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ABSTRACT 
The possibility of observing general-relativistic apsidal motions outside the solar system in well-detached 

eclipsing binaries is reviewed, taking into account the expected influence of the various parameters involved. A 
procedure to select candidate systems among eccentric eclipsing binaries is presented together with a list of 
suggested targets. A simplified method to obtain the apsidal motion rates from the observation of times of 
minimum light is proposed. 
Subject headings: relativity — stars: eclipsing binaries 

I. INTRODUCTION 

The observation of a secular displacement of the periastron 
in eccentric orbits has been pursued for long time as one of the 
best ways to test the equations of motion given by general 
relativity. A significant check of this theory was actually pro- 
vided when the new equations were successfully applied to the 
observed perihelion advance of the planet Mercury. The same 
relativistic effect could be also detected later in some less favor- 
able cases within the solar system (e.g., see Weinberg 1972, p. 
198). The observation of general-relativistic apsidal motions 
exhibited by stellar-size objects outside the solar system has 
been shown to be possible in some close binaries. The present 
paper intends to contribute to the study of the observational 
and physical conditions that enhance such possibilities. 

The observable apsidal motions are known to be due to the 
contribution of a classical term (caused by the gravitational 
quadrupole moment induced by rotation and tides) as well as 
the general-relativistic term. Up to the level permitted by the 
uncertainties of the observations, both contributions are sepa- 
rable, and the observational apsidal motion rate is expressed 
by 

CO = C0N + C0R , (1) 
where cbN denotes the classical or Newtonian term and œR is 
the relativistic contribution. The period of the periastron rota- 
tion, U, is furthermore given in days by 

U = 360P/cb , (2) 

where œ is expressed in degrees per cycle and P is the anom- 
alistic period expressed in days. 

From a theoretical point of view, Levi-Civita (1937) showed 
that the equation originally found for the apsidal motion 
period of a test particle in the field of a mass point is also valid 
in the case of a binary system with two components of similar 
masses if expressed in terms of the relative orbit. The general 
conditions under which this is true are currently fulfilled in 
well-detached binaries to the required level of accuracy. This 
result was later confirmed and extended by Robertson (1938) 
and Einstein, Infeld, and Hoffman (1938), but it was, no doubt, 
the discovery of the binary pulsar by Hulse and Taylor (1975) 
that increased the interest in the study of two-body effects in 
general relativity. In particular, Barker and O’Connell (1978) 
carried out the extension of the equations to include axial 
rotation of the components. 

From the observational point of view, the application of 

theoretical equations to actual cases of eclipsing binaries goes 
back to the work by Rudkjobing (1959), who pointed out DI 
Her as a good candidate for the measurement of relativistic 
effects in its orbit. Koch (1973) proposed additional binary 
systems some years later. The survey, nevertheless, was far 
from complete, as noted by Koch, since only five candidates 
were included. In another paper, Koch (1977) analyzed the 
apparent period variations using the available times of 
minimum for those binary systems. In general, the periods of 
periastron revolution were found to be very long compared to 
the time intervals covered by the observations. At that time, 
the required accuracy to make a confident comparison 
between theory and observations could not be reached. Only 
for two systems of the sample the period variations were found 
to agree in sign, although not in amplitude, at the 1 cr level. 

Notwithstanding, the picture today is found to be quite dif- 
ferent because of the much more accurate data provided for 
some detached eclipsing binaries (Andersen, Clausen, and 
Nordstrom 1984), the improvement of the methods for the 
apsidal motion determination (Giménez and Garcia-Pelayo 
1983), and the present knowledge of the behavior of the inter- 
nal density distribution for stars along the main sequence 
(Giménez and Garcia-Pelayo 1982; Jeffery 1984). Concerning 
this latter point, needed to correct the observed apsidal motion 
periods for the expected classical contribution, new computa- 
tions throughout the H-R diagram of the internal structure 
constants kj have been recently accomplished by Hejlesen 
(1982) from his own evolutionary tracks (Hejlesen 1980). 
Finally, the importance of enlarging the number of available 
minima for candidate systems makes worthwhile a redis- 
cussion of the present status of relativistic periastron advances 
in eclipsing binaries so that a reliable list of targets can be 
obtained. 

