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Summary. The Hamiltonian particle formalism for non-linear
adiabatic radial stellar oscillations (Perdang and Blacher, 1982,
1984) is extended to non-radial oscillations, using a variational
principle of fluid mechanics. There are several advantages of a
variational formalism over the direct approach in which the linear
modes are inserted into the equations of motion: (a) The
Hamiltonian nature of the equations provides theoretical infor-
mation about the nature of the solutions (existence of chaotic
motions) and allows a simple test for numerical integrations
(energy conservation). (b) Mass and entropy conservation can be
directly built in the formalism; therefore no Lagrange multipliers
(i.e. additional unknown fields) are needed for these constraints,
and solutions truncated to the lowest non-linear order obey these
two conservation laws exactly. (c) As a further conserved quantity,
zero-circulation (i.e. (dr-u= 0) for all closed curves & lying on
€

surfaces of constant specific entropy can be incorporated; with this
restriction, we not only simplify the structure of the resulting non-
linear equations, but we also suppress all stationary components of
the motion. (d) The formalism allows for the development of a
toroidal velocity component during time evolution; the direct
approaches considered so far have discarded toroidal components.

Besides the formalism, various observational facts suggesting
non-linear phenomena are reviewed and indirect theoretical
arguments pointing towards non-linearities in non-radial stellar
oscillations are presented.

Key words: variable stars — stellar oscillations — solar oscillations —
non-linear oscillations — chaos

1. Introduction

Until recently, finite (i.e. non-linear) non-radial global motions in
stars have been viewed as a topic of mathematical speculation
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rather than of astronomical relevance. While infinitesimal non-
radial pulsations received a lot of attention — their study preceded
the investigation of radial pulsations [Thomson (Lord Kelvin),
1863] —, there has been little observational motivation for
exploring the role of non-linear effects. It is the purpose of the first
part of this paper to show that this view may require revision on
two accounts. On the one hand we present (a) a summary of
arguments of an observational character, suggesting non-linear
phenomena among the non-radial oscillations (Sect. 2.1), and (b) a
collection of indirect theoretical arguments pointing towards
hidden non-linearities (Sects. 2.2, 2.3). On the other hand we
indicate how the general adiabatic non-radial non-linear stellar
motion problem can be tamed by translating it into a Hamiltonian
particle formalism (Sect. 2.4). This broad theoretical frame— which
in principle lends itself to a direct numerical analysis of all
(adiabatic) stationary and non-stationary motions — is then
reduced to a substantially simpler scheme; the latter is devided to
encompass only “pure” oscillations around the radially symmetric
equilibrium state, thus suppressing all stationary circulations
(Sect. 2.5).

The second part of this paper concentrates on the mathematical
derivation of a Hamiltonian particle formalism for “pure”
oscillations. Our starting point is a variational principle due to
Lynden-Bell and Katz (1981). The main interest of this principle
for our purposes is that it allows us to build in constraints on the
motion in an intrinsic fashion, without resorting to Lagrange
multipliers (Sect. 3). Lagrange multipliers are used in conventional
variational schemes of fluid mechanics (see Seliger and Whitham,
1968). The final Hamiltonian equations are found to have a
structure more involved than in the purely radial case; in the
lowest-order non-linear approximation, our non-radial F-mode
interaction problem depends on F(2 F? + 3 F+ 4)/3 model para-
meters (some of which vanish as a result of selection rules), while in
the radial case we have only F(F? + 3 F+ 8)/6 parameters. This in
turn suggests that the non-radial non-linear oscillations may
exhibit a broader spectrum of different classes of motion than the
purely radial stellar oscillations.
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2. Observational and theoretical motivation

2.1. The observational status

Circumstantial observational evidence has been provided for the
non-radial nature of the oscillations of several classes of stars.
First, the existence of beat phenomena in SCephei stars was
considered an argument in favour of non-radial effects (Ledoux,
1951). This hypothesis was supported by the result of Baade’s test
applied to several fCephei stars (Walker; 1954a, b); in fact, this
test seemingly rules out a purely radial character of these
pulsations. Second, the detection of period ratios incompatible
with the radial period ratios of currently accepted theoretical
models in éScuti stars is pointing towards non-radial oscillations
(Stobie and Shobbrook, 1976). Third, among the variable white
dwarfs of spectral type DA, the multiplicities and lengths of the
observed periods (exceeding the probable fundamental radial
period) have been regarded as fingerprints of the non-radial nature
of the oscillations. This class of variables, known as ZZ Ceti stars,
was isolated by McGraw and Robinson (1976) (see the review by
Winget and Fontaine, 1982).

These three classes of non-radial pulsators have two features in
common. They have a dwarf type structure (no extended
envelope), and their oscillation amplitudes are small (with typical
light amplitudes in the ¥ range of < 0.1 for fCepheids, 0.002-0.8,
and 0.005-0.3m for §Scuti and ZZ Ceti stars, respectively). One
may expect that with the development of large telescopes, the
improvement of speckle interferometric techniques (see Bates,
1982) and image restoring methods, direct surface observations of
these stars will become feasible. Such observations would de-
finitively settle the question of the symmetry of these oscillations.

A fourth type of object undergoing non-radial pulsations is the
Sun. So far the Sun is the only star in which non-spherically
symmetric variations have been registered directly. Since the first
observational evidence of solar pulsations in the early 60’s, several
classes of global oscillations have been reported. They fall into
three period-intervals. (i) In the 5-minute range (3.5-7 min) there
are two categories of motion: (a) velocity pulsations of a typical
horizontal wave number around 1 Mm (Leighton et al., 1962;
Deubner, 1975), and (b) velocity and light variations revealed by
whole-disk observations (see, in particular, Grec et al., 1980;
Woodard and Hudson, 1983). The velocity amplitudes of the latter
are of the order of 10cms ™!, and relative luminosity variations are
around 1075, (ii) In the 10-100min range fluctuations of the
“‘apparent diameter” have been reported by the SCLERA group
(Hill et al., 1976; Brown et al., 1978; Bos and Hill, 1983); the
relative amplitude of the diameter variation is now estimated to be
4 1077, (iii) Finally, in the long period range 2 2h, the challenging
periodicity of 160.01 min first detected in Crimea (Severny et al.,
1976) and confirmed by several groups (Brooks et al., 1976;
Scherrer et al., 1979, 1980) shows a velocity amplitude of 20—
50cms™?.

Just like the representatives of the first three classes of stars, the
Sun has a dwarf structure and its oscillation amplitudes are very
small; both the light and velocity amplitudes of the Sun are by a
factor of roughly 10° smaller than the values typical for the other
classes. Incidentally, one may suspect that the Sun does not stand
alone among the middle-sized main-sequence stars in showing
exceedingly small amplitude variability. A search for low-
amplitude global stellar photospheric oscillations was already
conducted by Traub et al. in 1978; among the 9 bright stars
analysed, some indication for variability was obtained in the case
of Procyon only (period around 57s, velocity amplitude about
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25ms™'); notice that Procyon is the only dwarf star among the
objects observed by Traub et al. (1978). This search is now being
pursued by the Nice group (Gelly et al., 1984). It is likely that a vast
amount of low amplitude oscillation data of stars will become
available in a few years’ time, especially since major improvements
of the observation techniques are now being planned [e.g.
Connes’s (1983) high-sensitivity “accelerometer”].

2.2. Theoretical arguments

The low amplitude level of the non-radial variability in all four
classes of stars naturally suggests that a linear oscillation theory
should be satisfactory. However, for reasons of approximate
resonances among the observed modes in the fCephei stars on the
one hand, and for lack of a known vibrational instability of the
observable linear oscillation modes on the other hand, several
authors investigated non-linear dynamical mode-coupling effects.
Two different paths were followed.

(1) For numerical studies of motions of azimuthal symmetry —
reducing the realistic 3D problem to a more manageable 2D
problem — Deupree (1974) introduced a straightforward non-radial
Eulerian finite-difference scheme. The meridian section of the star
is divided into cells of uniform angular and arbitrary radial size.
The numerical code was applied to a model of a rotating Cepheid,
and for comparison also to a model of a giant, namely an RR Lyrae
star, in order to discuss the interaction of modes of nearly equal
periods. Using as an initial condition an excitation of either the
fundamental radial mode or an (approximate) f~mode of degree
/=2, Deupree (1974) found that a strong coupling between both
modes is observed in the rotating fCepheid model; both types of
mode acquire similar amplitudes. In contrast, little coupling was
observed in the RR Lyrae model. In later work, Deupree’s (1974)
direct discretization scheme was applied primarily to study the
interaction between convection and pulsation (Deupree, 1975,
1976, 1977a, 1978; see also the critique by Toomre, 1982).

