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Summary. The theory of optics in general relativity ensures that
only redshift terms in gravitational lensing can induce fluctuations
in a strictly uniform background. In this paper we investigate
the possible consequences of randomly distributed deflectors on
an initially non-uniform background. Starting with the conser-
vation of the specific intensity, we find a general expression giving
the power spectra of the perturbed background. This allows us
to show that the variance of the fluctuating part of the back-
ground is conserved by any arbitrary physical deviation field.
Using a model of the gravitational deviation field developed by
Blandford and Jaroszynski, we apply our result to the cosmic
background radiation, and we show that the angular fluctuations
law could be modified at small angular scales. Finally we give a
rough estimate of this effect. It appears that its strength depends
strongly on the total mass present in a clumpy form and on the
evolution of the correlation function at small scales. The ampli-
tude of the distortion of the fluctuations law is expected to be
small, but could be identified by its angular scaling. This provides
a potential tool to get direct information on galaxy formation
in the non-linear regime.

Key words: cosmology — cosmic background radiation — grav-
itational lenses

1. Introduction

Gravitational lensing on an uniform background and its appli-
cation to the Cosmic Background Radiation (CBR) have been
studied by several authors. It was early shown by Etherington
(1933) in a different context that in this case, the only possible
observational effect of lensing comes from the frequency shift of
photons. Sachs and Wolf (1966) obtained the contribution to the
fluctuations of the CBR from first order perturbations in the
metric in a flat universe. The scalar term arises only from inho-
mogeneities located on the recombination shell (Doroshkevich
and Zeldovich, 1983), i.e. the lenses located between us and the
recombination surface do not give any first order contribution
to the fluctuations of the CBR. The analysis of the effect of second
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order terms has been also performed (Rees and Sciama, 1966;
Dyer, 1976; Nottale, 1984) and Nottale (1984) obtained the de-
tails of the different contributions to redshift effect in the vacuole
model.

However, deflections can also lead to observable effects on
the CBR Birkinshaw and Gull (1983) obtained that a moving
lens can induce in principle an anisotropy and Mitrofanov (1981)
pointed out that a single lens could lead to an effect in the case
of a non-uniform background. The observational consequences
of gravitational lensing are generally very interesting because
they are sensitive to the whole mass present in the deflector.
This makes hope to get information on dark matter.

In this paper our aim is to analyse the possible consequences
of gravitational deviations on the angular law of the fluctuations
of the CBR. This is possible because the CBR is not expected to
be exactly uniform: since fluctuations on the mass distribution
are needed at the time of recombination in order to allow for
galaxy formation, this must leave some imprints on the CBR.
Recent calculations of the fluctuations impose severe constraints
on galaxy formation (see for instance N. Vittorio and J. Silk,
1985). In these calculations it is assumed that nothing happened
after recombination, while clearly gravitational lensing effects are
necessarily present. Here we want to investigate the mean effect
of random deviations, and try to evaluate the order of magnitude
of the induced correction.

In the forthcoming we will treat the temperature of the CBR
as a random function T(x), where x is a generic point on the
sky. We do not expect the gravitational lensing to have any in-
fluence on large scales fluctuations, so it is justified to assume x
to be a point on a plane. We will also assume a power spectrum
for the fluctuations of the CBR of the form:

2
oc exp (—03k?/2) 0y

5T
P(k) = = (k)

The corresponding angular fluctuation law is given by:
6T 9 1/2 2 2
- 0 =[C0) — CO]" oc (1 — exp(67/265)) @

We have arbitrarily normalized the amplitude of the correla-
tion function because we are not interested in its value here. In
the same way angles are expressed in units of 60/\/_2-. Then the
power spectrum is merely:

P(k) = exp(—3K?) ©)
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Actually in our analysis, the main assumption is that small scale
fluctuations obey the following law:

oT

T(O)oc@ when 6 < 60,

and

oT
T (6) ~ const

when 0 > 0, 4)
We do not loose any generality as this corresponds to the usual
behavior for the primordial fluctuations law. The angle 6,, is ex-
pected to be of the oder of \/5010’ in the standard scenario. The
value of 6, depends on the cosmical scenario. For instance a re-
ionization (Davis, 1984) or a cosmological constant (Blanchard,
1984a) can significantly change its value. Such a possibility is not
investigated in this paper.

