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ABSTRACT 
We examine the role that velocity or pressure fluctuations in the interstellar medium can play in initiating 

compression of sub-Jeans mass diffuse clouds, paying special attention to the cooling properties of the 
medium. A/onequilibrium energy arguments are used to determine the fluctuation amplitudes that are required 
to initiate gravitational collapse of low-mass cloud clumps. Clouds that cool under compression—i.e., that 
have effective adiabatic exponents 0 < F < 1—can be induced to collapse by pressure fluctuations ôPe/Pe > 
F/(l — F) or by implosion velocities of Mach number JP0 > [10/(3 — 3F)]1/2. This result is independent of 
cloud mass and is markedly different from the behavior found for isothermal gases. Since the interstellar 
medium has an effective F ~ f at densities 10 cm-3 < n < 105 cm-3, we deduce that comparatively mild pres- 
sure fluctuations (ôPJPe ~ 3) and velocity disturbances (\v \ ~ 2 km s_1) can effectively compress H i gas to 
molecular cloud densities over a wide range of cloud masses (1 M0 ;$ M < 103 M0). We conclude, therefore, 
that the cooling properties of the ISM play a crucial role in the star formation process. 
Subject headings: hydrodynamics — interstellar : molecules — stars: formation 

I. INTRODUCTION 

A primary hindrance to our understanding of the process of 
star formation in the interstellar medium is our lack of under- 
standing of how molecular clouds form. Cool H i clouds 
having densities n ~ 40 cm-3 and temperatures T ~ 100 K 
can exist in pressure equilibrium with a warmer, diffuse 
medium, but molecular clouds (nH2 > 104 cm-3, T ~ 10-30 K) 
have internal pressures that are typically much larger than the 
pressure in H i clouds so they cannot be understood as a dense 
component of a multiphased, pressure-balanced medium. 

Gravity almost certainly plays a role in defining the internal 
properties of molecular clouds since clumps < 10 M0 are often 
observed to have temperatures and sizes that indicate they are 
gravitationally bound, but it is not obvious how clumps of this 
size actually form. We are in an uncomfortable position if we 
ask gravity to be solely responsible for the transformation of 
diffuse H i clouds into self-bound molecular clumps because, at 
their typical temperature and density, H i clouds must acquire 
a mass M > M} ~ 103 M0 before they can become Jeans 
unstable. If we are to completely understand the process of star 
formation, we must understand how H i clouds transform into 
a clumpy molecular medium. 

In this paper, we briefly outline the role that velocity or 
pressure fluctuations in the H i cloud medium can play in 
initiating compression of sub-Jeans mass diffuse clouds. In § II, 
we review the frequently discussed idea that substantial over- 
pressures arising in the warm medium and/or highly super- 
sonic compressions of H i clouds can push sub-Jeans mass 
clumps to densities where gravity can take over and complete 

1 Lick Observatory Bulletin, No. B1079. 

the star formation process (Öpik 1953; Shu et al 1972; Loren 
1976; Woodward 1976; Elmegreen and Lada 1977; Herbst and 
Assousa 1977; Sandford, Whitaker, and Klein 1982; Klein, 
Sandford, and Whitaker 1983; Krebs and Hillebrandt 1983; 
Hausman and Roberts 1984; Oettl, Hillebrandt, and Mueller 
1985). One difficulty with this picture is that it is not at all clear 
that such strongly nonlinear disturbances in an H i medium 
can efficiently promote star formation—they are just as likely 
to disrupt a cloud as actually to lead to ordered compression 
(Woodward 1976; Hausman 1981; Krebs and Hillebrandt 
1983; Lattanzio et al 1985). What we show here is that highly 
nonlinear disturbances are not always required to initiate sub- 
stantial compression of sub-Jeans mass clouds in the inter- 
stellar medium. 

In the past, equilibrium arguments have usually been used to 
quantitatively estimate the (nonlinear) amplitude that a given 
external disturbance must have if it is to successfully initiate 
the collapse of a pressure-supported gas cloud. When a dis- 
turbance occurs on a time scale short compared to the sound- 
crossing time of a cloud, however, equilibrium arguments are 
inappropriate. In § III, a nonequilibrium model is used to 
analyze the impact of external disturbances on gas clouds. As a 
result, estimates of the required disturbance amplitudes are 
substantially reduced from the previous estimates that were 
based on equilibrium arguments. Similar points have been 
made recently by Hunter (1979), Whitworth (1981), and Hunter 
and Fleck (1982). 