(2) Vandakurov (1965, 1967, 1979, 1981), Dziembowski (1982),
and Buchler and Regev (1983) adopted mode-coupling schemes
essentially similar to the procedures developed by investigators of
stellar convection (e.g. Toomre et al., 1976). The main purpose of
these formulations was to extract direct information, analytical or
almost analytical, on the non-radial oscillatory behaviour of stars
under conditions dictated by specific observational circumstances.
Vandakurov and Dziembowski’s non-linear studies were mot-
ivated by a theoretical reason. In some classes of stars a band of
non-radial linear modes are vibrationally unstable: the spatial
amplitude pattern of these modes, however, is such that they
virtually vanish near the surface of the star. Therefore, the
variability associated with these unstable modes should be
unobservable. However, precisely these stars do exhibit a surface
variability. This observationled to the following two tentative non-
linear interpretations.

(i) Local stability analysis (Kato, 1966) suggests that the
chemically inhomogeneous zone in massive post-main sequence
stars produces a vibrational instability in the asymptotic g-modes.
Global stability calculations for massive stars (M >15M4)
confirm this result for g-modes of high degree / (Gabriel and Noels,
1976; see also Shibahashi and Osaki, 1976). These unstable g-
modes are trapped in the zone of variable chemical composition,
and therefore they cannot lead to directly observable effects. On
the other hand, g-modes of low degree (I = 2) are stable; the latter
would be observable, since their amplitudes are large near the
surface and in the p-gradient zone (Ozaki, 1975). The class of
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stellar models that conform to these properties resemble fCephei
stars. Therefore, Vandakurov (1979) argued that through non-
linear mode-coupling the unstable g-modes might transfer their
kinetic energy to stable observable large-scale surface modes. This
idea prompted a closer examination of the non-linear mode-
interaction problem, in spite of the smallness of the observed
amplitudes in fCepheids (Vandakurov, 1979, 1981).

(ii) Cool white dwarf models with hydrogen-helium rich
envelopes have been found to have a vibrationally unstable band of
g-modes, of degree / in the range of 100-400 (with periods of
5-255); the instability is due to the H and He1 ionization zones
(Dziembowski, 1977); such unstable high / oscillations are
manifestly not detectable by standard whole-disk observations. On
the other hand, McGraw and Robinson’s (1976) class of ZZ Ceti
variables, with periods in the 100-1200 s range, reasonably fit this
family of theoretical models. Dziembowski (1979) then proposed
that a non-linear mode interaction could be responsible for an
energy flow from the unstable occluded high modes onto the stable
observable low / modes. He initiated a systematic non-linear non-
radial mode-coupling analysis (Dziembowski, 1979; and especially
1982), although in the meantime his original motivation has lost
much of its weight. In fact, improved DA white dwarf models of
masses around 0.6 M, with a stratified composition and a
hydrogen surface layer of 107'* to 10™* M, are found to have
unstable g-modes in the observed period range (see the review by
Winget and Fontaine, 1982). Dziembowski’s (1982) formalism was
re-analysed and extended in Buchler and Regev (1983). In
particular these authors adapted the two-time method to the non-
radial mode-interaction problem in the presence of “‘slow” non-

adiabatic effects and “fast” regular oscillations. Resonances of the
form w, ~2w,; and w; ~ w, + w, among the linear frequencies
were discussed in detail.

2.3. Special motives

Our particular interest in non-radial oscillations is motivated by
two further considerations.

(1) We plan to perform a non-linear investigation of the solar
oscillations, paying attention to the 160 min periodicity. In fact, at
various occasions it has been conjectured that the latter periodicity
might be a manifestation of non-linear interactions among the
linear modes (Gough, 1980; Perdang, 1981; Vandakurov, 1981;
Kosovichev and Severny, 1983). Moreover, preliminary non-linear
radial numerical experiments seemingly support the plausibility of
non-linear coupling mechanisms: if several adjacent radial modes
are interacting, the surface of a star, whose structure is
approximated by a standard polytrope, is found to oscillate with a
long period of about 2.5 times the fundamental period (besides, of
course, oscillations of periodicities fixed by the linear modes). This
result is independent of the specificinitial conditions; it holdsif the
interacting linear modes are randomly excited. The long per-
iodicity manifests itself as a clearly defined isolated, generally
multiple peak in the power spectrum of the surface motion; it is
also directly visible if the surface displacement is plotted against
time (Perdang and Blacher, 1984a; Déppen and Perdang, 1984).
For more realistic solar experiments, the long period is invariably
found to be 2 2h; by adjusting the model parameters, it could be
made to come close to the observed value of 160 min (Perdang and
Blacher, 1984b). Although these radial numerical investigations do
suggest the relevance of non-linear effects in solar oscillations, they
are unsatisfactory for two reasons. In order to exhibit the long
periodicity, relative radius amplitudes of the order of one percent

are needed in the 6-mode coupling experiments conducted so far;
such amplitudes exceed the observed surface amplitudes by a
factor of atleast 10*. On the other hand, observed solar oscillations
are predominantly non-radial (the actual number of excited linear
non-radial modes is estimated to exceed 10°), and therefore a
purely radial calculation cannot have much weight. A priori, we
could well imagine that the oscillation energy stored in the radial
linear modes might flow onto the non-radial modes; if the existence
of the long periodicity were a purely radial manifestation, then the
coupling between the radial and non-radial modes could destroy
that periodicity altogether. In fact, a straightforward application
of Lindstedt’s procedure indicates that an increase in the number
of excited modes, whether radial or non-radial, typically leads to
an increase in the relative power of the long-period peak with
respect to the power of the linear peaks (Perdang, 1985). The latter
result thus suggests that with large numbers of coupled modes the
low-amplitude problem could be overcome.

(2) Besides the direct observational motivation there is also a
more formal goal. The present paper is a continuation of the radial
non-linear mode-interaction work by Perdang and Blacher (1982,
1984 a) (henceforth Papers I and II). It thus aims at clarifying and
classifying the new features introduced by the non-linear mech-
anisms operating among the non-radial modes. While the rough
classification of the non-steady motions into periodic, quasi-
periodic (or multi-periodic), and chaotic oscillations encountered
in the radial case continues to hold true in the radial context (see
Perdang; 1978, 1983), the characteristics of the non-radial chaotic
oscillations are entirely unknown at the moment. For instance in
the radial stellar pulsations we have invariability found that the
chaotic solutions remain in fact pseudo-periodic or pseudo-
multiperiodic over a long time (some hundred cycles); they display
one or several approximate periodicities. Such a property makes
them almost indistinguishable from strictly periodic or quasi-
periodic oscillations observed with a low amplitude resolution.
Does this property still hold for non-radial chaos? On the other
hand, how does the correlation of the surface oscillation at two
different points of the stellar disk evolve in time? One also wishes
to know whether, in the case of a large number of coupled non-
radial modes, the chaotic state tends to privilege one spatial
(horizontal) wave-number range, or whether energy is drained to
larger and larger wave numbers.

24. General formalism

Our aim is to develop a consistent system of equations describing
the non-radial non-linear stellar oscillations via a non-linear mode-
coupling scheme involving an arbitrary (but finite) number F of
linear modes. Previous authors have concentrated on 2 or 3-mode
interactions only; moreover, their techniques heavily rely on the ad
hoc assumption that the oscillations remain regular. Our analysis
is concerned with purely non-dissipative motions (see Papers I and
IT). Under that hypothesis the hydrodynamic equations of motion
admit of a variational principle (see Seliger and Whitham, 1968). A
single functional specifies the adiabatic behaviour of the star
completely. In the F-mode coupling approximation, this in turn
implies that the nature of the oscillation equations is encoded in a
single function (a Lagrangian L). To lowest non-linear order, we
can readily anticipate the algebraic structure of the Lagrangian.
Denoting by ¢=(q1, 92, 43, ---» gr) the finite set of generalized
coordinates [these coordinates being the expansion coefficients of
the dependent physical fields in a complete, though truncated, set
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of linear eigenfunctions (Sect. 3)], we can write the Lagrangian in
the form

L=¢L?(q,¢) +L?(g,4) + O ("), M

where ¢ is a book-keeping parameter of the expansions. The
component &% L‘®(g,§) describes the linear oscillations, and
therefore reduces to the form

(2) 1 < -2 1 < 2.2
LY== E 9 —= E ;i g, )]
2i=1 21'=1

where w;, j=1,2,..., F, is the frequency of the mode labelled j.
There is a basic difference with the radial oscillation problem
already at this stage: In a consistent non-radial treatment the
complete set of linear modes should involve spheroidal and
toroidal modes; the latter are all associated with neutral
frequencies (w = 0). In the radial problem, however, all frequencies
are non-zero. The component &* L®)(gq, ), takes care of the lowest
order non-linear coupling between the linear modes. Its most
general form is a homogeneous cubic multinomial in g and ¢. We
can specify this form further by observing that the Lagrangian L is
the difference between the kinetic energy K and the potential
energy V (gravitational plus thermal energy) involved in the
oscillations. Since the potential energy is independent of the
velocity, the algebraic expression of ¥ in the mode-coupling scheme
is a function of ¢ alone; the generalized velocities ¢ enter the
Lagrangian (1) through the kinetic energy K only. The latter has
the following form