In the second section we give the general formula which allows
to calculate the power spectrum of the perturbed image from the
initial one (the details of the demonstration of this formula are
left in the Appendix). The apparent displacement of the position
of point initially located at x due to gravitational bending is
noted A(x). As we will not take into account redshift terms in
our analysis, the conservation of the specific intensity tells us
that the apparent temperature in the sky of the CBR, T(x), i.c.
the perturbed image in the direction x is the temperature that
one would have seen at the point x + A(x) in the absence of any
lensing. This reads:

T(x) = T(x + Ax)) ®)

The general formula giving the power P(k) of T is (7). This allows
us to show that the variance of the perturbed process is un-
changed whatever A(x) is. However, in practice, one needs all the
statistics of the deviation field to calculate P(k), so it is useful to
assume the deviation field to be gaussian. This leads to a much
simpler formula given by (9) which is used in the two last sections.

In the third sections, in ordet to analyse the lensing effect on
the CBR we use a simple model of the deviation field, which is
due to Blandford and Jaroszynski (1981). They found that the
mean relative deviation g, between two rays separated by an
angle 6 is proportional to:

g o (6/1)C772Q.8)2(Z,Q0, N) (6)

where y is the index of correlation function of the whole clustered
mass, s, is a function which depends on y and on the redshift z
of the source from which the rays are coming and on the total
mass density Q, and on an index N related to the evolution of
the correlation function. Using this result with y = 2., we find
that small angular fluctuations 6T/T(f) of the CBR scale as 6/
rather than as 0 (see Eq. 4). This shows that gravitational lensing
can affect the statistics of the fluctuations at small scales in a
characteristic way. In the fourth section we try to give an
estimation of the numerical value of the amplitude of this effect.
This amplitude readily depends on the level of the fluctuations
present in a clumpy form, but it depends also on the evolution
of the correlation function in the nonlinear regime. A contribution
of a few percent of the large scale amplitude is possible on
subarcmin scales, and then angular dependance makes it quite
easy to identify. Even if such an observation is far from present
possibilities, this indicates that such an effect will not be
impossible to find and to identify in the future.

2. The power spectrum of the perturbed image

Standard calculations of the primordial fluctuations assume that
intervening material between us and the recombination does not
affect the CBR. The temperature on the sky then appears as a
random function with a correlation function given in a first
approximation by (2). However we have seen that, when gravi-
tational lensing is taken into account, the temperature is:

T(x) = T(x + A(x)) See (5)

From there we wish to compute the correlation function of
T(x) starting from the statistical properties of T(x) and A(x).
This is equivalent to know the power spectrum P(u) of T(x)
from P(k). In the Appendix we show that the power spectrum
P(u) of T(x + A(x)) is given by:

- 1
Pu) = = f dk P(k)[FTCo(k) -1 @

where the Fourier Transform FT is performed relatively to the
variable 0. In this formula Cy(k) is the characteristic function of
the relative deviation field Ay(x):

Ag(X) = Mx + ) — Ax) ®)
with:
A3> =}

Equation (7) shows that the distortion in the transformation (5)
does not depends directly on the statistics of A(x), but only on
the statistics of the relative deviation field A(x). This is satisfying
because strictly speaking A(x) is not a well defined quantity as it
is not invariant under a transformation of coordinates, while A4,
can be obtained by integrating the geodesic deviation equation
along the rays and is therefore a well-defined quantity.

From (7) it is now easy to show that the variance of T(x)
does not depend on the statistics of A(x):

N 1 dk
&0 =4 [Pwau= 5 [ P [au[FTC 0]

1 dk 1
- = [P A= [Pwyak = co)

This result contains the specific case of a uniform background:
in such a case C is the delta function, and the variance trivially
remains zero by (5).