In this paper we present the procedure and equations to 
identify eclipsing binaries suitable for the study of relativistic 
apsidal motions and an improved method to analyze the 
observations. The first positive detections which support the 
work summarized in this paper have been published as 
separate contributions, but some details will be given in § VII. 

II. THE RELATIVISTIC CONTRIBUTION 

The secular displacement of the periastron in a binary star 
was first derived by Levi-Civita (1937) in terms of the total mass 
of the system and the “ semilatus rectum ” of the orbit. For this 
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purpose, the equations of motion obtained within the frame of 
general relativity under the first post-Newtonian approx- 
imation were adopted. Introducing directly observable par- 
ameters such as the orbital period, P, and the eccentricity, e, 
the relativistic apsidal motion, expressed in degrees per cycle, is 
given by 

mR = 5.45 x 10 
1 

(1 - e2) 
ml 4- m2 

2/3 
(3) 

where nti denotes the individual masses of the components in 
solar units. This equation becomes a convenient expression to 
compare theoretical predictions with the observations since e, 
P, and the total mass M = + m2 can be accurately deter- 
mined in double-lined eclipsing binaries. Nevertheless, it may 
be useful to take the semiamplitude of the radial velocity curve, 
K = + X2, since this permits us to write 

cbR = 1.2 x 10"8X2 sin“2 i, (4) 

if K is expressed in km s- ^ 
It is easily noticed thus that, in principle, the rate of perias- 

tron revolution will be faster for more massive systems with 
shorter periods. For nondegenerate stars, these conditions 
imply close components, but increasing proximity of the stars 
is also the origin of larger tidal distortions as well as faster 
axial rotation. In such cases, the term cbN in equation (1) 
becomes dominant as a result of the perturbations caused by 
polar flattening and tidal distortion, making less determinate 
the relativistic effect. Furthermore, from a purely relativistic 
point of view, the validity of the equations of motion leading to 
the simple result expressed by equation (3) would be severely 
restricted. Finally, observational selection indicates that only 
well-detached binaries with moderate masses can be expected 
to show a slow rotation and a mass pointlike behavior. 

In order to have a more detailed idea of the existing relation 
between the theoretical log cbR and the observable ratio M/P as 
indicated by equation (3), we have plotted values of this latter 
ratio from 0 to 1 in Figure 1. Different assumptions on the 
orbital eccentricity, namely, 0.05, 0.25, and 0.50, have been 
taken to show the slight increase of the apsidal motion rate 
with e which only becomes relevant for very high eccentricities. 

It may be assumed that the apsidal motion becomes unde- 
tectable for values below 0.0001 degrees per cycle. Figure 1 
shows that systems suitable for relativistic studies should have 
orbital periods P < 10M. For the binaries selected in § V, the 
elements (e, P, and M) involved in the evaluation of equation 
(3) and their expected errors according to results for normal 
detached binaries (Popper 1980) suggest that the most accurate 
estimations will not be far from <7(cb|j) = 0.0001 degrees per 
cycle. This is also around the limit of the observational preci- 
sion of periastron advances derived from the analysis of times 
of minimum as shown in § VI. Finally, the values quoted in 
Table 4 (§ VII) are good examples of these estimations. 

Because of observational selection effects, most eclipsing 
binaries are known to verify this condition for the orbital 
period and the total mass, suggesting that the relativistic 
apsidal motion rate will be generally larger than the observa- 
tional threshold value. A compromise is thus implied between 
periods long enough to avoid important classical contributions 
and short enough to verify the above given condition of detect- 
ability. 

Let us now consider some deviations from the assumptions 
used to derive equation (3). Adopt the second-order post- 
Newtonian approximation for the relativistic equation of 
motion. The additional contribution to the relativistic apsidal 
motion is much smaller than the expected mean errors 
involved in the evaluation of equation (3), remaining com- 

Fig. 1.—Relativistic apsidal motion rates for orbital eccentricities 0.05 (1), 0.25 (2), and 0.50 (3) 
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pletely negligible for normal nondegenerate stars (Giménez 
and Costa 1981). To estimate orders of magnitude, the equa- 
tions obtained by Antonacopoulos and Tsoupakis (1979) have 
been used which only neglect terms of the order of c ~5 in the 
construction of the Hamiltonian (in order to avoid the loss of 
energy in the form of gravitational waves). 