Our nonequilibrium analysis reveals that a cloud which 
cools under compression—i.e., a cloud of gas for which the 
effective adiabatic exponent F is 0 < F < 1—is particularly 
sensitive to mild disturbances from its environment. Further- 
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more, the specific energy required to trigger effective compres- 
sions in a cooling medium is nearly independent of the cloud 
mass. This surprising result suggests that, for a given size dis- 
turbance in the H i medium, a wide spectrum of cloud masses 
below the canonical Jeans mass will condense into self- 
gravitating clumps. Since diffuse clouds which are sufficiently 
large that they are self-shielded against outside heating do cool 
under compression, we propose that mildly nonlinear dis- 
turbances play a primary role in the formation of molecular 
clouds and, in turn, stars. 

II. A GLOBAL ENERGY FUNCTION 

If we ignore the influence of magnetic fields—which we will 
do throughout this section in order to illustrate our main 
point—a gas cloud of mass M, internal sound speed a0, and 
total angular momentum J that is embedded in a warmer, 
low-density medium of pressure Pe has four global energy 
quantities that are important in defining its equilibrium struc- 
ture: S = internal thermal energy, W = gravitational potential 
energy, TR = rotational kinetic energy, and Pe V, where V is 
the cloud volume. To within factors of order unity, for a spher- 
ical cloud these global quantities are 

. 3 Mag 
2 r 

3(i-n 

Tr = 

w = 

5 P 
4 Mr2 ’ 

3 GM2 

- 5 r 

4n 
V = ^r3 

3 

(1) 

(2) 

(3) 

(4) 

where r is the cloud radius. The variation of the internal sound 
speed with cloud radius given by equation (1) comes from 
adopting the relation d In T/d In p = F — 1; here a0 is the 
adiabatic sound speed established at some initial cloud size r0. 
We define a global energy function of the form 

G(r) = ¿b(r)S + W+TR + PeV9 (5) 

where b(T) = (1 — <5ir)(r — l)-1 + <5ir In p is introduced as a 
coefficient to 5 in order to allow generalization to the isother- 
mal case (F = 1) and ôir is the Kronecker delta function. This 
single function G houses a great deal of dynamical information 
about the cloud system, as has been previously pointed out in 
various contexts by Whitworth (1981), Stabler (1983), Tohline 
(1985), and Tohline and Christodoulou (1988; hereafter TC). 
For fixed M, J, Pe, a0, and F, cloud sizes that permit a virial 
equilibrium are given by the condition dG/dr = 0; the relative 
radial stability of equilibrium states is determined by whether 
d2G/dr2 is positive or negative (the latter indicating stability); 
and, as Whitworth (1981) points out, the equation of motion 
for homologous contraction or expansion of the cloud can be 
derived from the Lagrangian 

^ = ^ke — G , (6) 
where TKE = 3Mr2/10 is the kinetic energy in radial motion 
(see also Weber 1976). Clearly the function G contains an enor- 
mous amount of useful information about the dynamical 
properties of our gas-cloud system. 

Figure 1 shows qualitatively how the function G(r) typically 
behaves for a cloud system in which F < 4/3. The three curves 

Fig. 1.—Illustration of the typical behavior of the energy function G(r) for a 
cloud system in which F < 4/3. Curve a represents the situation for a sub-Jeans 
mass cloud of radius r0 in pressure equilibrium with the lower density ISM 
whose ambient pressure is Pe\a; a potential energy barrier of height AGa 
separates the pressure-supported cloud at point A1 from its compact, gravita- 
tionally bound state at point A3. Curve c represents the situation for the same 
cloud (now positioned at point CO) after the ISM pressure has been rapidly 
increased to a pressure Pe \c sufficiently large that no local pressure-supported 
equilibrium state exists at a cloud radius r0; the cloud is dynamically unstable 
at CO and must collapse to the gravitationally bound state at point C3. Curve 
b represents the situation at an intermediate ISM pressure Pe\c > Pe\b> Pe\a; 
a pressure-supported equilibrium state does exist at point Bl, but the cloud 
positioned at BO is in a “ preinstability ” state with enough potential energy 
available to allow it to collapse through state Bl and over the energy barrier at 
point B2. 

illustrate, for a cloud of fixed M, J, al, and F, how G(r) changes 
when the external pressure Pe adopts three different values— 
curve a is for the lowest of the three pressures and curve c is for 
the highest. [The same curves can also be used to illustrate 
how G(r) changes, at fixed Pe, J, al, and F, for three different 
cloud masses. In this case, curve a represents the least massive 
cloud and c the most massive.] Curve a is typical for a cloud 
whose mass is too small to promote a Jeans instability at the 
normal external pressure Pe\a. The cloud sits at the stable 
potential minimum marked by point Al, its structure being 
determined primarily by a balance between its internal thermal 
energy and the Pe V energy of its warmer surroundings (virial 
equilibrium demands that 2S = 3Pe V at point Al). If the cloud 
could somehow climb out of its potential well to point A2 
where an unstable virial equilibrium is established by the 
balance between internal thermal energy and gravity (i.e., 
2S = — W\ it would experience a gravitational instability and 
collapse into the more compact state at the potential minimum 
A3. In this particular example, the stable minimum at A3 is 
governed by a balance between rotational energy and gravity 
(2T* = - W), but even without rotation, in any real situation a 
stable minimum must exist to the right of point A2 in Figure 1 
as collapse ultimately leads to a pressure-supported (F > 4/3) 
stellar state. There is generally a nontrivial energy barrier of 
size AG separating a sub-Jeans mass cloud at Al from its 
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compact state at A3. In order to allow the gravitationally 
assisted collapse of sub-Jeans mass diffuse clouds to occur, one 
must, in effect, devise a reasonable way for clouds to climb 
from point A1 to point A2. We will return to a discussion of 
this energy barrier problem in § III. 