Even if (7) is a rather short formula, it is not very easy to
handle with: the characteristic function C, depends on the whole
series of the moments of the field 4,, something which is generally
out of our knowledge. To get a more tractable formula it is con-
venient to assume the random field A, to be isotropic and gaus-
sian. The characteristic function is then:

Co(k) = exp(—3k>03)

The power spectrum P(u) now reads:
~ 1
Pw) = 5 J dk PUOTFT(exp (= k203 ©)

(One must keep in mind that in this formula the Fourier transform
is performed on the variable 6). This last formula will now allow
us to compute the effect of random deviations on the fluctua-
tions of the CBR.
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3. Gravitational lensing model

The distortion of the image of distant objects by gravitational
bending of the light rays has been considered by Gunn (1966),
by Hameury et al. (1981) and by Blandford and Jaroszynski
(1981). They found that images of distant sources (z ~ 1.) could
have a relative distortion of 0.5”. When one looks at the micro-
wave background, one can hope the strength of gravitational
bending to be larger, because of the high redshift of the source.
For instance, Mitrofanov(1981) proposed to use a cluster as a
lens to look at small scales fluctuations in the CBR. The con-
sequences of random deviations are less easy to guess: We have
already shown that the variance is unchanged and one can even
wonder if such an effect could lead to any observable conse-
quences. Equation (9) will be used here to compute this last
effect. To this aim we need a model for the random gravitational
deviations of rays reaching us from the recombination shell. Here
we will use the model developed by Blandford and Jaroszynski
(1981). The main assumption is the evolution and the shape
assumed for the correlation function of the clustered component
of the mass:

1 r\ "’
0= e(r)

the index N being an evolution index.

Such a simple model for the evolution is questionable. Here
we need a reliable model for the evolution of the correlation over
a large range of time and the form (10) is not trivially satisfied
both in the linear and in the non-linear regime. However we will
use (10) as a first guess. It will allow us to understand how
evolution can affect the results, more complicated evolution laws
f(z) being not difficult to include in the calculation.

According to Blandford and Jaroszynski, the mean square
relative deviation between two rays coming from sources located
at a redshift Z* is given by

0o(Z*) ~ 37(0/1")*°QSVHZ*, Q0, N)

(10)

(11)

(y being taken equal to 1.8) Q_ is the clustered component of the
mass in the universe in units of the critical density. The quantity
S is given by the integral:

: } dZ' HZ*,Z)D> (2,01 + Z)* 2
0

2Z*.0) L+ 202)" 2
DZ,,Z,) being the angular distance of an object located at Z,
seen by an observer at the time corresponding to Z,.

In order to apply their model to the CBR, we cannot assume
Eq. (1) to apply from now up to the recombination epoch. This
comes from the fact that (10) could not hold over such a large
redshift interval. For instance an index N larger than 3 cor-
responds to a contracting period, and therefore this can only be
relevant in the non-linear regime. We expect the contributions
of deflectors located between Z,.. and some redshift Z* corre-
sponding more or less to the galaxy formation epoch not to be
important. The value of S then is:

S(Z e Z*, N)

__! fg(zrec,z)@wzz 01 + Z)¥2dz
T 9Z0) ) (1 + 202)'"

(12b)

For practical computations, we have chosen Z_. = 1067 (Jones
and Wyse, 1985), four values of N (N = 2, 3,4,5) and two values

0.1

Fig. 1. Values of S as a function of Z* from Blandford and Jaroszynski
(see also (12a) in the text). The values of the index N (see Eq. (10)) are
2,3,4,5. The full lines correspond to Q, = 0.1 and the dashed ones cor-
respond to Q, =1

of the present total density mass Q, (2, = 0.1, 1.). It appears that
S is not very sensitive to Q, (Figs. 1), but strongly depends on
N and therefore on the scenario of galaxy formation. The fact
that N could not be taken larger than 3 all the time is rather
clear from the picture. However such a value of N may hold
from the beginning of the galaxy formation. This suggests that
a reasonable value of S could be larger than the value corre-
sponding to N = 3. In any case we expect S to be in the range
0.1-10. This leaves us with large uncertainties on the amplitude
of .