Concerning the possible perturbations of the relativistic 
orbit due to axial rotation, the equations given by Barker and 
O’Connell (1974) and expressed in a simpler form by Esposito 
and Harrison (1975) can be rewritten in terms of the angular 
momenta of the components, Jh as 

~20¿7(Jl + ‘/2)- (5) 

This permits us to predict that the spin-orbit relativistic contri- 
bution is proportional to (v/c)2, where v denotes the equatorial 
rotational velocity. The term will thus remain very small even 
in fast rotating pulsars, and become negligible in slow rotators 
like the components of detached binaries belonging to the 
main sequence. 

III. THE NEWTONIAN CONTRIBUTION 

It is well known (Cowling 1938; Sterne 1939) that when the 
components of a binary system do not behave like mass points, 
the line of the apses has a secular rotation whose period, U, is 
given by 

L/= 3^ = Cl^21 + C2^22 ’ ^ 

under the assumptions of coplanarity of the orbital and equa- 
torial planes as well as no tidal lag (Kopal 1978). The /c2¿ are 
known as the second-order internal structure constants for 
each component which can be evaluated from theoretical 

models by numerical integration of the Radau equation for any 
particular distribution of the internal density. Moreover, a 
weighted mean value of both components can be estimated by 
observing fast apsidal motions in eclipsing binaries with negli- 
gible relativistic effects (Giménez and Garcia-Pelayo 1982). 
The computer-constructed stellar models could thus be tested 
satisfactorily against observational evidence within the main 
sequence. The coefficients are known functions of the mass 
ratio, the orbital eccentricity, and the relative radii (with 
respect to the semimajor axis of the orbit) and are expressed as 

C; = [15/(e) + yfg(e)'] + yfg(e)j , (7) 

where g(e) and /(e) are functions of the eccentricity alone given 
by Kopal (1978, eq. [3-53]) and ^ denote the ratio of the 
angular velocity of axial rotation to that of orbital motion. 

Adopt a pseudo-synchronization of the rotational velocity 
for eccentric orbits, as suggested by tidal theories (Hut 1981) as 
well as observational evidences (Giménez and Andersen 1983), 
corresponding to maximum angular velocity being achieved at 
periastron. We can write as a good approximation to the 
actual ratio, 

and thus 

Ci=r{f(e,q), (9) 

where q is the mass ratio m2/m1 and f(e, q) is a new function 
given by equations (7) and (8) which can be easily evaluated 
from observable parameters. In Figure 2, we have plotted this 
function for three values of the mass ratio against the orbital 
eccentricity. 
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It should be noted that in equation (6) we have only con- 
sidered the second-order surface harmonics in the tidal distor- 
tion. For well-detached binaries, rt is always small and higher 
order terms (e.g., j = 3, 4) become irrelevant because of the 
relation cß oc rfj+ ^ while the corresponding constants, kjh also 
decrease very rapidly for increasing values of j (Cisneros-Parra 
1970). 

These equations are important for isolating the relativistic 
effects in the observed apsidal motion rates according to equa- 
tion (1). To have a better idea of the classical or Newtonian 
contribution, predicted values of log <hN are plotted versus 
relative radius in Figure 3 under the assumption of identical 
components. Three values of the internal structure constant 
have been taken (0.005, 0.0075, and 0.010), corresponding 
approximately to main-sequence models of 1.8, 3.2, and 5 solar 
masses, respectively, following the calculations by Hejlesen 
(1982) for a chemical composition (X, Z) = (0.70, 0.02). The 
orbital eccentricity has been taken to be 0.05, but, in order to 
show also the dependence on e, the loci corresponding to the 
values 0.25 and 0.50 have been plotted for the internal struc- 
ture constant 0.0075 only. 

Equation (9) indicates the importance of using eclipsing bin- 
aries in any study of relativistic apsidal motions where it is 
necessary to correct for classical terms. The relative radii 
should be accurately known from good photoelectric light 
curves since statistical estimations of the radii in terms of the 
spectral type, even for main-sequence stars, are of low quality 
(Shallis and Blackwell 1980). Unfortunately, the probability of 
finding eclipsing systems decreases for increasing values of the 
orbital period, thus reducing the sample of probable candi- 
dates for the study of relativistic apsidal motions. 