If the pressure of the warmer medium surrounding the cloud 
increases to a value Pe \c so that the relevant free energy func- 
tion is curve c in Figure 1, the cloud will collapse dynamically 
from its initial size r0 toward its compact equilibrium state at 
point C3. It will do so, because there is no longer a local 
minimum in the free energy function near r0. Point C2 marks 
an extremum in the function G(r) that is analogous to the point 
A2 on curve a, but for the critical curve c, it is an inflection 
point rather than a local maximum of the function. Collapse 
will ensue, in fact, if the external pressure is raised to any value 
>PJC. For a given adiabat and cloud mass M, the critical 
pressure Pe \c is given by the expression 

= [04G-3r(//M)2r] 2r-jl/(4-3n (7a) 

where 6 = r_1UoPo~r) specifies the adiabat, p0 is the cloud 
density at its initial radius r0, and/is a dimensionless param- 
eter of order unity that is a function of F. (According to TC, 
f2 « [375/(327c)](3F/2)3[(4 - 3F)/4](4-3r)/r; the exact value of 
/can be gotten from Kimura 1981 for a wide range of discrete 
values of F.) Equation (7a) can be inverted to also give the 
critical mass M} above which no pressure-supported equi- 
librium exists for a given choice of Pe and 6 : 

M} =/[02/rG-3/2p(3r-4)/2r] (7b) 

The quantity Mj is, effectively, the familiar Jeans mass defined 
for a cloud in pressure equilibrium with its surroundings. 

It is the effect of increasing the external pressure to a value 
Pe \c that, as mentioned in § I, has often been discussed as a 
viable mechanism for initiating the collapse of sub-Jeans mass 
H i clouds. Under isothermal (F = 1) compressions, relation 
(7b) shows that a factor of 5 increase in the external pressure 
should lead to the self-gravitating collapse of clouds having 
masses 51/2 times smaller than Mj in the unperturbed medium. 
In a medium for which the effective F is 7, say, relation (7b) 
shows that a factor of 5 increase in Pe will drop the unstable 
mass limit by a factor of 52. This is a substantial improvement 
over the meager factor of 51/2 obtained for an isothermal 
environment. From this point of view, Shu et al (1972) stressed 
the importance of a cooling (i.e., F < 1) medium. If the effective 
F actually drops as Pe increases, an additional drop in the 
unstable mass limit will occur because the normalization 
parameter/decreases with decreasing F. 

III. SURMOUNTING THE ENERGY BARRIER 

The first point we want to emphasize in this paper is that a 
sub-Jeans mass cloud initially at point A1 in Figure 1 need not 
be subjected to a pressure as large as Pe \c in order to initiate its 
collapse to point A3. The pressure Pe\c—derived assuming 
equilibrium conditions—is needed only in a situation where the 
external pressure is increased slowly (on a time long compared 
to the sound crossing time of the cloud at Al). A rapid increase 
in Pe will find the cloud of radius r0 (point CO in Fig. 1) far 
from an equilibrium state. From Figure 1 it is clear that if the 
change occurs rapidly, a considerably milder increase in Pe, up 
to a value Pe \b represented by curve b, is sufficient to give the 

cloud of radius r0 the potential to climb over the potential 
energy barrier that separates it from the desired equilibrium 
state A3 or, more correctly, B3. The truth actually lies some- 
where in between. Inevitable dissipation during collapse from 
point BO through B1 and toward B2 will probably prevent 
complete collapse when Pe is increased only to a value Pe \b, 
but surely a value as large as Pe \c is not demanded. 

