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ABSTRACT 

A pattern-matching algorithm for two-dimensional coordinate lists is described. The algorithm matches 
pairs of coordinates in two lists based on the triangles that can be formed from triplets of points in each 
list. The algorithm is insensitive to coordinate translation, rotation, magnification, or inversion and can 
tolerate random errors or distortions. 

I. INTRODUCTION 

A problem that arises frequently involves matching points 
found in two lists of two-dimensional coordinates where the 
coordinate systems are not the same and the matching must 
be based on the identification of similar geometrical configu- 
rations of points in both lists. An algorithm is described that 
will accomplish such matching automatically, provided the 
two lists have a sufficient number of points in common, the 
distortion between the coordinate systems is not too severe, 
and the random coordinate errors are not too large. The 
algorithm is completely insensitive to any translation, rota- 
tion, magnification, or inversion between the two coordinate 
systems. The algorithm was developed to solve a particular 
problem in astronomical data analysis but should have appli- 
cation to a variety of problems in image processing. 

The astronomical problem involves the determination of 
stellar positions. From a photograph of a region of the sky, 
the positions of a number of stars are measured. Of course, 
these coordinates are in the system of the measuring engine. 
The celestial coordinates (equivalent to latitude and longi- 
tude) of the brighter stars are listed in a catalog. By identify- 
ing the measured stars with the catalog stars, the transfor- 
mation from the measuring-engine system to the celestial 
system can be determined and used to calculate celestial 
coordinates for all measured stars. The algorithm described 
below performs the identification step and is similar to the 
actions performed by an astronomer when attempting to vis- 
ually match two photographs of the same region of the sky. 
The astronomer looks for similar triangles among the bright 
stars. 

The objective of the algorithm is not to match all points in 
two lists of arbitrary size. If this is the application, as it is in 
the astronomical example mentioned above, the algorithm is 
applied to a subset (—20 points) of each list. From the 
matches found, a coordinate transformation is derived and 
used to place both lists in the same coordinate system. Other 
points in the lists can then be matched by conventional tech- 
niques, e.g., by matching points that are sufficiently close. 

In Sec. II below, the algorithm is described, while in Sec. 
Ill some examples of its application are presented. These 
examples serve to illustrate and quantify some of the state- 
ments made in Sec. II. 

II. THE ALGORITHM 

The algorithm contains several major steps: selecting the 
points to be matched, generating lists of triangles, matching 
the triangles, reducing the number of false matches, assign- 
ing matched points, and protecting against spurious assign- 
ments. Each of these is described in turn. 

a) Selecting The Points To Be Matched 

The first steps in the algorithm involve constructing the 
two lists that are to be matched. The algorithm provides for a 
tolerance e in the precision to which points are matched. If 
two points in a list are closer than e, then either could poten- 
tially be matched with the same point in the other list. This is 
clearly a confusing situation and all pairs closer than an 
elimination threshold é¡ are eliminated from each list. Both e 
and £ are user-specified parameters, but typical defaults are 
€ = 0.001 and Ç = 36, where € has been expressed in units 
such that the coordinates occupy the interval [0,1 ] in each 
dimension. This step also eliminates duplicates which would 
lead to divide-by-zero errors if allowed to remain. 

As will be seen below, some steps in the algorithm require 
computation time proportional to a high power of n, the 
number of elements in either list, so it is important to reduce 
the size of each list. For a typical minicomputer, n in the 
range 20-30 is a manageable number. In the case of the as- 
tronomical problem, the n brightest stars in each list can be 
selected. For other applications, other selection criteria may 
be appropriate. With some applications, it is possible that 
lists of unequal length may provide a higher probability of 
obtaining matches. The algorithm does not require that the 
lists be of equal length, but the following description and 
example are based on lists of the same length. 

b) Generating Triangle Lists 

Once the lists have been constructed, a list of triangles is 
generated for each list of points. Initially, the triangle lists 
include all possible triangles formed from any three points as 
vertices and contain the following information for each tri- 
angle: the three points forming the vertices arranged so that 
the side between vertices 1 and 2 is the shortest side, the side 
between vertices 2 and 3 is the intermediate side, and the side 
between vertices 3 and 1 is the longest side; the logarithm of 
the perimeter of the triangle; the orientation—whether ver- 
tices 1,2, and 3 are traversed in a clockwise or counterclock- 
wise sense; the ratio of the longest side to the shortest side; 
the tolerance in the ratio; the cosine of the angle at vertex 1; 
and the tolerance in the cosine. 