If synchronized axial rotation or coplanarity of the orbital 

and equatorial planes has not been achieved, the dynamical 
behavior of the system may be very different, as discussed by 
Kopal (1978), and the apparent period variations will not be 
caused only by the periastron displacement expressed as equa- 
tion (6). The time scales for tidal evolution will depend on the 
masses and evolutionary stage of the components (Zahn 1977). 
In our sample of candidates, moderate orbital periods corre- 
spond necessarily to later type systems in order to keep the 
relative radii small enough. These binaries, moreover, present 
larger tidal dissipation and remain a longer time within the 
main sequence, thus making unimportant the above men- 
tioned dynamical effects. Furthermore, when the orbital period 
is relatively long, tidal and rotational distortions are expected 
to be very small. Thence only the relativistic contribution, if 
any, will be detectable, and the asymmetries in the stellar con- 
figurations would not have any observable effect. 

On the other hand, Papaloizou and Pringle (1980) suggested 
that resonances of the tidal perturbation with stellar oscillation 
modes may have considerable influence on the rate of perias- 
tron advance. In our cases, important relativistic contributions 
(with respect to the total apsidal motion) require small relative 
radii, always <0.1, while the mentioned effect would only be 
relevant for r > 0.2 (Pringle 1983). 

IV. COMPARISON OF BOTH CONTRIBUTIONS 

According to equation (6) and using Kepler’s law, we have 
that cbN OÇ- p-10/3. i e , the Newtonian apsidal motion 
decreases much faster than the relativistic term given by equa- 
tion (3) and shows a dependence d>R oc P~2/3 with the orbital 
period. As a consequence, we can expect to have a wide range 
of periods for which œ remains detectable and is dominated by 
the relativistic contribution. 

Fig. 3.—Newtonian apsidal motion rate for equal components, e = 0.05, and internal structure constants 0.0050 (1), 0.0075 (2), and 0.0100 (3). Dashed lines 
represent k2 = 0.0075 for orbital eccentricities 0.25 (2') and 0.50 (2"). 
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In order to attain a deeper insight into the physical condi- 
tions to be fulfilled by candidate systems, let us now consider 
the predicted ratio of the relativistic contribution to the clas- 
sical one. As previously, we will assume a binary system with 
identical components. In our case, this is statistically a good 
approximation if the candidate systems should be moderate- 
mass double-lined eclipsing binaries (Batten 1973). Then we 
can find the ratio, 

(10) 

where œR and ¿>N are expressed as equations (3) and (6), respec- 
tively. This ratio will present a dependence on the orbital 
period of order of P8/3 and will thus increase with the separa- 
tion between both components. Under the assumption of iden- 
tical stars, equation (6) can be rewritten using equation (7) and 
Kepler’s third law in the form 

. 0.17/(e, 1) 
"N (mp2)5/3 k2R

5 , (11) 

again expressed in degrees per cycle. The quantity R is the 
radius of each component in solar units,/(e, 1) is a function of 
the orbital eccentricity alone as defined in equation (9), m = 
mi = m2 and k2 = k21 — k22. Finally, the ratio (10) will be 
given by 

0.005 m7/3 

F(e) k2 R5 
p8/3 (12) 

where F(e) = (1 — e2)f(e, 1). 
To estimate orders of magnitude for this ratio we can now 

adopt the mass-radius relation for main-sequence stars given 

by Habets and Heintze (1981) after a thorough statistical study 
of empirical results in the analysis of double-lined eclipsing 
binaries, in the form, 

R = 1.125m0-646 , (13) 

while the relation k2R
2, suggested to be approximately con- 

stant during main-sequence evolution by Giménez and Garcia- 
Pelayo (1982), takes the form 

/c2R
2 = 0.0047m1-585 , (14) 

as calculated using the results from theoretical models for dif- 
ferent opacities and chemical compositions (Cisneros-Parra 
1970; Stothers 1974; Hejlesen 1982). 

As a consequence, equation (12) can now be rewritten as 

0.75 
m12F(e) 

p8/3 (15) 

In Figure 4, we have plotted the predicted value of this ratio 
against the orbital period for an eccentricity of 0.05 and three 
values of m (1.8, 3.2, and 5.0 solar masses). The relevance of the 
orbital eccentricity is shown for the 3.2 solar masses model and 
values of e = 0.25 and 0.50. 