Whitworth (1981) has discussed the important role of this 
type of “ preinstability ” that exists for a cloud at a point like 
BO in Figure 1. He realized that for a given increase in Pe, or a 
sufficient inwardly directed radial kinetic energy, a cloud that 
would otherwise be stable could be induced into gravita- 
tionally assisted collapse. Hunter (1979) and Hunter and Fleck 
(1982) quantified the benefits of a nonequilibrium analysis of 
this problem in a slightly different way and came to the same 
conclusion. For the regime 1 < F < 4/3, they determined the 
minimum mass cloud that could be forced into gravitational 
collapse by a given amount of kinetic energy, in the form of 
ordered radial implosion. They found that the cloud mass can 
be substantially reduced from the values predicted by equi- 
librium arguments and relation (7b). Ignoring the internal 
turbulent motions, which were part of the Hunter and Fleck 
discussion, we can rederive their basic result from our energy 
function G. In what follows, we present a simple analytic model 
which reproduces the results obtained by Whitworth (1981), 
Hunter (1979), and Hunter and Fleck (1982) in the range 
1 < F < 4/3, including both the effect of a rapid increase in 
external pressure and that of an imposed radial velocity field. 
The model is general in the sense that it includes the important 
regime F < 1 ; the minimum mass that can be forced into col- 
lapse is dramatically smaller in this regime than in the isother- 
mal case. The conclusions from the analytic model are then 
substantiated through the results of numerical simulations of 
the spherically symmetric hydrodynamic collapse of a cooling 
gas. 

a) An Analytic Model 
At point Al in Figure 1, the energy function G is dominated 

by the Pe V and the 2b(T)S/3 terms, while, at point A2, it is 
dominated by the terms 2b(T)S/3 and W. Taking into account 
the virial demands on these various terms at the points Al and 
A2, as mentioned above, the size of the energy barrier AG can 
immediately be written as 

AG = (-fc2S2-2S2 
2 

- b1S1 + ^ Si 

M 2 

= Ya° 

\ 3(i -n 
(1 + frj (8) 

where the subscripts 1 and 2 refer to states Al and A2, respec- 
tively. Furthermore, the statement of virial balance at points 
Al and A2 allows us to cast the ratio r2/r0 in terms of the ratio 
of the cloud mass to its critical mass as given by equation (7b). 
For m = M/M) < 1 (i.e., for r2/r0 < 1), 

(r2/ro)3 « ^m2/(4_3r) , (9) 

where # = [(4 — 3r)/4]1/r(3r/4)3/(4_3r). Therefore, equation 
(8) can be rewritten as 

AG * ^ Ma2
0{(b2 - 3)[örm2/<4~?r)]<1-r) - (1 + b,)} . (10) 
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Three interesting regimes arise : 
1. For 4/3 > F > 1, relation (10) reduces to 

AG/M « ßo[4(r~1 )/rF1 /(3r“4)(4 - 3F)1/r(r - l)"1] 

x [(t)3m2r(r-1)/(4-3r) (11a) 

because for m 1 the second term inside the braces of relation 
(10) is negligibly small compared to the first term. 

2. ForF = 1, relation (10) becomes 

ÁG/M æ —2ao(ln m + 0.875), (11b) 

because b2 — bi = In (p2/Po) = -In (27m2/256). 
3. For 1 > F > 0, relation (10) reduces to 

AG ^ al 
Ä7 ^ (1 - F) ’ 

(11c) 

because for m 1 the mass-dependent term inside the braces 
becomes negligible compared to the 1 + hi term. 

If we ask ordered kinetic energy in radial motion to provide 
the needed boost over the energy barrier from point Al, then 
the required kinetic energy is > AG, that is, 

rl>^(AG/M). (12) 

As Hunter and Fleck (1982) determined, for 4/3 > F > 1 the 
required implosion velocity r0 goes as a power law of the mass 
ratio m. Writing r0 oc m-x, we get x = (F — l)/(4 — 3F). In an 
isothermal regime, the required is proportional to In m, in 
agreement with Hunter’s (1979) conclusion. Hunter was struck 
by the logarithmic dependence of rg on the mass ratio m in the 
isothermal case or, more specifically, by the fact that inverting 
the relation leads to an exponential dependence of m on the 
Mach number Ji0 = r0/a0 of the applied implosion (see also 
Hunter 1969). The exponential behavior indicates that only a 
moderate increase in the level of external disturbances can 
drastically affect the (initially sub-Jeans mass) spectrum of 
cloud masses that are effectively pushed into gravitational col- 
lapse. It should be realized, however, that when the coefficients 
in relations (12) and (11b) are properly accounted for, the mag- 
nitude of J?0 is not small unless m is very close to unity. In 
column (7) of Table 1, we have tabulated as a function of m 
for isothermal compressions. (For m ~ 1 we have used the 

TABLE 1 
Required Disturbance Amplitudes 

r=i r=j r=i 

ma ÔPe/Pe M0 bPJPe Jt0 ÖPJPe Ms 
(1) (2) (3) (4) (5) (6) (7) 