The angle at vertex 1 could be used in place of the cosine at 
vertex 1. If the angle were measured in a definite sense such 
as counterclockwise from the shortest to the longest side, it 
would carry the information about the sense of vertex tra- 
versal. In order that the algorithm be independent of coordi- 
nate inversion, the angle comparisons would have to be 
made after folding the angles into the interval 0°-l 80°. Deter- 
mining the sense of a triangle match (Sec. c below) would 
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require numeric comparison of angles rather than logical 
comparison of the directions of vertex traversal. The evalua- 
tion of the cosine and its tolerance [Equations (5) and (6) 
below] requires nothing more complicated than a square 
root, while trigonometric functions would be required to 
deal with the angle. For these reasons, the algorithm design 
is based on the sense of vertex traversal and the cosine of the 
angle at vertex 1, rather than the angle itself. 

The tolerances in the ratios and cosines are computed by 
treating the matching tolerance e as an independent error in 
each coordinate and propagating these errors through the 
expressions for the ratio and cosine. In particular, if 
(X2,y2), and (x3,y3) are the coordinates of vertices 1, 2, and 
3, then the ratio is given by 

R — r3//*2, (1) 
where 

= -y/A*! + Ayf, Ax3 = - xv Ay3 =y3 (2) 

r2 = yfKxf+ Ayf, Ax2 = *2 - Ay2 =y2-yv (3) 

and the tolerance in R is 

A =2*V| (4) 

where C is the cosine of the angle at vertex 1. C and its 
tolerance are given by 

C = ( Ajc3 Ax2 + Ay34y2 )/r3r2, ( 5 ) 

= 2S2e2(— 
U ^r2 ri i) 

+ 3C2-4 

(i 
(6) 

where S is the sine of the angle at vertex 1. 
Triangles whose ratio is too large are discarded from the 

lists. The ratio limit is a user-specified parameter; a typical 
limit is 10. The reason for this step is that a triangle with a 
large ratio often has a large ratio tolerance produced by a 
very close pair of vertices. As a consequence, many triangles 
in the other list must be examined in order to find a match, 
and even when a match is found, it is not likely to be a reliable 
match. With a ratio limit of 10, the number of triangles is 
reduced by a few percent, while the decrease in computation 
time due to the reduction in the number of triangles that 
must be searched is about a factor of 2. 

c) Matching Triangles 

The two lists of triangles are compared and matching tri- 
angles are identified whenever 

(Ra ~ Rb)2 <Íra + Írb> (7) 
and 

(^A ^b)2<^CA (8) 
where the subscripts A and B refer to the two lists. In the 
event that more than one triangle in list B matches a triangle 
in list A according to criteria (7) and (8), the closest is 
chosen. By construction, this procedure generates the same 
list of matched triangles independent of any translation, ro- 
tation, magnification, or inversion between the A and B co- 
ordinate systems. 

Matching is accomplished with a procedure similar to 
those used in sort-merge algorithms. Both lists are sorted in 

order of increasing ratio and the maximum ratio tolerance is 
determined for each list. Successive triangles are selected 
from list A and compared with a range of triangles from list 
B. Since the lists are sorted, the end of the range (for a given 
triangle from list A) occurs when an i?B is encountered that 
is too large to satisfy criterion (7) even when the maximum 
tolerances are used. Similarly, the start of the range is updat- 
ed (for the next triangle from list A) to the first RB that is 
just large enough to satisfy criterion (7) with the maximum 
tolerances. With this procedure, it is not necessary to com- 
pare every triangle in list A with every triangle in list B but 
only those within a range of RB proportional to e. 