As predicted, the ratio of both contributions defined by 
equation (15) increases rapidly with period while the total 
apsidal motion decreases. We have therefore also plotted in 
Figure 4 the corresponding values of cb, given by equation (1), 
for equal components, using equations (3) and (11) for the 
masses and orbital eccentricities adopted before. 

V. THE CANDIDATE SYSTEMS 
From the data derived in previous sections, it is clear that a 

minimum value for œ will fix a maximum orbital period and a 

Fig. 4.—Total apsidal motion rate (descending lines, left-hand ordinate) and relativistic to classical contribution ratio (ascending lines, right-hand ordinate) vs. 
orbital period. Continuous lines labeled 1, 2, and 3 correspond to equal components, e = 0.05, and values of m = 1.8, 3.2, and 5.0, respectively. Dashed lines 
correspond to equal components and m = 3.2 solar masses but orbital eccentricities e = 0.25 (2') and 0.50(2"). 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
85

A
pJ

. 
. .

29
7.

 .
40

5G
 

GIMÉNEZ Vol. 297 410 

minimum value of the ratio a will give the lower limit to P. 
Thus, it is convenient to adopt the following observational 
constraints : 

i) The ratio (eq. [12]) should be larger than 0.25 to con- 
sider important the relativistic contribution according to the 
expected errors of the classical term; 

ii) The total apsidal motion rate should be well above the 
detection limit for the expected accuracy of photoelectric 
measurements, i.e., 0.0003 degrees per cycle, or 3 a. 
Under these constraints, it is easily shown that 

Pmm « 0.66m°'45F(e)3/8 days , (16) 

i’max ~ 4.9m(l - e2)~3/2 days , (17) 

and, for a given mass and orbital eccentricity, a real binary 
should obviously verify 

P < P < P (181 

In Table 1, we give the estimated values of Pmin and Pmax 

derived from equations (16) and (17) for a range of masses and 
orbital eccentricities. 

Accordingly, we have made a survey among all known 
eccentric eclipsing binaries searching for systems which fulfill 
the mentioned requirements. For this purpose, an updated list 
of eclipsiing binaries with deep enough eclipses and eccentric 
orbits has been compiled from different sources (e.g., Batten 
1973; Wood 1963; Batten, Fletcher, and Mann 1978; Wood et 
al. 1980). Out of 115 stars, 36 candidates have been selected. 
These observational targets for the detection of relativistic 
apsidal motion are listed in Tables 2 and 3. Orbital period, 
visual magnitude, and spectral types for each system are given 
in Table 2 which includes those binaries for which the existing 
information indicates its probable membership. Table 3 con- 
tains those systems for which available information is still 
insufficient but will remain most probably within the list of 
candidates. 

Continuous monitoring of these eclipsing binaries in order 
to get times of minimum should be most rewarding. 

VI. DETERMINATION OF THE APSIDAL MOTION RATE 

A general method for the analysis of apsidal motions in 
eclipsing binaries has been recently described by Giménez and 
Garcia-Pelayo (1983; hereafter Paper I). In the study of rela- 
tivistic periastron advances, there is special interest in the use 

TABLE 1 
Minimum and Maximum Orbital Periods for 

Selection of Candidates 

e 

m Period 0.0 0.1 0.2 0.3 0.4 0.5 

2.0......... PmiI 
^ma 

3.0  Pmil 
P 

Pmax 
5.0  Pmin 

P 

2.3 2.4 2.6 
7.4 7.5 7.8 
2.6 2.7 3.0 
9.8 10.0 10.4 
3.1 3.3 3.5 

14.7 14.9 15.6 
3.6 3.7 4.0 

19.6 19.9 20.8 
3.9 4.1 4.5 

24.5 24.9 26.1 

3.0 3.5 4.4 
8.5 9.6 11.3 
3.4 4.0 5.0 

11.3 12.7 15.1 
4.0 4.8 6.0 

16.9 19.1 22.6 
4.6 5.5 6.9 

22.6 25.5 30.2 
5.1 6.0 7.6 

28.2 31.8 37.7 

TABLE 2 
List of Candidates for Study of 

Relativistic Apsidal Motions 

Number Name P V Spectra 

1   BW Aqr 
2    CD Aqr 
3.. .  V889 Aql 
4  V459 Cas 
5.. ..  EK Cep 
6  TVCet 
7..   V541 Cyg 
8    VI143 Cyg 
9   DIHer 