1   0.0 0.0 0.0 0.0 0.0 0.0 
0.99..  0.0002 0.039 0.0005 0.047 0.001 0.062 
0.50...  0.109 0.854 0.245 1.043 0.613 1.430 
0.10   0.442 1.718 1.052 2.163 3.166 3.249 
10“2   0.752 2.239 1.928 2.927 7.526 5.009 
KT3   0.896 2.444 2.432 3.288 12.079 6.345 
10“5   0.983 2.560 2.846 3.556 21.276 8.421 
10"7   0.997 2.578 2.958 3.626 30.486 10.081 
10“9.  0.9996 2.581 2.989 3.645 39.696 11.503 
0    1.0000 2.582 3.0000 3.651 oo oo 

a Using boundary conditions on an homoentropic, spherically symmetric 
gas cloud of = 2 x 10-23 g cm-3, 7], = 80 K, and = 1.3 (corresponding to 
Pe = 1.0 x 10"13 ergs cm-3), the exact critical mass M} is (Shu et al 1972; 
Kimura 1981): 516 M0 for T = ^ 1242 M0 for T = |, and 2708 M0 for 
r = i. 

general expression for G—eq. [5]—to determine the barrier 
height instead of the approximate relation [11b].) For m = j, 
the required implosion is already supersonic, and a Mach 3.25 
implosion is needed, for example, to push clouds with masses 
Mj/10 into collapse. We conclude, therefore, that substantially 
supersonic disturbances are generally required to initiate the 
collapse of sub-Jeans mass clouds when 4/3 > F > 1. 

We can also use expressions (lla)-(llc) to quantify the pres- 
sure enhancement SPJPe that must be realized in the confin- 
ing, external medium in order to bring a given cloud to the 
“preinstability” state envisioned by Whitworth (1981). The 
energy per unit volume V0 = 4^/3 of the unperturbed cloud 
that is required to boost the cloud over its energy barrier is just 
AG/Fo = (AG/M)p0 * (AG/M)(TPe/a

2
0). Therefore, 

Pe ~a2
0\Mj- (13) 

We see that, for 4/3 > F > 1, the required perturbation in pres- 
sure scales with cloud mass m in exactly the same way that Tq 
does. Again, the logarithmic dependence of SPe/Pe on m in the 
isothermal case looks enticing. What about the required mag- 
nitude of the fluctuations in Pe? In column (6) of Table 1 we 
have tabulated ôPJPe as a function of m for F = 1. While 
relatively small pressure fluctuations (SPJPe < 1) are sufficient 
to initiate collapse of clouds with masses M < Mj, a substan- 
tial nonlinear fluctuation in Pe is required to drive clouds with 
masses M Mj into self-gravitating collapse. 

An important point not specifically addressed by either 
Whitworth (1981) or Hunter and Fleck (1982) is the behavior 
of AG/M for a cooling medium. As expression (11c) shows, for 
1 > F > 0 the barrier height, expressed in ergs per gram is 
independent of the cloud massl Combining equation (11c) with 
equation (12), we see that an implosion with a Mach number 

e^O £ (14a) 

will push all clouds into gravitationally assisted collapse. Or, 
using equation (13), we see that a rapid pressure enhancement 
of magnitude 

ÔPe > r 
Pe ~ (1 - T) 

(14b) 

will do the same thing. These are, of course, the perturbations 
required in the limit m <0. A more complete treatment shows 
that as m approaches 1, the required J?0 or ôPJPe is even less 
than the values set by the limiting case. We have used equation 
(5) to determine the exact height of the energy barrier as a 
function of cloud mass m for F = | and for F = j and have 
tabulated the results in Table 1. Again, we have used relations 
(13) and (12) to convert barrier height into the required SPe/Pe 
and J?0. For comparison purposes, all the data from Table 1 
has been plotted in Figures 2 and 3. Figure 2 shows SPe/Pe 
versus log m, and Figure 3 shows e^0 versus log m for F = 
F = I, and F = 1 gases. 

As the data in Table 1 and as Figures 2 and 3 illustrate, the 
energy barrier that separates a cloud of a given mass from its 
self-gravitating, collapsed state gets smaller for smaller values 
of F. Therefore, by comparison with clouds that compress iso- 
thermally, clouds that evolve along F < 1 adiabats can be trig- 
gered into collapse by relatively milder external disturbances. 
Also, as F decreases, the spectrum of cloud masses that can be 
pushed into collapse by subsonic disturbances, or by fluctua- 
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Fig. 2.—Fractional pressure-enhancement SPJPe required to push a cloud 
of mass M into gravitationally assisted collapse is plotted vs. log m (m = 
M/Mj) for three different adiabatic indices: F = 1, j. For m <0, the curves 
asymptotically approach the limiting behavior described by combining rela- 
tion (13) with relations (lib) or (11c) in the text. 