Triangles may be matched in the same or opposite senses; 
that is, if both triangles of a matched pair have clockwise or 
both have counterclockwise orientations, the pair have the 
same sense, otherwise they have the opposite sense. 

The procedure generates both true and false matches. If 
the three pairs of matching vertices in a matched pair of 
triangles contain points that actually correspond, then the 
match is a true match, otherwise a false match. Assuming 
the points are randomly distributed, an estimate of the num- 
ber of false matches can be obtained by the following argu- 
ment. If there are n points in each list, there are nt 

= n(n — 1 ) (/z — 2)/6 triangles and 12«J potential matches 
(there are six ways to match the vertices and two ways to 
match the orientations of a pair of triangles). Consider a 
triangle from list A with vertices 1, 2, and 3 and a triangle 
from list B with vertices T, 2', and 3'. Conceptually perform 
a coordinate transformation on the A triangle so vertices 1 
and 2 line up exactly with vertices 1' and 2'. The algorithm 
finds these triangles to match (for this particular arrange- 
ment of vertices and orientation) if vertex 3 is close enough 
to vertex 3;. The ratio and cosine tolerances are constructed 
by assuming a tolerance of + 6 in each coordinate, so it is to 
be expected that the triangles match if vertex 3 falls within a 
square of side le centered on vertex 3\ The probability of 
this event is 4e2, so the average total number of false matches 
is 48«Je2. This is an approximate calculation and two effects 
have been ignored: edge effects and the fact that vertices 1 
and T and vertices 2 and T need match only to within the 
tolerance. Edge effects reduce the number of false matches 
slightly, while tolerances at the other vertices increase the 
number of matches. Both effects are difficult to calculate 
analytically, so the adopted expression for the number of 
false matches is 

nf = 4Sfny, (9) 

where /is a factor to be determined but may be expected to be 
in the range 2-3. Since nt is the upper limit to the number of 
matches, Equation (9) can only be applied when it predicts 
nf<nt. 

Since the number of triangles is roughly proportional to 
«3, it might be thought that the computation required for the 
triangle-matching procedure is proportional to n6. Since not 
all triangles in list B are compared with all triangles in list A, 
the matching procedure described above requires computa- 
tion proportional to n6e. For fixed e, the computation is still 
proportional to n6. Equation (9) shows that as n increases, e 
must decrease in proportion to «-3/2 in order that the true 
matches not be swamped by the false matches, so the re- 
quired computation is proportional to «4 5. 

d) Reducing The Number of False Matches 

The next step is the elimination of as many false matches 
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as possible. For this purpose, the previously computed loga- 
rithms of the perimeters are used. For a matched pair of 
triangles, 

logPa, - togpB = log M, ( 10) 
where pA is the perimeter of the triangle in list A, pB is the 
perimeter in list B, and A/represents the magnification of the 
coordinates between list B and list A. The magnifications for 
all the true matches are essentially the same, while those for 
the false matches have a broad distribution. The average 
log M and the standard deviation of the log M distribution 
are computed. Any match whose log A/ differs from the 
average by more than a factor times the standard deviation is 
discarded and the procedure is iterated until no more 
matches are discarded (the usual case), a preset iteration 
limit is reached, or all matches are discarded (in this case it is 
declared that the lists cannot be matched). The factor that 
multiplies the standard deviation is determined as follows. 
Let the number of same-sense matches (i.e., both triangles 
have the same orientation) be «+ and the number of oppo- 
site-sense matches be Since all true matches must be 
entirely the same sense (when there is no coordinate inver- 
sion between lists A and B) or entirely the opposite sense, 
estimates of the number of true and false matches can be 
obtained from 

mt = \n+ — n_\, (11) 

mf = n++n_—mt. (12) 

Then if the factor is 1; if 0.1/^ > mfi the factor is 3; 
and in between the factor is 2. This procedure begins by 
discarding many matches but discards very few once mt be- 
comes comparable with mf. Finally, the remaining opposite- 
sense matches are discarded if n+ > «_, or the same-sense 
matches are discarded if n_>n + . 

