 
P(r) = T-—j k*(k2 + m2) 1/2dk . 

3(2tü) Jo 

Here kF(r) = [37r2p(r)]1/3 is the Fermi momentum. Then the 
semiclassical equation for gravitational-hydrostatic equi- 
librium can be written as 

— r2P(r) = KM(r)p(r) . (3) 

Note that all mass dimensions have been absorbed into k. 
Let a(p) = (37t2p)113 and 

1 [*a(p) 
ÄP) = — P2t(P2 + me)1/2 - Weid? 

n Jo 

= (87c2)-1{a(2a2 + m2)(a2 + m2)1/2 

— m4 In [a -b (a2 + m2)1/2]} — pme. (4) 

Then j(p(x)) is the semiclassical kinetic energy density for 
degenerate fermions of number density p. Let 

<^(p) = Jd3x j(p(x)) - ^ jjd3xd3yp(x)p(y)| x - 1 

(5) 
be the semiclassical energy functional (with C standing for 
Chandrasekhar) and let E^(N) be the lowest energy of <^(p) 
under the restriction that the total number is N, 
i.e., J d3xp(x) = N. By making the variation p^> p + ôp 
with J <5p = 0, the Euler-Lagrange equation can be formally 
calculated to be 

j'(p(x)) = {[3rc2p(x)]2/3 + m2}1/2 - me 

= K j*á3yp(x)|x - y!'1 - p if p(x) > 0 

>k j'áVpMlx - y]“1 - p if p(x) = 0 . (6) 

Here p is a Lagrange multiplier. If p is assumed to be radial, 
then by the usual property of the r -1 potential ( | x | = r) 

d3yp(y)Ix — y 1 = r~1M(r) + ^ SP(S) • (7) 

Hence equation (3) follows from equation (6) by differentiating 
equation (6) with respect to r. 

The semiclassical ground-state energy E^(N) is not always 
finite. It can be shown by numerically solving the Lane-Emden 
equation of type 4/3 that the critical number Nf(K) for the 
stability of E^(N) is independent of me and can be calculated to 
be 

Nj{k) = 3.098k;-3/2 . (8) 

If both sides of equation (8) are multiplied by (me -h Ye m„), it is 
clear that the above formula is just the Chandrasekhar mass 
formula. 

We now state our answers to questions 1-3. We also include 
some properties of the semiclassical energy E^(N), both 
because of its intrinsic importance and because of its relevance 
to the study of questions 1-3. Since equation (5) and equation 
(6) are translation invariant, any translation of a given solution 
is still a solution. We shall adopt the convention that all results 
stated in the following should be understood up to translation, 
whenever necessary. 
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1. Given a total particle number N less than the critical 
number Nf(K), there is exactly one solution to equation (3) with 
total number N. For N > Nf(K\ there is no solution to equa- 
tion (3) with a total number N. Furthermore, as N varies from 
0 to Nf(K% we obtain all solutions to equation (3), This means, 
in particular, that there are no spurious solutions to equation 
(3). 

2. The solutions of equation (3) can also be uniquely para- 
metrized by their central densities, i.e., given any central 
density a (with 0 < a < oo) there is exactly one solution pa, to 
equation (3) with central density pa(0) = a. 

3. For each N < Nf(K), there is exactly one ground-state pN 
(i.e., a minimizer for eq. [5]) for E^(N). It satisfies the Euler- 
Langrange equation (6) for some unique Lagrange multiplier 
liN, and pN depends only on the radius r = \x |. This shows, in 
particular, that the spherical symmetry assumption can be 
derived by requiring the solution to be a ground state. For 
radial functions, equation (6) is equivalent to equation (3), 
which implies that equation (6) has no spurious radial solu- 
tions. 

Combining 1, 2, and 3, we have shown that for a star of a 
given particle number less than the critical number, there is one 
and only one stable ground state and this state can be obtained 
by solving equation (3). Conversely, every solution to equation (3) 
describes the ground state of a star with particle number 
N = Sf>. 

We emphasize that a “ stable ” state is one that is stable under 
all perturbations (large or small, radial or not). The stability 
result we present here is stronger than the usual result where 
only small radial perturbations are considered (see Shapiro 
and Teukolsky 1983 for a review and references). 

4. E^(N) is a strictly concave [i.e., d2E^(N)/dN2 < 0], monot- 
one decreasing differentiable function in [0, A//(/c)] with 
Ek(0) = 0 and = —meNf(K) (see Fig. 1). Let pN be 
the unique Lagrange multiplier associated with pN. Then 
dE^(N)/dN = —pN can be identified as the chemical potential. 

Vol. 323 

5. pN(r) is a strictly decreasing function of r and vanishes at 
some finite radius RN. Thus, for every solution to equation (3) 
there are associated four quantities : the radius R, the chemical 
potential p, the central density a, and the total number N. By 
considering R, p, and a as functions of N : 

(i) RN is a strictly decreasing function of N ; RN tends to zero 
as N goes to Nf(K) and to infinity as N goes to zero. 

(ii) pN and ocN are strictly increasing functions of N. Both tend 
to infinity as N goes to Nf(K) and to zero as N goes to 
zero. 

6. For any two stars of different particle numbers, there is 
exactly one value of r where they have the same density, i.e., 
Pi(r) = P2(r) (see Fig. 2). 

7. For two stars of different particle numbers N1 > N2, 
M1(r)> M2(r) for all r. Here M(r) is the number of particles 
inside the sphere of radius r (for stars 1 and 2, respectively), 
defined in equation (2). 