Fig. 3.—The Mach number JÍQ of the surface implosion velocity that is 
required to push a cloud of mass M into gravitationally assisted collapse is 
plotted vs. log m(m = M/Mj) for the same three adiabatic indices used in Fig. 
2. For m < 1, the curves approach the limiting behavior described by combin- 
ing relation (12) with relation (1 lb) or (11c) in the text. 

tions in Pe of amplitude öPJPe < 1, noticeably broadens. 
Clearly, though, the most striking thing about F < 1 gases is 
the behavior of the energy barrier in the limit m -► 0. In this 
limit the barrier asymptotically approaches the finite values 
given by relations (14a) and (14b). The fact that AG/M does not 
approach infinity but, indeed, stays at a fairly low value for 
very small mass clouds clearly identifies the F < 1 regime as an 
important one for problems of star formation. 

b) Hydrodynamic Simulations 
In order to demonstrate both the correctness and the signifi- 

cance of the analytic results just stated, we modeled the 

response of cooling clouds to fluctuations in Pe and to imposed 
implosion velocities using the one-dimensional (spherically 
symmetric) implicit, Lagrangian hydrodynamic computer 
program developed by Bodenheimer (1968). Specifically, we 
constructed two clouds of different masses in hydrostatic equi- 
librium with an external, lower density medium of pressure 
pe = 1.0 x 10"13 ergs cm"3—a pressure typical of conditions 
thought to pertain in the interstellar medium. Both clouds 
were initially homoentropic models constructed with F = ^ 
(i.e., their structures were initially like a truncated polytrope 
with index n= -2), having a boundary temperature Tb = 80 
K, boundary density pb = 2 x 10~23gcm"3, and mean molec- 
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ular weight fi = 1.3. Under these conditions, the adiabatic 
sound speed at the cloud boundary is a0 = 0.50 km s-1, and, 
by equation (7b), our analytic estimate of the critical mass is’ 
Mj « 889 Mq. As is indicated in the footnote to Table 1, the 
exact value for this n = -2 polytrope is 516 M0 (Shu et al. 
1972; Kimura 1981). With this in mind, we chose cloud masses 
of 200 Mq (mj = 0.39; model 1) and 0.02 (m, = 3.9 
x 10-5 ; model 2). 

In our first experiment, we imposed an initial velocity profile 
onto both clouds of a form v(r) = vb(r/r0), where vb= -1.5 km 
s 1. This amounted to introducing an implosion of Mach 
number ,77,, = 3.0 at each cloud surface and a velocity profile 
that would ensure a nearly homologous contraction, at least 
initially. The chosen Jtb was only slightly larger than the criti- 
cal value set by the above discussion: jr0 > (20/3)1/2 = 2.582. 
During the subsequent collapse, we constrained both clouds to 
follow a T = i adiabat and, hence, remain homoentropic. The 
result was, as predicted, an indefinite collapse for both clouds. 
The evolution of model 2 was particularly interesting because 
the = 3.0 implosion, by itself, was able to compress the 
cloud by five orders of magnitude in central density before the 
collapse received any substantial assistance from gravity. The 
calculation was run up to a central density of 2 x 10“18 g 
cm 3, at which point the temperature was 0.3 K. The density 
profile was fairly constant in the inner region, then dropped 
rapidly outward; a plot of the density, velocity, and pressure 
profiles for this model is presented in Figure 4 at the time when 
Pc = 10 18 g cm 3. At the end of the calculation, the mass in 
the central peak was 3.5 x 10 3 Mq, while the Jeans mass 
corresponding to this region’s p, T, and F was 3.9 x 10" 4 M0. 
As the region was still infalling, it is clear that gravitational 
instability had been induced. 

For comparison, we also imposed the same initial velocity 
structure with ¿ftb = 3.0 onto an isothermal gas cloud of mass 
0.02 Mq (m3 = 7.4 x 10“6; model 3) that initially had the 
same Pe, Tb, pb, and p as models 1 and 2. The ensuing isother- 
mal collapse proceeded only to a maximum central density of 
6.5 x 10 23 g cm-3. The internal pressure gradient of the 
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cloud first slowed the implosion, then reversed the motion— 
causing the cloud to reexpand—long before the cloud became 
dense enough for gravity to take control. This result is consis- 
tent with the analysis presented above which predicts that an 
' 77o > 8.54 is required before collapse can proceed indefinitely 
in an isothermal cloud with m = m3. For J/0 = 3.0, in fact the 
minimum mass which could be induced to collapse is only 
m « 0.1, i.e., M « 270 M0 (see Fig. 3a and col. [7] of Table 1). 

Finally, we constructed two models identical to models 1 
and 2 at rest, in equilibrium with the external medium of pres- 
sure Pe = 1.0 x 10"13 ergs cm“3, then introduced a rapid 
increase in the bounding pressure to a value 2APe over a time 
somewhat less than the crossing time. Following a F = £ 
adiabat, both clouds responded to this disturbance by going 
into an indefinite collapse. In the case of the cloud of 0.02 M0, 
the calculation was run until the central density reached 
2 x 10 15 g cm \ eight orders of magnitude above the orig- 
inal value. At this time, the density distribution was extremely 
centrally peaked, and a small central region was clearly 
approaching free-fall collapse. This result is in agreement with 
the prediction that, for F = ¿, a ÔPJPe > 1 is sufficient to 
assist H i clouds of any mass over the potential energy barrier 
that separates them from a dense, self-gravitating equilibrium 
state. 