K=1 [ d*rou*. 3)
2 ()

[#(¢), volume of the star; g, density; u, hydrodynamic velocity
field]. In the case of purely radial oscillations, we can adopt the
invariant mass m(r) contained in a sphere of radius r as the
independent positional variable; with the generalized coordinates
¢, defined as the expansion coefficients of the displacement dr, the
full kinetic energy reduces to the diagonal quadratic form

K—s21 i 7 @)
ji=1

In the general case of non-radial non-linear oscillations, such a
reduction of the algebraic form of the kinetic energy does not seem
to be feasible. However, since the density variations can be
expressed in the generalized coordinates only, the structure of the
kinetic energy is given by

1
K=¢=>
82'

J

F F
qu +& Z Kjkz qjqkql + 0(84)- ®
=1 Jl=1

The diagonal quadratic form of the lowest order component of the
kinetic energy can be achieved through a convenient definition of
the generalized coordinates. The O (¢®) correction is linear in ¢ and
quadratic in the generalized velocities ¢. It follows that the
coupling Lagrangian takes the form

F
=y

JkI=1

F
Kjkl‘]jék‘}z_ Z ijlqjqkql' ©)
Jki=1

The coefficient matrix ¥}, describing the coupling through
gravitational and thermal effects, is symmetric in its three
subscripts; it contains therefore F(F-+ 1)(F+ 2)/6 independent
elements. The coefficient matrix K}, produces a kinetic coupling
between the modes; it is symmetricin k£ and / and therefore involves
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F2(F+1)/2 independent elements. Hence, to order &3, we
anticipate that non-linear, non-radial F-mode oscillations are
completely described by F(2 F?+ 3 F+4)/3 global model coef-
ficients, namely the Flinear frequencies, and the F(F+ 1)(2 F +1)/3
coupling parameters.

2.5. Particularization of the general method

The general formalism sketched above enables us, in principle, to
deal with (a) non-radial equilibrium states, (b) stationary motions
and (c) general non-stationary motions (“oscillations”) on top of a
non-radial stationary background. Logically, a systematic analysis
of thelatter motions should then be preceded by an investigation of
the stationary motions, which in turn should be preceded by a
study of the possible non-radial equilibrium states. Theoretically,
very little in known about subproblems (a) and (b).

(a) Regarding non-radial equilibrium states, the only outstand-
ing result applicable to fairly realistic stellar models is a general
symmetry property due to Wavre (1932) and Lichtenstein (1933):
Any equilibrium configuration of a self-gravitating rotating body
has a symmetry plane ¢, normal to the angular momentum axis,
under the hypothesis that the surfaces of constant density be
regular and monotonically nested.

More precise results are available only in the framework of
academic stellar models. The homogeneous (density ¢ space-
independent) self-gravitating configuration has given rise to a large
body of literature, mainly in mathematical circles. The classical
examples of the non-spherically symmetric equilibria are the
Maclaurin spheroids, of dihedral symmetry D, ', the Jacobi
ellipsoids, of dihedral symmetry D,,, branching off from the
Maclaurin sequence for an angular momentum parameter J>
=0.384 (in units GMa, a, a;, G gravitational constant, M mass,
and aq;, i=1,2,3, the principal axes of the ellipsoid), and the
Poincaré pear-shaped configurations of symmetry C,,, , bifurcating
from the Jacobi sequence at J? = 0.632 (see Chandrasekhar, 1969).
Less widely known is a more recent result by Constantinescu et al.
(1979). By using group-theoretical methods, these authors show
that in addition to the Jacobi bifurcations an infinity of
configurations of symmetries D,,,, m=3,4,5,..., are branching
off the Maclaurin sequence. It is likely that this sequence of non-
radial Constantinescu-Michel-Radicati equilibrium .configu-
rations (in a uniformly rotating reference frame) also survives for
realistic stars. These examples illustrate that non-radial equilibria
are possible, on condition that a non-radial mechanism (the
angular momentum in the previous examples) is operating to react
against the radial gravitational pull.

(b) Regarding adiabatic stationary motions, our theoretical
information is even more limited. Among the academic models,

1 A configuration is said to have dihedral symmetry D, if it is
invariant (a) under rotations of an angle 2n/m about an axis C,,
(the angular momentum axis J), (b) under rotations of an angle ©
about an axis 4, normal to C,, (there exist m such binary rotation
axes if m is odd, and m/2 binary axes if m is even), and (c) under
reflection on a “horizontal” plane o, normal to C,, and through the
axes A,. In particular D, , means that the axis C, is a symmetry
axis for rotation of arbitrary angle 6. Symmetry C,,, indicates that
the configuration is invariant (a) under a rotation of angle 2n/m
about an axis C,, and (b) under reflections on a “‘vertical” plane o,
through C,, (depending on whether m is odd or even, there are m or
m/2 such planes)
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Dirichlet’s classical problem, followed up by Dedekind and
especially by Riemann (see Chandrasekhar, 1969), has been
explored most thoroughly. Dirichlet raised the question of defining
the conditions under which a velocity field, which is a linear
function in the coordinates, leads to an ellipsoidal configuration in
a homogeneous self-gravitating body described in an absolute
reference frame. Riemann showed that the general answer is a
motion field made up of a uniform rotation and a uniform vorticity
in the rotating frame of reference, with the rotation and vorticity
axes lying in a symmetry plane of the ellipsoid; if both axes coincide
or if the vorticity vanishes, then the axis of the motion becomes a
symmetry axis of the figure. The sequences with Riemann-type
circulation branch off the Maclaurin sequence precisely at the
transition point towards the Jacobi ellipsoids.

A general survey of the allowed circulations, even in the simple
homogeneous model, is still lacking. However, the following
argument suggests that there should exist an infinity of stationary
velocity fields of different symmetries (see Perdang, 1984a). In the
absence of any motion, the equilibrium structure of a star belongs
to the full spherical symmetry K, (any axis through the centre of
mass O is a C, axis, and any plane o, through O is a reflection
plane). The linearized equations around this state admit of an
infinity of neutral modes (w,, = 0), associated with infinitesimal
toroidal velocity fields (see Sect.3). The non-linear dynamics
enables each of these modes to build up a finite steady circulation.
In the presence of rotation, the infinite degeneracy of the modified
toroidal modes is lifted, the associated frequencies w,(J?)
becoming functions of the angular momentum parameter J. We
conjecture that for specific finite critical values of J one of the
frequencies w,,,(J*) vanishes; the corresponding velocity eigen-
function then has a well defined rank m. Each such critical J then
specifies a bifurcation towards a steady state with a stationary
velocity field, the symmetry of the configuration being Dy, . Since
the Constantinescu-Michel-Radicati relative equilibrium figures
precisely arise through the same mechanism (@, =0 for a well
defined rank m), it seems likely that the bifurcations towards the
latter coincide with the bifurcations towards the stationary-
circulation configurations. In the simplest case, namely the
transition from the Maclaurin spheroid towards the Jacobi
ellipsoid (no velocity field in the rotating frame), and to the
Dedekind ellipsoid (uniform vorticity along the smallest axis), this
property is in fact well known (Chandrasekhar, 1969). Again, since
our discussion does not rely on the particular assumption of
homogeneity of the configuration, we are led to conjecture that this
class of circulations survives in realistic stars.

Incidentally we should call attention to a further class of
stationary velocity fields not captured by the Lagrangian (1).
Following von Zeipel’s (1924) classical result, rigid body rotation is
incompatible with radiative equilibrium; it has been argued that a
meridian circulation activated by a temperature gradient over the
isobaric shells is then required to secure steady state solutions of
the stellar equations [see Tassoul (1978) for a detailed discussion].
The precise nature of the latter velocity field, however, remains a
matter of debate (Tassoul and Tassoul; 1982, 1983).

Besides the missing theoretical information on the structure of
non-radial equilibrium states and stationary velocity fields in stars,
there is, at the moment little direct observational motivation for
studying asymmetries, or stationary motions more involved than
pure rotations. In fact, even in the Sun, observational evidence for
such motions seems to remain problematic (Gilman, 1974). Among
the other stars, the disk of Betelgeuze alone has been reasonably
resolved so far to suggest non-radial surface features (star spots)

(Lynds et al., 1976; McDonnell and Bates, 1979; Murdin and
Allen, 1979). Direct observation of surface motions is not likely to
become feasible before the advent of the large telescopes planned
for the next decade.