We believe that statements (6) and (7) have not been given 
before — even heuristically. 

III. THE LARGE N LIMIT OF QUANTUM MECHANICS 
Our starting point for a quantum mechanical treatment of 

the stellar collapse problem is a “relativistic” Schrôdinger 
Hamiltonian of N gravitating particles of mass m and coupling 
constant k (in units h = c = 1) 

Hks = E T; - k L I Xi - X; r V T¡ = (pf + m2)1'2 - m . 
¡=i i<j (9) 

Here p2 = —V2, and the kinetic energy operator 
T(p) = (p2 + m2)1/2 — m is most simply understood in terms 
of the Fourier transform. For white dwarfs, m = me and k = 
G(me+Yemn)2. 

To treat white dwafs properly, one should introduce a Ham- 
iltonian for two kinds of particles, electrons and nuclei, and 
include Coulomb interactions in addition to the gravitational 

LIEB AND YAU 

Fig. 1 — The energy of a star as a function of particle number (or mass) for fermions and bosons. Some noteworthy features are (1) the energy is a concave function 
of N ; (2) the energy is finite at the critical particle number (Nf or Nb\ but it has an infinite slope there. The figure is schematic. 
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Fig. 2. — Schematics graph of the particle density as a function of radius for two different fermion particle numbers AT x > iV2. Any two such graphs have the 
property that they intersect at exactly one point. 

interaction. That is a much more difficult and unsolved 
problem. By considering HkN we are making the usual simplify- 
ing assumption of local charge neutrality without electrostatic 
correlation effects and are assuming that the nuclei and elec- 
trons are sufficiently correlated that the total gravitational 
energy is proportional to the electron gravitational energy. 
HkN is much better as a model for neutron stars (assuming that 
only neutrons are present in such stars and that nuclear forces 
can be neglected), but it suffers from the defect that general 
relativistic effects are ignored. For neutron stars, m = mn and 
K = Gm% (mn = neutron mass). 

Let E^(N) be the quantum ground-state energy of HkN for 
bosons or fermions as the case may be, and Nf(K) [resp. N?Ml 
be the critical particle number for the stability of HkN in the 
fermion [resp. boson] case, i.e., E%(N) = — oo if and only if 
N > Nq(k). Our results include the following: 

1. (fermions): 
\imN%K)/Nf(K) = 1, 
K~*0 

i.e., the Chandrasekhar mass formula is recovered asymp- 
totically. In the physically interesting case (white dwarfs), since 
k is small (~10-38), the difference \ Nf(k) — N$(k)\ can be 
proved to be less than 0.01% of Nf(K). 

We also prove that the fractional difference between the 
quantum ground-state energy and the semiclassical energy is 
less than 10" 2 if the total particle number N is not too close to 
the critical value, say N < 0.99Nf(K). 

2. (fermions): Let \¡/N be an approximate ground state of HkN 
(roughly speaking, an approximate ground state is a state 
whose energy (i//n\HkN\iI/n') is close to the ground-state 
energy). Then the associated quantum-mechaanical one- 
particle density function p% of ij/N coverages (in an appropriate 
sense) to a solution of equation (6) as k -► 0. 

We remark that the use of “ approximate ground state ” is 
physically appropriate and more general than the absolute 
ground state because when the particle number is huge, it is 
physical sensible to consider only wave functions ij/ which are 
“ near ” the ground state. 

For a more detailed and precise statement about the con- 
vergence of the density function, p%, see Lieb and Yau (1987). 

3. (bosons): The Hartree approximation of HkN can be 
obtained by considering the variational function 

lAUi, • ■ ■, *n)=n~ni2 n p(Xj)112, 
7=1 

with J d3xp(x) = N. The reesulting Hartree functional is 

^ip) = <P112\{LP2 + m2)112 - m] I p1/2> - ^ JJ 

x d3xd3y p(x)p(y) | x - y |~1 . 

The corresponding Euler-Lagrange equation, which replaces 
equations (3) and (6), is the following Hartree-like equation: 

l(p2 + m2)1/2 - m - kI/(x)]0(x) = -pÿix), (10) 

with 0(x) = p(x)1/2 > 0, p2 = -V2, and p > 0 is the chemical 
potential. The “ potential ” U is 

U(x) = |d3y|x - yrVOO • O1) 

The corresponding ground-state energy and critical number 
are denoted by E^(N) and Nb(K). As in the fermion case, we 
have proved that the quantum value for the ground-state 
energy and the critical number for stability agree asymp- 
totically with the Hartree values. The actual fractional errors 
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for the same k as before (10-38) are less than lO-3 and 10-4 

respectively. Indeed, the errors in the boson case are much 
smaller than those for fermions. We did not calculate the exact 
Hartree critical value Nb(K), but it can be shown that 
1.27/c-1 < Nb(K) < Uk-1. As in the fermion case, a minimizer 
pN, for any given AT, is necessarily spherically symmetric and 
radially decreasing. 

It is difficult to interpret equation (10) simply as an equation 

for gravitational-hydrostatic equilibrium. Nevertheless, it is 
correct. Equation (10) is a kind of nonlinear Schrôdinger equa- 
tion, and, like any Schrôdinger equation, its solution will not 
vanish at some finite R. A bosonic star will have a tail extend- 
ing to infinity. 

We are grateful to C. King, M. Loss, J. Peebles, and W. 
Thirring for helpful conversations. 
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