IV. DISCUSSION 
We have demonstrated that conditions in the interstellar 

medium that produce cooling upon compression (i.e., an effec- 
tive adiabatic exponent 1 > F > 0) are extremely favorable 
conditions for promoting the collapse of sub-Jeans mass gas 
clouds. Infinitesimal perturbations in the medium will not 
produce collapse, but finite disturbances of not an unreason- 
able magnitude can induce collapse of clouds over a wide 
range in mass. For a given 1 > F > 0, a radially directed 
implosion of Mach number .Jt0 > [10/(3 - 3F)]1/2 or a rapid 
enhancement in the confining pressure of the external medium 
of magnitude ôPe/Pe > F/(l — F) is sufficient to send gas 
clouds of all masses into a self-gravitating collapse. In the solar 
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Fig. 4. Distributions of density, pressure, and collapse velocity for model 2 are shown at a time 5 x 1012 s after the introduction of a velocity field with a 
maximum inward velocity of 1.5 km s . The half-mass point lies at log r = 16.7. About 1/10 of the mass lies in the central density peak. 
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neighborhood, at least, conditions are such that cooling of gas 
does occur effectively between densities of n ~ 10 cm-3 (a 
typical density of diffuse H i clouds) and « ~ 105 cm-3. The 
effective adiabatic exponent in this regime is F ä | (Larson 
1985). Therefore JÍ0>2>.1 and ÔPJPe > 3 should induce the 
self-gravitating collapse of a wide spectrum of cloud masses. 

There are limitations to this scenario that should be clari- 
fied. First, mass-independent response to these finite dis- 
turbances only pertains as long as the effective adiabatic 
exponent remains less than 1 (i.e., as long as the medium con- 
tinues to cool) all the way up to the density where gravity is 
able to take hold and assist further collapse. Since the ISM is 
apparently unable to cool below ~10 K at densities above 
n ~ 105 cm-3, the spectrum of masses induced to collapse in 
our scenario should realize a cutoff around 1 M0 (the isother- 
mal Jeans mass at n = 105 cm-3). In order to investigate this 
possibility, we have generalized the expression for internal 
energy (eq. [1]) in a straightforward way to allow for a F that 
varies with gas density and have calculated AG as a function of 
M for the following F(p) function : 

F ft > for 2 x 10-23 < p < 10-18 g cm-3 , 
(1, for 10“18 < p < 10-14 g cm 3 . 

This two-branch function has been chosen in order to mimick 
the temperature-density behavior of the ISM (see, for example, 
Larson 1985). Figure 5 shows the resultant behavior of AG/ 
M—expressed, as before, in terms of both Ji0 and öPJPe—as 
a function of m. Point A (log m = -3.1), marked in both parts 
of the figure, identifies the density p = 10-18 g cm-3 at which 
the adopted F(p) function changes its value from F = | to 
F = 1. Clouds having log m < -3.1 (i.e., having masses M < 1 
M0) must be compressed to densities higher than 10-18 g 
cm 3 if gravity is to dominate over thermal pressure, hence, 
starting at diffuse cloud densities, they must receive initial 
external “kicks” of amplitude ôPJPe > 2.5 or > 3.3 if 
gravitationally assisted collapse is to be achieved. Point B 
(log m = —5.3) in both parts of the figure identifies the density 
p = 10"14 g cm-3 above which our “realistic” F(p) function 
has not been defined. Above this density (approximately), 
clouds are believed to become opaque to their primary cooling 
radiation and their effective F becomes >4/3. As a result, 
thermal energy dominates above this density and clouds with 
log m < — 5.3 (M < 0.01 M0) cannot achieve a state of self- 
gravitational collapse. In Figure 5, a 1 M0 cloud 
(log m= —3.1) is not singled out as a natural mass scale, but 
the shift to a F = 1 behavior at densities above 10-18gcm-3 

does change the plotted functions noticeably from the strict 
F = I behavior illustrated in Figures 2b and 3b. 

Second, since finite and, indeed, supersonic disturbances are 
required to initiate collapse, the limits quoted here for and 
ôPe/Pe should not be taken literally. Our estimated limits are 
derived assuming 100% of the disturbing energy gets funneled 
into ordered radial collapse. A more reasonable, lower effi- 
ciency rate will increase the required J?0 and ôPJPe appropri- 
ately. 