Owing to the lack of a satisfying theoretical understanding of
stationary circulations as well as to a lack of direct observational
urge, we have beenled to devise a formalism that enables us to filter
out circulations altogether from the equations of non-linear stellar
motions: Our final variational principle has the property of
generating “pure” oscillations around a spherically symmetric
equilibrium state. We anticipate that our approach can however be
extended to include circulations of simple topology (see Lynden-
Bell and Katz, 1981; Katz and Lynden-Bell, 1982).

3. Variational formulation. Choice of the independent variables
and the dependent fields

We start out from the general variational principle describing

adiabatic motions about the equilibrium of a self-gravitating

configuration in an inertial frame [see, e.g., Chapter 10 of Ledoux

(1958) or Chapter 15 of Serrin (1959)]
t,

6 [ L(Hdt=0.

5

™

The Lagrangian L(#) is here the difference between the total kinetic
energy K [Eq. (3)] and the total potential energy V (thermal and
gravitational) of the fluid with respect to the equilibrium
configuration,

Viy= [ dro(r,t) U(s(r, 1), o(r, 1)

(1)

+3 [ @ree.0 (e},
(1)

@®)

¥ (t) again denotes the time dependent volume of the star, d3r is
the volume element, U and @ are the specific internal and gravita-
tional energy respectively. In the system of natural thermodynamic
variables, Uis a function of specific entropy s and specific volume v
=1/p, i.e. U= U(s,v). The gravitational potential is given by

@ ({o(r, 1)}, f"t) =—-G [ &ro®,n- )

20 lr—r'|
This variational principle lends itself to a straightforward
investigation of the radial non-linear pulsations of a star (see Paper
I). In the radial case, the time-dependent domain of integration is
in fact transformed into a time-independent domain through the
use of the mass m(r) contained in a sphere of radius r as the
independent variable. This choice of the independent variable then
builds mass conservation directly into the variational principle. As
the free dependent field, the radial position r (together with its time
derivative r), or equivalently, the finite radial displacement 67 (m, 1)
from the equilibrium configuration proves a convenient variable.
In the case of non-radial pulsations, we likewise seek a system of
space variables in which the time-dependent domain transforms
into a time-independent domain. Again, this choice should be such
as to incorporate a major conservation law. Due to the three-
dimensional nature of the motions, the most general free
dependent variables are now three scalar fields, which we could, in
principle, take as the three components of the finite non-radial
displacement ér measured from the equilibrium position. How-
ever, as argued above (Sect.2.5), we are not concerned with the
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most general non-radial motions, but only with those correspond-
ing to “pure” oscillations. To generate the latter, we require that
the Helmholtz-Kelvin circulation
C(®=(dru (10)
¢
(hereinafter simply “‘circulation’) vanishes over any closed path
on an invariant entropy surface. We shall show below that this
constraint eliminates stationary motions. In the linear approxi-

mation it also eliminates the toroidal components in the velocity
and displacement fields.

3.1. The space variables (s,0, )

We shall provisionally assume that at any time the specific entropy
is monotonically increasing outwards. This condition is essentially
obeyed in stars in stable radiative equilibrium, at least in the
absence of a marked space-dependent chemical composition. More
precisely, we mean by monotonically increasing that all surfaces of
constant entropy have spherical topology without critical points,
and that for any two entropy surfaces s(r, t) =s, and s(r, £) = s,,
with s, <s,, the surface s; remains nested in s, at all times . We
should immediately observe that in realistic stars (convective
zones, composition gradients), the requirement of a monotonically
increasing entropy may not be satisfied. The general case is dealt
with in Appendix 3, where we show that the formalism remains
unaltered.

Suppose we start with spherical coordinates (r, 8, ¢) and time ¢
as independent variables. Since entropy is assumed to be
monotonic, we can introduce a new system of independent
variables, (s,6,¢) and ¢, defined by s=s(r,0,¢; 1), with the
remaining variables 6, ¢, and ¢ being the same as in the original
system. These new coordinates have the following two properties.

(1) Integrals over the total time-dependent volume of the star
transform into integrals over a constant domain of integration. If
Q is a specific stellar property (e.g. kinetic energy per unit mass,
thermal energy per unit mass...) then the corresponding global
property (total stellar kinetic energy, total thermal energy...)
becomes

[ dreg

()

2n 4 S5
= [ do [ dfsin@ | ds {[r(s, 0, ¢; H1? <Q> . Q}Q. (11)
0 0 5 05 Jo,4:1
In this expression s, and s, are the specific entropy at the centre and
the surface of the star, respectively; r(s,6,¢;?) is the inverse
function of s(r, 0, ¢; ¢) at fixed 0, ¢, and ¢. The limits of integration
s. and s, are independent of time because of entropy conservation.

(2) By using entropy as the independent variable, entropy
conservation is automatically guaranteed. Thus in the non-radial
problem, the new system of space coordinates (s,0,¢) is the
analogue of the coordinate m of the radial problem.

3.2. The free fields 6r and du

An arbitrary (sufficiently smooth) vector field A4 (7, f) defined over
the star may be represented locally in the Clebsch-type form
A(r,t) = Va(r,t) + b(r, 1) Ve(r,1), 12)

where a,b,c are three (possibly multi-valued) scalar functions.
Incidentally this form was first introduced by Monge (1784) (see
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Erickson, 1960). We adopt this representation for the velocity field
u(r, ) of the disturbed equilibrium state of the star. The circulation
of the velocity around a closed loop € () moving with the fluid is
then given by

I

C[% (0] j dr-u

€ ()

| dr-va@,ny+ [ dr-b(r,0) Ve(r,t).
P10 10

(13)

The following properties can be proved:

(1) If the circulation of the velocity u over any loop on a surface of
constant s vanishes, then the most general Clebsch representation
(12) involves only two arbitrary fields, a and b, with ¢ becoming a
function of » and s. -
(2) The latter representation is equivalent to choosing
u(r,t)= Va(r,t)+b(r,t) Vs(r,1), (14
where a and b are arbitrary scalar fields, except for the condition
that a is single-valued. By equivalence of the two triplets of Monge
potentials, (@', b’, ¢’ = ¢'(s, b)) and (a, b, 5), we mean that given the
firstset (a’, b, ¢’ (s, b")) of potentials describing a velocity field u, we
can find a second set (a, b, 5) describing exactly the same velocity
field.

(3) If the surfaces s=const. are smooth and topologically
equivalent to spheres, if # is a smooth velocity field tangent to the
surfaces s = const., and if the circulation of u vanishes over any
closed loop of the surfaces s=const., then the velocity field u
vanishes identically. It follows in fact from the construction given
in Lynden-Bell and Katz (1981) that a stationary velocity field,
under the condition of adiabaticity, is tangent to the surfaces of
constant entropy. Therefore there are non-zero stationary velocity
fields whose circulation vanishes over all closed loops lying on
surfaces of constant entropy. In the linear approximation this
property is obvious, because representation (14) reduces to a
purely spheroidal vector field (only the radially symmetric
equilibrium part s, of the entropy enters in this approximation).
But only toroidal velocity components produce stationary moti-
ons, while spheroidal components describe oscillations in dynami-
cally stable stars.

Essentially we could use the components of the velocity field as
the free field variables of the variational formulation. In the
absence of further constraints besides mass and entropy con-
servation, we then would have three free fields. With the additional
constraint of zero circulation along closed loops on surfaces of
constant specific entropy, only two scalar fields remain free. We
found it convenient to choose not the fields entering expression
(14), but two other related independent scalar fields, one being the
radial displacement field and the other a field describing the
stratification of matter.

In analogy with the problem of radial oscillations, we introduce
as one free field the radial displacement
or(s,0,0;0) =r(s,0,0;1)—ro(s), 15)
where r (s, 0, ¢; t) has been defined above and r, (s) is the distance
of a surface of constant entropy s from the centre in the radially
symmetric equilibrium configuration.

The second free field is chosen to incorporate mass con-
servation. The integrals (3), (8), and (9) of the variational principle
all involve, when expressed in the independent coordinates (s, 0, ¢),
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the same quantity, shown between curly brackets in Eq. (11). This
leads us to introduce a new field variable

(5,0, 1) = 4 [r(s,6,; )] - (a’)  0(5.0,631).