To carry out further our calculation, let us take a slightly
different law for a,:

63 ~al for 0 <86,
and
gs~1? for0>0, (13)

The divergence of o, in (11) at larges angles is clearly meaningless:
the relative deviation between two rays is expected to be nearly
constant at large separations. As we mentioned the index y comes
from the evolution law (11), and it was assumed that the slope
of £ did not change with time. A different choice for the evolu-
tion of & would probably lead to a different value of y. The
uncertainties on y remain quite important.

Assuming (13) we can approximate directly the value of the
quantity exp (k’c,/2) we need to compute the power spectrum
P by using (9):

exp (—k%63/2) = Aexp(—ak?0/2) + exp (—k?12/2) (14)
where:
A=1—exp(—k32/2)

With this fit we can now directly get the Fourier transform
of this quantity:
ak?
[w? + (ak?/24)*]*?
(15)

FT[exp(—1k?03/2)](w) = e ¥"2472 §(w) +
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The perturbed power spectrum can now be expressed as:

dk ak*P(k)
[(u — k) + (ak?/24)*]3>

P = Pesp (i + L [

(16)

Using (3) as the power spectrum of the fluctuations of the
CBR, we obtain:

P(w) = exp(—u3(1 + 12))2)
2n + o

dk ak? exp (—1k?)

1

+—fd0
4 k2 2713/2
™o 0 [uz + k? —2ukcos@+<§—A>]

a7

The numerical results allow us to discuss the qualitative features
of P(u): at small values of u, P is mostly unchanged because
exp (—u?%/2) ~ 1 while the integral in (17) is small. On the other
hand, for large values of u the spectrum scales as u~ 3. A typical
spectrum is presented in Fig. 2. The behavior at large u is not
very surprising, indeed. Even if the integral in (17) is not an exact
convolution, the main contribution to P(u) at large u comes
from P(k) at small values of k.

We have computed the power spectrum P for a large set of
the parameters [ and a (Blanchard, 1984b). It appears that the
amplitude of the tail at large u depends very weakly on . This
reflect the fact that [ is a cutoff in the law (11) at large angular
separation where the relative effect of the deflections is small. To
understand more deeply the results we have plotted the resulting
amplitude of the fluctuations of the CBR 86T/T(6). This is to be
compared to the usual law given by (2). This represents the main
output of our work. In Fig. 3, we have plotted the curves cor-
responding to different values of I (I = 2.,0.5, 0.125, 0.031, 0.008)
while a is kept constant (a = 0.25). From this picture it is clear
that the effect of I is tiny unless [ is much smaller than one.

We have also studied the effect of a which is a very sensitive
parameter. In Fig. 4, | has been kept constant (I = 0.5) while a
takes different values (a = 0.05, 0.1, 0.2, 0.4, 0.8). It can be seen
that at small scales, 6T/T scales as 01/2 rather like 0, as for the
usual law. In addition the small scale behavior depends clearly on
a*/2, This allows us to fit the new fluctuations law as follows:

10 T T
P(K)
Power spectrum
NS
01k N\ -
_ \
0 \ .
\
| \ _
5 \
10 - \
L \ -
|
107 | L
0.1 1 10 K

Fig. 2. An example of the perturbed spectrum (17) for (@ = 0.2, | = 0.5).
The dashed line corresponds to the initial spectrum

st ‘
T
01 L £=05,2 |
£=0.125
£=0.031
7
2
~2-0.008
=
0.01 | | 0/6,
0.01 0.1 1
Fig. 3. The temperature % as a function of /6, is plotted for different

values of I(l = 2, 0.5, 0.125, 0.031, 0.008) (a = 0.25). The maximum ampli-
tude of temperature has been normalised to unity

816,

- [ 1
0.01 0.1 1
Fig. 4. [ has been kept constant (I = 0.5) while a varies (a = 0.05, 0.1, 0.2,
0.4, 0.8). The point lines are the corresponding curves a'/26'/2 for each
value of a

— for small values of a (i.e. 2a < 1.):

ST/T(0) ~ a'?6'>  forH <0, (182)
OoT/T(0) ~ 6T/T() for6 <0,
with 0, ~ 2a

— for large values of a:
8T/T(0) ~ a'?0'* forH <9, (18b)
OT/T(6) ~ 1. for0 <0,

with 0, ~ 1/a.