10   AIHya 
11   KMHya 
12   RW Lac 
13    SS Lac 
14   ES Lac 
15   V345 Lac 
16   RRLyn 
17   TZ Men 
18   UX Men 
19    EWOri 
20   GGOri 
21    VV Pyx 
22   EOVel 
23   EQ Vul 

6.71969 10.2 F7 + 
4.83772 10.1 A5 + 

11.12088 8.7 B9 + 
8.45829 10.3 B9 + 
4.42780 8.2 A0 + F9 
9.10329 8.7 F2 + F5 

15.33795 10.2 A0+ 
7.64076 5.9 F5 + F5 

10.55017 8.3 B4 + B5 
8.28968 9.7 F0 + F5 
7.75050 6.3 A3m + 

10.36922 10.5 F2 + 
14.41629 10.1 B7 + 
4.45940 11.4 A2 + 
7.49186 11.1 B8 + 
9.94508 5.6 A7m + F3 
8.56900 6.2 A0 + F2 
4.18110 8.2 Gl + Gl 
6.93680 10.4 F8 + 
6.63147 10.8 A2 + 
4.59618 6.6 A1 + A1 
5.32962 11.1 A0 + 
9.29716 11.5 B8 + 

of Taylor expansions of the general equation (16) of Paper I 
because no previous knowledge of co is needed (as required by 
differential corrections), nor is a large coverage of the apsidal 
motion cycle (as needed for Fourier analysis). 

A particular case of the procedure given by Giménez and 
Garcia-Pelayo (1983) is found when no curvature is detected in 
the residuals from equation (29) of Paper I. Then, the first- 
order Taylor expansion, given by equation (25) of Paper I, 
perfectly reproduces the observations within their mean errors, 
and no iteration is needed (i.e., the introduction of E2 does 
not improve the variance of the linear fit). This simplification 
will be only true when P/U becomes a very small quantity 
as expected in the case of relativistic apsidal motions. 

The linear least-square fitting will provide “ instantaneous ” 
periods, P^ and P2, separately for primary and secondary 
eclipses directly related to the partial derivatives of the corre- 
sponding expansions of equation (16) of Paper I. Thus we can 
define 

^ = (^i + Pi)ß , (19) 

TABLE 3 
Additional Probable Candidates 

Number Name P 

1.. ..  AA Ara 8.52070 
2   GR Car 17.13952 
3    V383 Cen 6.78549 
4.. .  V384 Cen 12.63524 
5  CO Cep 4.13759 
6.  UW Cru 6.35453 
7   UX Cru 12.29745 
8   V501 Mon 7.02117 
9.. ..  HH Nor 8.58313 

10  DD Pup 13.74280 
11...   VI049 Sgr 12.04410 
12   YZVel 5.48834 
13   FQ Vul 6.26240 
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and 

AP = (P, - P2)/2 , (20) 

which will become zero only for the cases when co = 0° or 180°. 
From the notation and definitions adopted in Paper I, the 

following expressions can be deduced : 

P = PS + 
co 

360 
P(P2 cos 2co + P4 cos 4co) , (21) 

AP = 
\360 

P(F1 sin co + F3 sin 3co + P5 sin 5co) , (22) 

where Ps = P(1 — cb/360) is the sidereal period, and 

3e3 

p! = e(2 -h cot2 0 — — cot2 i + — (2 + esc2 i) cot2 i esc2 i 

8 
[cot2 i 4- 2 cot2 i esc2 / — cot2 i esc6 i(2 + esc2 /)] ? 