P » 16)

In terms of this field, we can write the mass m(s,, s,) contained in
the entropy shell specified by s, <s<s, as

1 2n n 52
m(s;,s,) = i 6[ dp g dd sinf | ds pu(s,0,¢;1). an

Sy

u represents therefore 47 times the mass per unit specific entropy
and unit solid angle. In a radially symmetric configuration, u
becomes the mass per unit specific entropy. Since u specifies the
stratification of matter in the star, we shall refer to this field as the
stratification field. Let u, (s) be the radially symmetric stratification
of the equilibrium of the star. Let u(s, 6, ¢; ¢) be the stratification
field in the disturbed star. Then conservation of mass requires that
for any entropy shell s, <s, we have

m(s1,52) = | dspo(s)

51

1 2n T S2
=— [ dp [ ddsin | dsu(s,0,¢;)=const. 18)
4n 5 0 M
If we now introduce the stratification disturbance
(3#(.?,9,(1); t) =ﬂ(s,0,¢; t)_/lo(s), (19)
we can express mass conservation by the condition
1 2n n Sz
— [ d¢ [ dsind | dséu(s,0,¢;1)=0. (20)
an 5 0 5 ]

It remains to be proved (see Appendix 1) that the velocity field
generated by an arbitrary choice of the two fields ér and du can be
written in the form of Eq. (14).

A remark on the linear adiabatic stellar oscillations is in order.
The variational principle (7) restricted to velocities of the form (14)
generates the conventional oscillation equation for spheroidal
infinitesimal displacements (see Appendix 1, Sect. 4). The family of
neutral toroidal modes is filtered out [for a discussion of the latter
see, for instance, Aizenman and Smeyers (1977)]. We require
additionally that the star be dynamically stable, so that all
eigenvalues 2 [(2/+ 1)-degenerate as a result of spherical
symmetry] associated with the spheroidal modes are strictly
positive. Let 67,,,,(s, 0, ®) and du,,;,, (s, 0, ) be the radial displace-
ments and stratification field components of the eigenfunctions
belonging to w,; . As usual, # is here the radial order, and / and m
are the degree and azimuthal order of the spherical harmonics
entering the eigenfunction. We found it convenient to choose a real
set of spherical harmonics (defined in Appendix 2). The set of all
eigenfunctions being complete, the non-linear time-dependent
fields can be expanded in the eigenfunctions of the linearized
problem in a way analogous to the Woltjer series of the radial case
(Woltjer, 1935; Paper I):

or(s, 0,050\ 6 im (8,0, 0)
(Grcegi0) = Z om0 (i)
Gmm (2) being time-dependent expansion coefficients. We read off

from representation (21) that mass conservation is rigorously
incorporated in our formalism. If we substitute the stratification

(21)

component of (21) into the conservation requirement (20), we
obtain

S n®) § b [ 0 506 | dsdyin(s,6,)=0. 22)
an o 0 0

S1

But the integral over non-radial components oy, , /= 0, vanishes
identically. Moreover dy,, = 0, for all radial orders, as transpires
from a direct calculation; physically the linear eigenfunctions must
in fact obey mass conservation. Therefore, relation (22) is seen to
be satisfied exactly for any stratification field disturbance.

In a finite truncation of the generalized Woltjer-type expansion
(21), we have the following set of generalized coordinates

Gum(®, n=0,1,2,..N; [1=0,1,2,...L; m=—1L,...0,1,...L.
(23)

The number of degrees of freedom of our truncated non-radial
stellar oscillation problem is thus

F=WN+1)L+1D% (24)

If L=0, we recover the usual radial expansion, since the
stratification component du vanishes identically.

A remark about the index # is in order. Here, we regard this
integer merely as a book-keeping label of the modes and not
as a parameter explicitly related to the modal structure of the
eigenfunctions. In this way acoustic and gravity modes —if we want
to include the latter in a numerical treatment — are just
distinguished by different values of n. Of course the finite
truncation of the Woltjer series (21) can be carried out following a
scheme different from (23); it may prove convenient to choose
different numbers N of n-labels for different degrees /; except for a
change in the number of degrees of freedom (24) such a choice
would not alter the technique of this paper.

To avoid notational complications through a flurry of
subscripts, we shall use, in the remainder of this paper, a single
(Greek) subscript in expressions such as (21, 22, 23). The general-
ized coordinates g, (¢) will thus be written g, (?).

4. Expansion of the total energy of the star

Assuming smoothness of the energy components with respect to
the fields ér and du, we can expand the kinetic and potential energy
in the generalized coordinates g, (¢). To keep track of the order of
the expansion, we use, as in Papers I and II, the book-keeping
parameter ¢, which will be set equal to 1 at the end of the
calculations. Thus we rewrite Egs. (15) and (19) in the form

<r(s,9,¢;t)> _ (;o(s)>+ <5r(s,9,¢>;t)>
us,0,6:0) " \uo()) ™ “ \outs.0.6:0)"
To generate the lowest order non-linear equations of motion, the
energy components must be expanded up to &*. In an order of
increasing complexity these energies are the internal (or thermal)
energy, the gravitational energy, and the kinetic energy. Only &
and & terms need to be considered; the zero order term
representing the equilibrium energy is independent of the
generalized coordinates; the first order term must vanish for
stability reasons (see Paper I). The ¢? terms in the total Lagrangian
lead to the linearized equations of motion, while the lowest non-
linear contribution to the equations of motion arises from the &*
terms in the Lagrangian.

(25)
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We insert the Woltjer expansion (21) into Eq. (25), substitute
the result into Egs. (3,8,9), expand in a Taylor series in ¢, and
obtain a Lagrangian in the form (1,2,5,6)

(I, being the degree / of the multi-index o). Since £, and H, are
usually computed as functions of r, it is convenient to transform
all integrals over s back into integrals over r, writing, for any
function Q

1 1
1=¢(3Ti-) Toia)+ : :
2% 2% [ dspo(s) Q(s) = 4n [ drr? go(r) Q(1). (29)
S, 0
+é& <Z Kop, 42959y — 3. Vapy9a4s qy>- (26)  The coefficients of the total thermal energy become
aBy apy
R
In this expression, the coefficients K, are symmetricin (6,y)and  V$ =Z, - {— % [drrip I:F r+1+ <6TL> :IAaAﬂAy
Vagy in (@ B,). 0 nes
AZ R
— [drpE,E,E, + == [ drrpT'4,4,H, (30)

2%
4.1. Total potential energy

+

Q™ O X

R
drpT'E,5,4,+2 [ drrpT A, E}
We split the total potential energy up into a thermal and p {E P =y
gravitational part

Here, A, is the relative change of the specific volume of mode «
Vagy = V;lﬁ}v + V-

@7

40, op, 26r, or,
, o A,0)=— 2 o e T e
For numerical purposes it is advantageous to express the Qo Ho o o (31)
coefficients of the total energy in terms of the radial component =, . 25,(F)
and the horizontal component H, of the displacement eigen- =5 H,(r) + — + E,(n).

function (Y, being a real spherical harmonic, see Appendix 2)

or,= Re {[Ea(r)e, Y, + H,(r) (l:%] e+ 51—0 [%} e¢)] ex‘wt}

28)

Z,4, denotes the angular part of the integral (Appendix 2), 4,
=1,(0,+1), '=(0lnp/dlng),, R is the radius of the star, and
primes denote derivatives with respect to the space variable. Note
that the coefficients (30) do not have the symmetry properties
implied by (26) (their structure would be more complicated in a
fully symmetric form). Of course, any antisymmetric part will
disappear after insertion into (26).

The coefficients of the total gravitational energy are (technical
details are relegated to appendix 4)

This representation is adopted, for instance, by Christensen-
Dalsgaard (1981, 1982). As shown in Appendix 1 [Eq. (A.31)],
Z, and H, directly relate to our basic fields ér and ou:

B, =0r,[s0(n] and H, = —rdu,[so(N])/[L 1z +1) tol

G 2 o
Vi = — 2 .Zl (G, + Gefy)* Zag,
j=
1 i [ 2 (N B (PN E
Ga(zé;-‘- =§ ly(ly_ 1) (ly_z) g drF—ly +1)(r) g ar' F}1+1(r) :’a(r) ‘:’ﬂ(r) :'v(r)
e 1 R R
Gy, = —3GAD G+ G +3) [arF (0 [ drF_g .50 E,(r) Bg(r') E,(r)
0 r

R r
Gy =470, +2) (f) drF_ 4 1)(r) E(r) Eg(r) (5) dr'Fy 41 (r) E,(r)

R R
Go~ =—-A2(1,—1) b( drF, () E,(n) E4(r) | dr' F_, (') E,(r")
R r
Gt =—2A2L,(,—1) [ drF_ (nNH,(r) [ dr' F, (r)E,(r') E,(r)
0 ‘ 0 ‘ (32)
R R
Gopy” = = 243 [ dr Fy  (HL() [ dr' F_(F) () E,(7)

R r
GHr =2421,4; 6[ dr F_; (r)H,(r) 6[ dr' F, (r)Hy(r') E,(r")
R R
G;;;_ = — 2/13 0+ 1)/1; g dr F,“H(r)Ha(r) !. dr’ F_(1¢+1)(r')Hﬂ(r')Ey(r/)
apy

R r
G =242 A,,? j drF_(,YH)(r) H,(r)Es(r) f dr' F,’H(r’) Z,(r)
0 0

R R
Gy =2M245 [ dr F (N H,(r)Ey(r) [ dr F_, (r) E,(r)
0 r

apy

F,(r) = go(N 1.
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Here, the notation is as in (30), and again an asymmetric
representation of the coefficients has been adopted.