In the forthcoming discussion we will use slightly different
formulae to take into account the fact that y must be equal to
1.8 rather than 2.

4. Discussion

The spectrum (1) essentially means that there is no power in
wavenumbers greater than 1/6,. Even if (17) is not a convolution
the amplitude of P(u) at large u comes from the tail of the function
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which multiplies the power spectrum in the integral. This leads
P(u) to scale as FT(c?) at large u. Coming back to ST/T(H), this
implies that 6T/T will scale at small 0 as o, does. Therefore it
seems quite reasonable to think that 6T/T will scale like 6° if
(11) is used instead of (13). In the forthcoming we will assume that
(11) does lead to a fluctuaion law:

8T/T(0) ~ a'26°°  for 6 <9, (19a)
and
OT/T(0) ~ 6T/T(6) for 0> 0, (19a)

with 6, ~ (2a)°* ~ 2.4a"-?°
In the same way, if 2a > 1, we will assume:

ST/T(0) ~ a'?0°¢  for 6 <6, (19b)
6T/T(6) ~ 1. for0 <6, (19b)
with 6, = 1/a.

The difference between (18) and (19) is small in regard of the
uncertainties on the value of a and on the assumed law (11).
Therefore this difference must not be taken too seriously.
However in the present discussion we will use (19) to evaluate
the numerical value of the effect.

As it will be seen, a is not expected to be larger than 0.1, so
that only (19a) will be useful in numerical estimations. It must
be noticed that we assume in (19a) that §T/T is not perturbed for
0 > 0,, while it is in fact. This means that we underestimate the
scale at which an effect is present, but on scales of the order of
0, or larger the perturbation is no more a power law. This leaves
little hope to the possibility of detecting such an effect on large
scales.

The angle 6, in (1) is taken of the order of \/Q_o 10" since we
assume that no reionisation occurred and that the cosmological
constant vanishes. In our units the value of a is obtained from (12):

Q

all? ~ 024555 SYXZ,.., Z*, Q4 N) (20)

Let us now apply our results to specific evolution scenarios. As
we mentioned in Sect. 3, large uncertainties lie in S and in Q,.
This implies that we are not able to give a firm prediction on
the amplitude of the effect. However we can get the typical nu-
merical value of a'/? in two different scenarios to show how sen-
sitive to the history of galaxy formation the effect is. Let us have
a look at a standard hierarchical scenario with €, ~ 0.1-0.3,
starting from an isothermal or cold dark matter spectrum. In
this scenario the structures are formed quite early at a redshift
larger than 10, so that the evolution law (10) is expected to hold
over a large range of redshifts. Therefore S is expected to be of
the order of one or larger, and the corresponding value of a can
be of the order of 0.1 or larger as Q. ~ Q, in this kind of scenario.

Now, let us have a look at the recent “biased galaxy forma-
tion” scheme (Bardeen, 1985; Kaiser, 1985). In this scenario the
preferred value of Q, is 1, but this needs the mass distribution
not to follow the light distribution:

6rnass = Qappélight Wlth Qﬂpp ~ 02

The high value of Q, implies that galaxy formation must have
occurred very recently, and we expect S to be smaller than one.
For instance if we choose S ~ 0.1, we obtain:

a ~ 0.001-0.01

5

However the values of a are not to be taken as firm values because
of the large uncertainties. In the following we will keep these
values as typical of the range of possibilities for the parameter
a in a realistic scenario. We can now evaluate the value of 6, for
which the effect is expected to be identifiable. In the first case:

0. ~ 2.4a"2% ~ 30"

while in the second case 0, is of the order of 2".