F2 = ^2(cot2 i esc2 i + 2 cot2 i + I) 

+ e4[¿ — cot2 i + j cot2 i esc4 ¿(2 + esc2 i)] 

P, = 
3^ 
4 

(2 + esc2 i) cot2 i esc2 i + 3 cot2 i + - 

+ — [2 — 3 cot2 i + 3 cot2 i esc4 i 

x (2 esc2 i + esc4 i +!)]>, 

P*= - 

P< = 
5^ 
16 

+ cot2 i(4 + esc6 i + 2 esc4 i + 3 esc2 z’) 

+ cot2 z(5 + esc8 i 

]• 

+ 2 esc6 z + 3 esc4 z + 4 esc2 z) 

All the Fj functions can be directly evaluated with the ele- 
ments derived from the analysis of the light curve. Moreover, 
for small values of cb, the position of the periastron given by the 
light curve can be taken as a good mean value to evaluate all 
the cos (jeo) and sin (jco). Thus, equations (21) and (22) can be 
solved for the anomalistic period, P, and the periastron dis- 
placement rate, co. Terms up to e5 have been kept throughout 
so that the present procedure supersedes previous methods. 

A rough simplification of the above given equations was 
presented in the analysis of V889 Aql (Giménez and Scaltriti 
1982) using an expression of AP which neglects terms of the 
order of e3 and taking P & P. This approximation can still be 
used to estimate the uncertainties of the derived apsidal 
motion parameters. Considering only the main contributions, 
it can be easily seen that 

m^S{AP).S{e) 
co ~ ÁP e ' [ } 

The accuracy of co will thus depend, as expected, on the actual 
position of the periastron, i.e., on the possibility of discrimi- 
nating between the linear periods P1 and P2. 

The validity of the applied equations was already discussed 
in § III and Paper I, while the expansion in terms of the eccen- 
tricity has been taken up to e5, which is found to be enough for 
most practical cases. Nevertheless, for highly eccentric eclips- 
ing binaries, the existing asymmetry between the ascending 
and descending branches of the eclipses could affect the accu- 
racy of the determination of times of minimum. To avoid this, 
only the lower part of them should be used together with a 
parabolic fitting procedure instead of the traditional Kwee and 
Van Woerden method (Andersen and Giménez 1985). The 
importance of such asymmetries can be evaluated in any parti- 
cular case by using the equations given by Kopal (1959), and 
the value is expected to be a maximum when the periastron is 
around 0° or 180°. 

VII. CONCLUSIONS 

There has been shown in the preceding sections the actual 
possibility of observing general-relativistic effects outside the 
solar system in eclipsing binaries. Small relative radii for the 
component stars have been found to provide the main con- 
straint for the selection of observational targets. In addition, it 
is clear that relatively low mass systems with later type com- 
ponents are better suited for this kind of study than the early- 
type binaries previously suggested. A list of observational 
candidates for the detection of relativistic apsidal motion is 
given. 

The sample of eclipsing binaries showing significant rela- 
tivistic contributions with the available information, although 
certainly small up to now, is in perfect agreement with the 
outlined characteristics of observational targets. In Table 4, the 
main results are given from the study of four eclipsing binaries 
for which the relativistic term has been found to be larger than 
25% of the total apsidal motion. The observed periastron dis- 
placement rates are indicated in column (3). The values predict- 

TABLE 4 
Observed and Predicted Apsidal Motion Rates 

Name P cbobs cbpre a References 
(1)  (2) (3) (4) (5) (6)  

V889Aql   11.120886 0.00048 0.00048 79 Giménez and Scaltriti 1982 
7 15 16 

EK Cep  4.427807 0.00107 0.00096 46 Giménez and Margrave 1985 
4 32 36 

VI143 Cyg    7.640757 0.00071 0.00088 43 Giménez and Margrave 1985 
1 4 29 

VV Pyx   4.596198 0.00142 0.00158 32 Andersen ci a/. 1984 
5 45 22 
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ed using equation (1) and the a ratio in percent are given in 
columns (4) and (5), respectively. References to the detailed 
analyses are also given, and, in all cases, the adopted procedure 
for the determination of the apsidal motion period is more or 
less based on the equations given in § VI. It can also be seen 
that the agreement between theoretical predictions and obser- 
vational results is excellent within their mean errors. Neverthe- 
less, the overall significance of these results must be evaluated 
within a larger context when the number of cases with rela- 
tivistic apsidal motions has significantly increased. 

In any case, it can certainly be concluded that monitoring of 
the proposed observational targets in order to enlarge the 
sample of reliable determinations of relativistic periastron 
advances among eclipsing binaries will provide an important 
example of the significance of relativistic effects in stellar 
astronomy. 
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