4.2. Total kinetic energy

Technical aspects of the calculation of the coefficients are discussed
in Appendlx 1. Here, we merely quote the result. The factors Z,,,
and Z, s, Tesult from the angular part of the integral (Appendix 2).
As for the other energy components, the structure of the kinetic
energy coefficients Kmf,y is presented in an asymmetric form. The
antisymmetric part in the indices (f, y) will again disappear when

the coefficients are inserted into (26).

1 1,
Kypy= — = A2Z,5, T + = A2 2,5, TS,

aBy 2 o yBa + 2 - Zﬂa‘y (T’(‘t) T(7))

ﬁay apy

= A3 Zogy (T35, + TR) + Zagy T + Zogy QAT
VAT, + TS, + A2 TS, + 6T 2, + 2TS)

apy apy
+ 2T +2TS)

R
T.5 f drF, - HH,H,; T% = j drF,5,5,H,

aﬂv
(33)
;g; = j drFyE, 5 H s ;‘,;)y = j drF H,5.H,
TS = j drF,H,53H,; TS = j drF,E,HyH,

T = j drF,E,HyH

T® = j drF,H,5;H,

aﬂv

T3 = J” dr F,E,E,H,; F,(r) = go()r".

4.3. Hamiltonian function

The Hamiltonian corresponding to the Lagrangian (26) is obtained
by the Legendre transformation

Hp,q)=¢’p-4—L(g.9)- (34
The momenta conjugate to g are
1 /0L
==—(=}). 35
V4 2 <6q’> (35)

Here, the insertion of a factor ¢ ~2 arranges that p is of same order
as ¢. For the Hamiltonian function, § must be known as a function
of p and q. The first order correction to ¢ is sufficient in order to get
the Hamiltonian function to third order. Fortunately, this first
order correction cancels out in the final result, and need therefore
not be known explicitly. Setting

g=p+eg¢?, ‘ (36)

we obtain in fact [using (35)]

+0(e*)

. .0, (0L
H(p,q)=¢’p*+&°pd™ — L(g.p) — 24 (—)
94 )i=p

=¢2p*— L(g,p) + O(s*),

which is independent of ¢*’; in the notation of (26),

2 1 < 2 1F 2 .2
Hp,q=¢ 15 Y pj+5 2 ojqg+
2j=1 2j=1
(37
F
+s3{— >
J;

j,k,1=1

K qipwp: + Z sz‘],‘]k‘]l
ok

5. Conclusion and outlook

In this paper we have developed a mode-coupling formalism
capturing an important class of non-linear, non-radial adiabatic
stellar motions, namely genuine oscillations about a dynamically
stable equilibrium state. Just as in the case of radial oscillations
(Papers I and 1), this formalism is generated through a variational
principle. Such an approach has the following main advantages
over the conventional method, in which an expansion of the stellar
fields in the eigenfunctions is directly substituted into the full
hydrodynamic equations. (i) As in the case of purely radial motions,
the variational setting automatically unfolds the Hamiltonian
structure of the resulting equations of motion. Besides the manifest
algorithmic relevance of this property (conservation of oscillation
energy serves as a simple test for the numerical integration), the
mere realization of the Hamiltonian nature of the oscillations
conveys a non-trivial piece of theoretical information on the
character of the admitted motions. If we assume that the
underlying Hamiltonian is ‘“‘generic” (i.e. possesses no special
properties that would be destroyed if it were slightly disturbed),
then we are sure that in addition to regular (periodic and multi-
periodic) pulsations the non-radial (bounded) motions of the star
also display chaotic oscillations, provided that the oscillation
amplitude, or equivalently, the oscillation energy, is high enough
(see Berry, 1978). (To find out, how large the critical energy is
beyond which these oscillations arise, we need of course to
investigate the Hamiltonian closer, either analytically or numeri-
cally.) (i) Also as in the case of purely radial motions, an
appropriate choice of the independent and dependent variables has
enabled us to build conservation of mass and entropy directly into
the variational formulation. (iii) To account for specifically non-
radial properties, the formalism has been so designed as strictly to
preserve the zero circulation (13) along any closed loop lying on a
constant-entropy shell. In this way, the formalism suppresses all
kinds of stationary motions. (iv) Likewise, the particular selection
ofthe two dependent fields, the radial displacement field 6r and the
stratification field du, enables us to avoid introducing toroidal
modes in the representation of the velocity field without throwing
away non-linear toroidal velocity field components. Unlike the
treatment by previous authors (Dziembowski, 1982; Buchler and
Regev, 1983), which discards the appearance of toroidal velocity
fields at the outset, our formalism has the advantage of taking care
of (non-linear) toroidal velocity components if included in the
initial conditions (and if compatible with the zero-circulation (13));
or it may generate toroidal velocity componentsin the course of the
non-linear evolution.

In our non-radial treatment, we have opted for specific entropy
sasthe independent space variable. Entropy thus replaces the mass
variable m(r) of the radial variational formulation. This asym-
metry with the radial problem was dictated by an apparent
algebraic simplification of the formalism rather than by an
intrinsic necessity. The very fact that all final formulae for the
coupling coefficients can be rewritten in terms of conventional
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polar coordinates (r, 6, ¢) instead of (s, 0, ¢) indicates however that
the choice of the independent variables is largely a matter of taste.

It may be objected that the variational approach presented here
suffers a serious drawback, not shared by the conventional direct
method, when one wants to extend it to realistic non-adiabatic
oscillations. In fact, in the presence of dissipation, the variational
principle (7) ceases to describe the motion. However, as stressed
elsewhere (Perdang, 1984a, b), non-adiabatic effects may be dealt
with, provided that the characteristic time over which dissipation is
operating is sufficiently longer than the dynamical time scale;
appropriate techniques are the standard asymptotic 2-time method
(or an improved version thereof) or the averaging procedure. If this
condition is satisfied, then the lowest-order short-time equations
precisely coincide with the adiabatic equations. If the adiabatic
solutions are regular, an asymptotically rigorous scheme exists to
compute the long-term amplitude variations. If the adiabatic
solutions are chaotic, then the recipe proposed in Perdang
(1984a, b) provides an approximate solution to this problem. We
wish to emphasize in passing that the proponents of the con-
ventional approach (Dziembowski, 1982; Buchler and Regev,
1983) have so far discarded short-time chaotic solutions altogether.

The next move is a systematic investigation of the character of
the non-linear, non-radial oscillations. We believe in fact that prior
to any application of this formalism to specific stellar models
several points need to be clarified.

(1) How does the surface pattern evolve, as the star is
undergoing non-radial chaotic oscillations? How does the vari-
ability of this pattern compare with the evolution of a regular non-
linear oscillation surface pattern? Can one trace simple mor-
phological features capable of revealing a chaotic behaviour (e.g. a
time-run of correlations between different surface points etc.),
which would be turned into a practical test of differentiating non-
radial chaos from regular motions.?

(2) How do the critical amplitude levels, at which non-linear
effects become noticeable and at which chaotic oscillations set in,
vary with the number of coupled non-radial modes; more
specifically, what is the influence of the degrees / and the azimuthal
quantum numbers m of the coupled modes on the onset of chaos?
This question, besides its theoretical relevance, is of direct interest
in testing the suggestion that the 160 min solar oscillation is a non-
linear many-mode coupling effect (Perdang and Blacher, 1984b;
Déppen and Perdang, 1984). Regarding the latter point, a
preliminary numerical experiment has already been performed
using the formalism of the present paper (Didppen, 1984). It
demonstrates — as expected theoretically — the actual occurrence of
non-radial chaos and a reduction to <1.5 9 of the critical relative
surface-amplitude level as a result of the coupling of radial modes
(n=22,23,24) with a few non-radial modes (/ =1,n=22,23; /=2,
n=21,22).

(3) How does the coupling between (dynamically stable) gravity
modes and acoustic modes manifest itself? Are chaotic oscillations
of reasonable surface amplitudes allowed that are the result of the
interaction between modes of these two classes and not of the
interaction between modes of each class only?