e) Assigning Matched Points 

At the end of the discard step there are still false matches, 
so it is not possible to take all pairs of points contained in the 
remaining matched triangles as matched points. Instead, the 
matched triangles are used to “vote” for matched points. 
Each matched triangle casts three votes—one for each pair 
of vertices. After all the votes are cast, the vote array is sorted 
from maximum vote to minimum vote. If no pair of points 
received more than one vote, it is declared that the list cannot 
be matched. Otherwise, successive pairs of points in the sort- 
ed array are assigned as matched pairs until one of three 
events occurs: the vote drops by a factor of 2, an attempt is 
made to assign a point that has already been assigned, or the 
vote drops to zero. The first event is the usual way assign- 
ments terminate when true matches have been found. This 
arises because points that are true matches are involved in 
many matched triangles and receive a large number of votes. 
On the other hand, a pair of points that do not match are 
contained in only a few of the (incorrectly) matched trian- 
gles and receive a small number of votes. 

f) Protecting Against Spurious Assignments 

The algorithm just described works quite well when the 
two lists contain a reasonable number of points in common. 
On the other hand, the algorithm almost always finds a few 
matches, even when the lists have no points in common. To 
guard against this possibility, the entire procedure is repeat- 
ed, beginning with the triangle generation step, but using 

only those points that were found to match in the first at- 
tempt. If fewer matches are found, then it is assumed that the 
original matches were false, and it is declared that the two 
lists cannot be matched. (This step is omitted if all points in 
the original lists were matched. ) 

III. EXAMPLES AND APPLICATIONS 

The examples in this section are taken from the astro- 
nomical application mentioned in the introduction. A pho- 
tograph of the sky was digitized on a 3150x3150 square 
grid. Positions and intensities of several thousand stars were 
computed from the digitized data. However, the positions 
are in units of digitizer pixels, and it is required to transform 
them to celestial coordinates. The positional accuracy for 
the brighter stars is about + 0.06 pixels. 

With knowledge of the approximate size and celestial co- 
ordinates of the center of the photograph, stars were selected 
from a catalog of bright stars with known coordinates. This 
yielded 165 stars. The celestial coordinates were projected 
onto a rectangular grid with origin at the approximate field 
center. The units are arcseconds and the range of “catalog” 
coordinates is ± 12 000 arcsec with typical accuracies of 
±0.3 arcsec. 

To determine the transformation from pixel coordinates 
to celestial coordinates, the catalog stars are identified with 
data stars so a polynomial fit of data coordinates versus cata- 
log coordinates can be performed. The pattern-matching al- 
gorithm is used to make the first identifications, after which 
a preliminary transformation is calculated and additional 
identifications are made. 

Accordingly, the 25 brightest catalog and data stars were 
selected for matching. Since the catalog intensities and data 
intensities are determined in different colors it is not expect- 
ed that all stars will match. 

Figure 1 shows the two sets of 25 stars after the coordinate 
transformation has been determined. The 18 stars shown as 

Fig. 1. Catalog and data stars used in the example. The data stars have 
been transformed to the catalog system. Circles indicate both a catalog 
and data star which the algorithm matched. Plusses ( + ) indicate un- 
matched catalog stars and crosses ( X ) indicate unmatched data stars. 
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h) 

Fig. 2. Distribution of cosines and ratios of the 
catalog triangles for the example discussed in 
the text. 

circles were identified by the pattern-matching algorithm. 
These are the only identifications possible, as all other data 
or catalog stars are well separated from each other. 

Figure 2 shows histograms of the ratios and cosines com- 
puted for the catalog list. With 25 stars in each list there are 
2300 potential triangles in each list. Since triangles with ra- 
tios greater than 10 were discarded, the algorithm actually 
used 2264 from the catalog list and 2216 from the data list. 
From Fig. 2 it appears that a smaller ratio limit would be 
acceptable, and indeed the algorithm finds the same matches 
even with a limit as low as 2. However, its performance is 
marginal, as some matches received barely enough votes (4) 

Log Magnification 

Fig. 3. Distribution of the logarithms of the magnifications of the 
matched triangles for the example discussed in the text. The cross- 
hatched histogram is the distribution remaining after false matches were 
eliminated. 

to be identified. The advantage of a lower ratio limit is a 
reduction of computation time in the triangle-matching step, 
in this case by almost a factor of 30. The setting of the ratio 
limit is a tradeoff between reliable performance and reduced 
computation time. 