Third, our entire discussion has centered around idealized, 
spherically symmetric cloud implosions. The quantitative 
limits set on and dPJPe will certainly change when other 
less ordered disturbances are studied. Indeed, in the real ISM, 
dynamical gas flows will generally be quite complicated since 
cloud collisions or shock-driven implosions may lead to 
Rayleigh-Taylor instabilities, Kelvin-Helmholtz instabilities, 

log m 

Fig. 5.—The pressure-enhancement ÔPJPe and the implosion Mach 
number ^0 required to push a cloud of mass M into gravitationally assisted 
collapse are shown vs. log m (m = M/Mj) as determined from a “realistic” 
model of the interstellar medium. Specifically, the two-branch F(p) function 
defined in the text has been used to mimick the p — T behavior of the ISM. 
From log m = 0 up to point A (log m = —3.1, corresponding to p = 10“18 g 
cm~3) a F = I adiabat has been adopted; hence, in this region, direct overlap 
exists between the top diagram and Fig. 2b and between the bottom diagram 
and Fig. 3b. From point A to point B (log m = -5.3, corresponding to 
P = 10“14 g cm-3), isothermal (F = 1) behavior has been adopted. 

and large-scale vorticity (see the references to cloud disruptions 
cited in § I). However, an examination of the Hunter and Fleck 
(1982) analysis, which was done in a general fashion for planar 
and cylindrical disturbances as well as for spherical ones, indi- 
cates that insensitivity of the required disturbance energy to 
cloud mass will prevail for any type of adopted geometry of the 
disturbance. In this regard, we can comment on how the ISM’s 
magnetic field might modify our general conclusions. If the 
energy density in the magnetic field that threads through a 
diffuse gas cloud is nonnegligible, then dynamical disturbances 
will tend to compress the cloud preferentially along the field 
lines—resulting in essentially planar implosions rather than 
spherically symmetric ones. Qualitatively, though, our basic 
conclusion remains unchanged: mild disturbances should 
effect substantial dynamical compressions of the gas because of 
its ability to cool. If the energy density in the magnetic field is 
initially large compared to the energy density in the cloud’s 
gravitational field, dynamical compression of the gas to high 
density will probably not directly induce star formation 
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because a planar compression will not significantly alter the 
relative energy density in the two fields. Dynamical expansion 
of the gas will immediately follow the phase of rapid compres- 
sion. Nevertheless, the cooling property of the medium should, 
itself, permit relatively mild disturbances in the ISM to repeat- 
edly produce significantly compressed states of the gas. 

Tarafdar et al. (1985) noticed that when the effects of chem- 
istry and its associated cooling are included in a model of a 
diffuse gas cloud, the evolution of the cloud can be substan- 
tially altered from that which would be derived in an isother- 
mal treatment. They noted that even a relatively low mass 
cloud, starting from uniform density, goes into gravitational 
collapse in the presence of a constant Pe medium and attrib- 
uted the effect largely to the “inward pressure gradient force” 
that arose due to their prescription for cooling. This force was 
simply a result of a somewhat artificial initial condition, and it 
would not have been developed if they had started with a 
proper equilibrium configuration and not a model of uniform 
density. We believe, however, that their result clearly illustrates 
the major point being made here. In adjusting toward its 
pressure-supported equilibrium state, their cloud with an effec- 
tive 1 > T > 0 generated enough energy in macroscopic 
motions simply to carry itself over the relatively low energy 
barrier that separated its diffuse state from a gravitationally 
bound one. A fairly mild disturbance was all that was required 
to send the cloud into gravitational collapse because its 
volume initially enclosed close to one Jeans mass of material. 
In a separate study, Hunter et al. (1986) have reported on the 
extremely compressible nature of a cooling medium taking 
part in a supersonic, planar cloud collision. These studies are 
good illustrations of the general phenomenon we have outlined 
in §§ II and HI of this paper. 

In his analysis of cloud fragmentation, Larson (1985) also 
noticed some interesting properties of systems having effective 
adiabatic exponents 1 > T > 0. For example, once gravity 
becomes important in defining the structure of a flattened gas 
sheet, Larson states that “in contrast to the isothermal case, 
continuing fragmentation cannot be prevented as long as the 
temperature continues to decrease with increasing density.” 

We suggest that the clumpy structure observed on scales 
down to ~ 1 Mq in molecular cloud complexes is due in large 
part to the cooling properties of the ISM between densities of 
~ 10 cm 3 and ~ 105 cm-3. Disturbances in the general ISM 
with velocities as small as ~2 km s-1 or with fluctuations in 
the ambient pressure by a factor ~ 3 can easily compress cool 
H i gas up to n ~ 105 cm 3 and on scales as small as one solar 
mass. In regions of our (or any other) galaxy where magnetic 
fields may not exert a dominating influence, the same types of 
fairly mild disturbances afflicting cool H i clouds could directly 
promote the self-gravitating collapse of sub-Jeans mass clumps 
over a wide mass spectrum. We conclude, therefore, that a 
cooling medium can play a crucial role in assisting the forma- 
tion of both low-mass molecular cloud clumps and low-mass 
stars in the H i gas disks of galaxies. 
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