Finally, we should like to point out that the variational
formalism developed in this paper lends itself to a systematic
extension covering simple stationary flow fields such as rotation or
constant vorticity.
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Appendix 1: velocity field and kinetic energy

1. Justification of the Clebsch-type form of the velocity field

We briefly show that the radial displacement (s, 6, ¢;¢) and the
stratification disturbance du(s, 6, ¢; t) uniquely determine the free
functions a(r, t) and b(r, t) of the velocity field written in the form
(14). The function b(r,t) is determined by the local form of the
entropy conservation condition,

S+u- Ps=0, A.1)

(in the following, the dot denotes partial derivative with respect to
time). Substituting Eq. (14) into (A.1), we obtain the functional
form of b(r, ), which is seen to be single-valued. We then have

u(r, )= — [§/(Vs)?] Vs + V*a (A.2)

where F*a stands for the projection of Va onto the surface of
constant entropy

V*a=Va—[Va- Vs/(Vs)*] Vs. (A.3)

This leaves us with a single unknown field a(r, f) which is required
to be single-valued (see Sect. 3). To determine a(r, t), we substitute

Eq. (A.2) into the local mass conservation equation
0 +div(ou)=0. A9

We then obtain a linear partial differential equation for the
unknown field a(r, ¢)
div(o V*a) = — ¢ +div [s Fs/(Fs)?]. A.5)

Lynden-Bell and Katz (1981) have shown that this equation has a
unique solution a(r, f) (under broader conditions than required in
our case), provided that ¢(r,t) and s(r, f) are given. But the latter

" fields are directly obtained from the radial position r(s, 6, ¢; t) and

the stratification field u (s, 0, ¢; t). Hence, the knowledge of the free
scalar fields r and ¢ (or r and du) secures a unique velocity field in
the Clebsch-type representation (14).

2. The field a(r,t) as an explicit function of ér and du

We shall write the e-expansion in the following form, a subscript 0
referring to the equilibrium state

0=00+80; +&%0,+...

S =250 +e8 +ers, +...
o 2 (A.6)
a=ga,+e*a,+...

b=¢b, +&*b,+...

Here, two remarks are in order. First, unless otherwise stated, an
Eulerian picture is used, i.e. s, g, a, b are regarded as functions of r
and t. Second, a and b have no stationary components (see Sect. 3),
and therefore their expansions begin with a first-order term. We
also introduce the ““tangential’” operator [the notation is borrowed
from Dziembowski (1982)]

o 1 9
V,,—<0, = ﬁé%)' A.7)
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To obtain an explicit solution of Eq. (A.5), we expand the latter
equation in powers of ¢, using (A.6). As shown in Sect. 3 of this
appendix, only a; will be needed in the coupling coefficients that
describe the first non-linear correction to the equations of motion.
Identifying first order coefficients, we have

. 1 ) .
div <ao; Vych) = — 0, +div [s;¢,/55(r)]. (A.8)

The left-hand side of this equation becomes, noting that
2o (V)= go(Ir]),

. 1 ~
d1v<go; VHa1>= 0oda . (A.9)

Here, 4 denotes the angular part of the Laplace operator, obeying
AY, = —1(1+1)Y,,/r?. (A.10)

The right-hand side of (A.8) is more complicated. First, ¢, has to
be expressed as a function of y, using Eq. (16) to first order of e.
Next, div(gge,s,/so) is evaluated again through Eq. (16). We
finally obtain

- 1 [0du
Aal = — % <W)S

In sectors of constant angular momentum, this equation is solved
explicitly. The Woltjer-type Eq. (21) and an expansion of a; in
spherical harmonics

(A.11)

Z aly) (r,1) Y,,(0, ), (A.12)
together with property (A.10), lead to
2
a (r,1) = - Gt (2) Ot [0 (M) 10 - (A.13)

I(+1) (l +1) £
For /=0, this expression is undetermined. It transpires, however,

from the Clebsch representation (A.2) that without loss we can set
(1) —
ayy=0.

3. Expansion of the total kinetic energy of the star

In terms of the scalar fields @ and b, the kinetic energy becomes

K=%jd3rg jd"’ += jd3rQ(V*a)ZEKs+K,,

('7 )2
(A.14)

(all integrals are over the moving volume ¥ (¢) of the star). To
obtain this expression we have taken account of the orthogonality
of Vs and F*a.

Since (Fs)? = (5")? + O(e?) (s', partial derivative of s(r, 6, $; 1)
with respect to r) we have

s\ 2
KF%W%Q <si> +O(Y). (A.15)
/s’ is readily expressed in terms of our ér-field:
§ or aor
o[ Z) = (2= 16
s (6t>s ’ ( ot )s,e,da (A-10)

(A.15) and (A.16) yield the third-order contribution to K|
1 2n n

K® = j do j df sin 6 f dsopu(s,0,¢;t) ( )2
0,9

A7
Using (A.3, A.7), one can write K, in the form
K,= 321 [ &r Q—g (Vga))* +¢& {%j ar % (Vya,)?

+ jd3r =2 Vya, - Vya, — jd%% (Pya, - 6y) (Vay - e,)}

(A.18)

Here, we have introduced the dimensionless vector a5 of the
deviation fo Vs from its equilibrium value Fs,. We define this
vector implicitly by

Vs=s'(e,+eay)+ O(e?). (A.19)
The most difficult component of K, is the third integral in (A.18)
involving a, and a, together. One could obtain it by a second

iteration of equation (A.5), a quite tedious task. Fortunately, we
do not need to know a, explicitly. Instead, Gauss’s divergence

theorem can be used to reduce the integral [ d*rg, Fya, - Fya, to
an expression involving only @, and g,.

To do so, we start out with observing that

[@r div(a, ou)=0. (A.20)

(Note that there is no normal flux component through the moving
boundary.) Pulling out a, from the divergence we obtain, taking
account of the continuity equation (A.4)

0=[d’ra, o+ [dr Vs— [d*roVa, -

P*a. (A.21)

(V)2

If we expand this equation in a power series of ¢, then the integral
[drgoo Vga, - Vya, appears in the third order coefficient (being
zero); therefore the latter generates a mew expression for this
integral. To this end we expand V*a in a power series of ¢

1 1
V*a=£; Vya, + ¢ {7 [Vga, — (Vya, - oy)e,]—(Va, - e,) O'H}~

A.22
Equation (A.21) then becomes ( )

{jd3r—(VHa1)2+jd3rg0<aé ) (Va, -e,)— jd:’ralgl}
& {jd‘i" & (Vay - Vya,)
+jd3 (I7Hc11)2—2jd3r—(l7(11

e,) (Vya, - o) (A.23)

oor
+fdro; (6—t> (Fa, - e,)

+ [d®r é:_o (6(5r> (Vya, - og)— jJ"‘ralgz}

Since Va, - Va, = Vya, - Vya,, the integral [ d*ro, Vya, - Vya,
can now be read off from the third-order coefficient. Therefore

1
—jd3 Q" 0 (Pua ) + ¢ {—Ejaﬁr% (Pya,)?
oor
+ [dr Q—:(V,,al “Vy) (Va, -e,)— jd3rgl<a—t> (Va, - e,)

__"d3r—Qr—0<aér> (Vaay - 6g)+ [&ra, - 92} (A.24)
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All components of (A.24) are straightforward except the last
integral, which involves ¢,. One could compute ¢, from the
defining Eq. (16), but this would again be a tedious manipulation.
A faster computation of the integral | d°r ¢, a, consists in using the
Woltjer-type expansion for a,, so that the time derivatives can be
performed in the coefficients outside the integral. More precisely,
with the expansion

ay =Y. 4.()a(r,6,¢)

we obtain (the contribution from the derivative of the moving
boundary being of order &*)

(A.25)

d
[dra,0,=Y.0.(0[dro 0 =Y.4.(1) 7 [d’ro,a” + 0 (")
(A.26)

The function g, in turn is now computed from the expansion of
(16). The result is [0r' = (06r/0s)g, 4,, €tC.]

or\? or or'  [or'\?
+31—) +2—- —+ |
o rg To o

‘ (A.27)

@ _ _
Qo Ko To Mo To
Therefore, K, can be expressed in terms of ér and dou. The
calculation of the coefficients of the total kinetic energy (33) is now
straightforward. The matrix elements Z,5, and Z,ﬂy appearing in
(33) are defined in Appendix 2.

4. Expression of the fields or and oy in the linear approximation in
terms of the usual radial and horizontal component of the velocity
eigenfunctions

To establish the connection between the components 6r, and du, of
the eigenfunctions of mode « on the one hand, and =, and H,
[Eq. (28)] on the other hand, we write the velocity field u to first
order (see A.16,A.23)

(%Y, i1y
u= T Se,-{-r qa -

Inserting the Woltjer-type expression (21) and expanding or and a,
in spherical harmonics, we obtain

(A.28)

u= Y400 {«m [s0()] Yoe, + Lot m;}. (A.29)

This expression has to be compared with the velocity as obtained
from representation (28)

u=73q,1) [E,(r) Y,e, + H,(r) VyX,] (A.30)
Insertion of (A.13) into (A.14) yields

Ea(r) = 5ra [SO(r)] s

H(r) = r Ol (A.31)

CLG+D  u

Appendix 2: angular integrals and selection rules
1. Spherical harmonics. Notations

In the context of non-linear adiabatic mode coupling, the
expansion in complex eigenfunctions, requiring complex ampli-
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tudes ¢ (¢), unnecessarily increases the numerical effort in solving
the amplitude equations. Therefore, we have here selected real
eigenfunctions and, in particular, following Morse and Feshbach
(1953), we have adopted a set of real spherical harmonics defined as
follows

o _ [Pl (cos ) cos(me) (0=m=1)
Tin = {le"" (cos 0) sin (m¢) (—I<m<0). (A.32)
With this definition we have
2n n . . _ 47'E . (l-l- |m|)| )
6[ dd’gd@ sinf [Y,8 (6, 9)]* = & CI+D) (U=[m)’ (A.33)

where eg =1, and g =2, [=1,2,3....