Figure 3 shows the histogram of log M [Eq. ( 10) ] before 
and after false matches were discarded. Matching found 602 
same-sense and 218 opposite-sense matches. After discard- 
ing, there remained 397 same-sense matches of which three 
were false: discarding matches based on their magnifications 
is a powerful means of eliminating false matches. 

Since 820 matches is not negligible compared to 2216 pos- 
sible matches, the applicability of equation (9) is question- 
able. Nevertheless, if these data are used to estimate/, the 
result is 1.8, as shown in the first line of Table I. The other 
lines of Table I show the test number 6, the number of false 
matches, the number of true matches, and the resulting esti- 
mate for/as e is varied over two orders of magnitude. At 
large e, the number of false matches becomes comparable 
with the number of possible matches, resulting in small esti- 
mates of/ At small e, the statistics are poor. Nevertheless, 
the trend in Table I allows the conclusion that/~3 is the 
appropriate value for equation (9) when small numbers of 
false matches are predicted. 

Table I also provides insight into the effects of coordinate 
distortions on the performance of the algorithm. (For these 
data, random coordinate errors are not a problem as they are 
always smaller than the smallest € in Table I.) The photo- 
graphic data contain distortions which reach 0.0017 (ex- 

Table I. Matching as a function of e. 

Test False True 

0.001 
0.00005 
0.0001 
0.0005 
0.002 
0.005 

426 
2 
7 

150 
881 

1774 

394 
11 
31 

217 
479 
120 

1.8 
3.3 
2.9 
2.5 
0.9 
0.3 
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Rank 

Fig. 4. Vote distribution for the example discussed in the text. 

pressed in the same units as e) at the edge of the field. For 
small e, the algorithm can only match small triangles unaf- 
fected by distortion. As € increases, the algorithm is less sen- 
sitive to distortion and finds more matches. However, at the 
largest e in the table, there are so many false matches that 
they begin to overwhelm and hide the true matches. The 
choice of € represents a tradeoff between reliable perfor- 
mance and the ability to deal with distortions. 

Figure 4 shows the vote array resulting from test 1 in Ta- 
ble I. There were a total of 1141 votes cast, of which only nine 
were for incorrect pairs of points. The incorrect votes came 
from three incorrectly matched triangles. Figure 4 illustrates 
the point made in Sec. lie that when correct matches are 

found there is a very sharp transition in the vote between 
correct and incorrect matches. 

To test the sensitivity of the algorithm to the fraction of 
stars that actually match, test 1 was repeated with the same 
conditions except that a subset of the catalog stars were re- 
distributed at random over the area of the photograph. The 
algorithm found all correct matches and no incorrect 
matches with as few as 6 of 25 stars in common. The algo- 
rithm failed when there were only 5 of 25 stars in common. 
The exact point at which the algorithm fails must depend to 
some extent on the data and on the choice of parameters. 
These tests indicate that the algorithm can be expected to 
work reliably for lists with only 50% of the points in com- 
mon and it may work with as few as 25% of the points in 
common. 

The algorithm was tested with the same measured stars 
but with catalog stars selected from a different area of the 
sky. In this case no matches are expected and none were 
found. No pair of stars received more than one vote. 

For the tests described in this section, the algorithm was 
implemented in fortran on a VAX 11/750 with the VMS 
3.4 operating system. Representative computation times are 
taken from test 1 in Table I. The times (in seconds) required 
for the several steps of the algorithm were: generating and 
sorting the triangle lists, 21.4; matching triangles, 131.7; dis- 
carding false matches, 2.6; voting 1.2; and repeating the al- 
gorithm on the matches found, 12.2. 

IV. CONCLUSION 

An algorithm has been presented for matching two-di- 
mensional lists of coordinates. The algorithm has been 
shown to work well in its intended application and may be of 
use in other two-dimensional pattern-matching applica- 
tions. 
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