Clearly in the second case the gravitational lensing has
virtually no effect on the CBR fluctuations, while in the former
a noticeable difference is expected on subarcmin scales. Let us
now assume that the fluctuations do have an amplitude of 510~
on scales larger than 10’ (such a value is marginally consistent
with the observations of Uson Wilkinson, 1985). In such a case
the excess of fluctuations due to the lensing could be estimated

as:

for ~001  (6T/T)g<pr <1077

while

for ~0.1 (8T/T—8T/T)g<s0- < 1076

(taking y = 2. leads to scales that are two times larger).

As we investigate lensing effects that only make a correction
to the usual behavior, the resulting numerical values are very
small indeed even in a favourable case. However the difference
is of the order of the level of the fluctuations on these scales, and
the specific scaling law (6T/T ~ 6°%°6) may help to identify
such an effect from different other effects (as radio-sources
contamination). The main problem in our analysis remains the
uncertainties lying in the estimation of a and 7.

5. Conclusion

In this paper we have investigated the statistical effect of gra-
vitational random deviation on the fluctuations of the CBR. The
first result we obtained is the general formula that allows one to
calculate the correlation of the function perturbed by the means
of (5). This permits also to show that the variance of the function
is unchanged. When applied to the CBR our results show that
the amplitude of the fluctuations at large scale could not be
changed by gravitational lensing whatever its strength is. We
also obtained that sub-arc minute fluctuations can be significantly
altered, on this scale the amplitude of the primordial fluctuations
is expected not to be larger than 10~ 5, but an excess of fluctuations
of the same order can be present. Even if it is far of present ob-
servational possibilities, a sensitivity of 107% on such scales is
not excluded in the future. The specific scaling law makes hope
that such an effect can be identified among other contaimina-
tions. The possible detection of the lensing effect on the CMB
will then give us a potential tool to get direct information on
galaxy formation, as the amplitude is sensitive to the whole
clustered mass and to its evolution in the non-linear regime.

Appendix

In this Appendix we give the details of the derivation of Eq. (7).
The notation is slightly different from the text, and the deriva-
tion is done in the case of two dimensional space (the general-
ization is trivial). We recall that given a random function T(x),
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we want to derive the power spectrum of the perturbed function
T(x) = T(x + A(x)). The Fourier transform of T is:

T(k) = | T(y)e ™ dy
In this text we will also note indifferently FT(A) the Fourier
transform of the function A. The inverse Fourier transform is:

1 T iky
() =7 [ T(e™ dy
Setting y = x + A(x) in this formula, we get the expression of T(x):
- 1 oo
T(x) — T(x + )»(X)) =— fT(k)euk(x+).(x)) dk

4r
We can now obtain the Fourier transform of T:
2 ~ ) 1 ~ . .
— —iux —_ ikA(x), —i(u—k)x

T(u) = f T(oe ™ dx = f dk T(k) f e*H¥)g dx

Let us now define the auxiliary functions f,(x) by:
fix) = €2

(here k must be thought as a parameter rather than a point in
the Fourier space). The Fourier transform of the f is:

ﬁ(w) — 5 oM g —iax g

From this, we can now write T:(u) in the following way:
Foy = - (T0fiu — kydk
(w) = e f (k) filu —

This expression looks like a convolution but is not an exact con-
volution because of the dependence on k. However this way of
writing the formula helps in understanding the results.
We can now write down the power spectrum of T as:

1
16n*

B = [T = — [ TRTE) /i — Bfulu = k) dkdk

(A denotes the hermitian conjugate of 4). Assuming ergodicity,
we can use the random phase formula:

Bk = 4n5(k — k)C(k)

C being the autocorrelation of the process v. Then we get P(u):

P(u) = # f P(k)C(u — k) dk

where P is the power spectrum of T, and C, is the correlation
function of fi(x):

Cily) = (o™ M@l = (HAETNTE,

This last expression show that C,(y) is the characteristic function
of the random function A,(x) defined by:

A,(y) = Mx +y) — Ax)

This leads to a simpler formula for the power spectrum of T*
~ 1
P = 15 [ POOLFTO,0).u-y dk

In this integral the Fourier transform F T must be taken relatively
to the variable y, 6,(k) is the characteristic function of the field
Ayx).
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