In order to discuss selection rules and to evaluate the angular
part of the coupling coefficients, the usual set of normalized
complex spherical harmonics proves more useful

QI+ 1) - (- m)!

Y© =
m 47 - (I+ m)!

P (cos 0) e™® . (A.34)
To avoid confusion, we use in this appendix the superscripts rand ¢
for the real and complex set of spherical harmonics; in the
remainder of the paper, Y always stands for a real spherical
harmonic.

2. Angular integrals

The angular parts, Z 5, and Z,ﬂy, of the coefficients (30, 32, 33) are
defined by

2z n
Zy,= [ b ] d0 sin0 YO VXY (A.35)

2n n
Zopy = (j) d¢ (j) do sinf YO Vg Y - VuY?.

As shown by Dziembowski (1982), an integration by parts reduces

a

Zopy 10 Zog,

Zugy =3 Uplly + D) +1, 4+ 1) = L+ 1] Zp,. (4.36)

It suffices, therefore, to discuss the selection rules for Z,,, only.

3. Selection rules

The selection rules are easiest expressed in terms of the complex
spherical harmonics. The complex integral

(A.37)

afy

2n n e
Z9, = [ dp | df sinf YO YO ¥©
0 0

is evaluated by a decomposition of Y;Y, in irreducible repre-
sentations of the rotation group [see Blatt and Weisskopf (1952),
Appendix A, Eq. (5.11)]

Y96, ) Y5 (6, ¢) (A.38)

(21+1)(21'+1)' . . B
= 1§4 /m Cy(L,0;0,0) Cy (L, M;m,m") Y4(6,6)

where Cy (L,M;m,m’) are the Clebsch-Gordan coefficients.
Details about these coefficients are given in Landau and Lifshitz
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Table 1. Examples of allowed (Z+0) and forbidden (Z=0)
couplings of three modes. The azimuthal quantum numbers m are
assumed to allow the coupling

ZWV*O Zyy»=0
One-mode couplings 000 111°
222 333®b
444 555b
Two-mode couplings 011 100°
022 2002
211 221t
Three-mode couplings 123 0122
134 0132
235 0242
0342
1240
234b

2 Triangle condition violated
b Parity condition violated

(1977). We here merely need the basic theorem: Cy,. (L, M; m,m’) is
non-zero if and only if the following three conditions are
simultaneously satisfied (a) m+m'=M, (b) Le{|I-1|, |I- ']
+1,..., I+!'} (triangle condition), and (c) [+ !+ L=even
(parity condition).

Conditions (b) and (c) remain directly valid for the real angular
integral (A.35). Condition (a), however, loses its beauty (except in
special cases such as m = m’ = m” = 0). Its counterpart is found
by transforming the real spherical harmonics of (A.35) into
complex spherical harmonics (A.34); with obvious notations

Zl(r'er’m’l"m” =W Zl(yc:l’m’l”m" + WZZI(,C)—ml'm'l"m” + . (A 39)

(©
FWeZi ot 17, —m”

where wy,...,wg are functions of the normalization constants
(A.33). One realizes how the simple property (a) has been spoiled:
if m+m's m", Zyyomim can still vanish (some terms on the right
hand side might cancel), and if m + m’ =m", Z,; 1~ could be
non-zero, if one of the combinations + m+ m’+ m” isnot equal to
Z€ero. :
Table 1 shows a few examples of ““allowed” and “forbidden”
coupling coefficients among modes of low degrees /.

Appendix 3: stars with non-monotonic entropy profile

Our basic assumption of a monotonically increasing specific
entropy is not satisfied in stars with convection zones (where
specific entropy is practically constant), or in stars with a marked
space-dependent chemical compositon (where specific entropy can
even decrease outwards). The first difficulty is not brushed away by
remarking that in real convection zones specific entropy still
remains slightly increasing outwards. Though in principle the
formalism could be used, the nearly vanishing entropy gradient
would be a source of numerical troubles.

A solution which overcomes both of these difficulties is to split
the star into a finite number of co-moving zones, in each of which
specific entropy s is (strictly) monotonically increasing or
decreasing or constant. The integrals of total kinetic and potential
energy (3,7,8,9) must be replaced by sums of integrals over the
individual zones. Furthermore, in a zone where specific entropy is
constant, it has to be replaced by a suitable co-moving function.

For our formalism, the three required properties of sare: (a) sis
co-moving, (b) there must be a one-to-one correspondence
between (s, 0, ¢) and (r, 0, ¢) at any time ¢, and (c) the circulation
(13) is conserved for loops on surfaces of constant s.

In the zones where s is strictly monotonically increasing or
decreasing, it has all these three properties and can therfore be used
without modification. In a zone of constant specific entropy, there
is no one-to-one correspondence between (s,0,$) and (,0, ¢).
However, in such zones it suffices to use any co-moving
(monotonically increasing or decreasing) quantity A [the “load” of
Lynden-Bell and Katz (1981] instead of s. For example, the mass
within arbitrarily chosen co-moving nested shells, scaled by a
constant factor to yield the dimension of entropy, trivially fulfills
requirements (a) and (b). But (¢) is also satisfied: in a zone of
constant specific entropy, circulation is conserved for al/loops, and
therefore a fortiori for those lying on surfaces of constant load A.

Notice that the coupling coefficients are eventually re-
expressed in the original space variables (7, 8, ¢) (Egs. 30, 32, 33), so
that the sum of integrals over the individual zones (replacing the
single integral) and the “load” (in zones of constant s) only appear
in the intermediate theoretical steps of the discussion.

Appendix 4: expansion of the total gravitational energy of the star

To compute the coefficients of the total gravitational energy, we
expand |r—r’|"! in spherical harmonics [see e.g. Morse and
Feshbach (1953), Eq. (10.3.37)]

1 2 & (U=|mD! (L
= e . . Y(r) 9’ Y 0’, .
el ) TR GO YR @60
(A.40)
Here, Y and & are defined as in Appendix 2.1., and

rz ={Zn}(|r,|, |r,]). In terms of our basic fields we have
|r|=ro(s) +0r(s,6,¢;1) (A.41)

We need the third order expansion in ér of the function of 7, and r,

L
rl> +1 /-
Let us first define the auxiliary functions

A°(x,y)=x" -y, (A.42)

and their partial derivatives

. a(j+k) AOO
AF(x,Y) = (A.43)
0x’ - 0y
Furthermore we introduce the “‘ordered” functions
. Ay (x=y) :
Ad* . = A.44
(41 (x.) {Wmm . (A.44)
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With these definitions and the shorthand notation [A4J*] for
[4§1(ro(s1), 7o(s,)) and dr; for 6r(s;, 0, ) (i=1,2) we obtain

; 1
(—) = AP+ [4]°) b, + [47") o, + 5 {[Af°1<6r1)2

#2041 dryir, 457 27|
(A.45)
#1016 3047 o,

+3[A41210r, (6r5)% + [47°] (5rz)3} +0[0r)"]

Next, we perform the two angular integrations in the total
gravitational energy (7, 8). The third order contribution involves
double angular integrals over a product of 5 spherical harmonics.
These integrals belong to the following two types ([ 4Q stands for

2n T

[ d¢ | db sin6)
0 o

I, = ,ZI dQ [ dQ' Y,(Q) Y,(Q) Y,(Q) ¥,n(Q) Y, (Q), (A.46)

I = lZfdQIdQ'Ya(Q) Y5(Q) Y,(Q) Yim(Q) Y1 (2).

In I;, all terms with /> 0 vanish, because of the dQ’ integration.
Since Y, =1, we finally obtain

I, = 4n [ dQ Y,(Q) Y,(Q) Y,(Q) =4n Z,,, (A.47)

In I,, the dQ’ integration similarly cancels all terms with (I, m)= y.
We get

I,=N,Z,, (A.48)

with N, being the normalization factor of the real spherical
harmonics (A.33). From these expressions we can compute the
third order coefficients (32) of the total gravitational energy.
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