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Summary. Gravitational bending of light rays may not only lead to
multiple imaging (gravitational lens effect), but also changes the
apparent luminosity of a source. It is shown here that a general
mass distribution always leads to an enhanced apparent luminos-
ity relative to that one would observe in a lumpy universe if the lens
were absent, for every relative position of source and observer. We
then discuss that this does not violate flux conservation.
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1. Introduction

The gravitational bending of light rays, as predicted by the
General Theory of Relativity, can lead to the gravitational lens
effect, i.e. a source and an observer can be connected by more than
one null geodesic. This causes the observer to see several images of
the same source (see, e.g., Einstein, 1936; Refsdal, 1964a, b;
Bourassa et al., 1973; Bourassa and Kantowski, 1975). In fact, the
discovery of five multiple image quasars (Walsh et al.,, 1979;
Weymann et al., 1980; Weedman et al., 1982; Lawrence et al., 1984;
Djorgovski and Spinrad, 1983) shows, that the gravitational lens
effect is realized in nature and has to be taken into account in the
interpretation of cosmological observations.

This is mainly due to the fact that, aside from possible multiple
imaging, gravitational bending of light rays gives rise to a change
of apparent luminosity, compared with that one would see if no
deflection occurs, so that, at least for some sources, we cannot
derive the absolute luminosity of a source just from its apparent
luminosity and redshift by means of a luminosity distance-redshift
relation (Robertson, 1938). Especially, the InN/InS relations,
which are usually obtained by flux limited samples may be
strongly influenced by this amplification effect caused by light
bending, as this amplification gives rise to selection effects.
Although the early proposal (Barnothy and Barnothy, 1965) that
all quasars are gravitationally lensed Seyfert nuclei can be
excluded (Tyson, 1981; Setti and Zamorani, 1983, and references
therein) it is by no means clear to what extend the gravitational
lens effect affects the results of cosmological observations. This
question was investigated for several types of lenses (Canizares,
1982; Peacock, 1982; Setti and Zamorani, 1983; Turner, 1980); in
particular, small-mass lens events are not detectable by multiple
imaging as the image separation lies in the range of 10~ °-
1076 (M/M )/? arcsec; thus, they can only be proved by long time

variability measurements (Canizares, 1982; Young, 1981) or by
detection of the mutual coherence of their (unresolved) images
(Schneider and Schmid-Burgk, 1984).

It is well-known that the Schwarzschild lens (the exterior of a
spherically-symmetric mass distribution) always leads to amplifi-
cation of atleast oneimage (Refsdal, 1964a). This paper investigates
the question whether there are lens geometries which lead to
deamplification, where “amplification” means enhanced apparent
luminosity relative to the unlensed source (see Sect. 5 below). We
shall prove below, that every transparent matter distribution causes
an amplification factor > 1;hence, the Schwarzschild-lensis not an
exceptional case. In Sect. 2 we formulate this theorem and discuss
the assumptions under which it is valid. Section 3 presents a simple
proof for the special case that the projected mass density of the lens
is rotationally symmetric. In Sect. 4 we investigate the general
case; Hereby, most of the assumption discussed in Sect. 2 will be
dropped or at least very much weakened, so that the theorem
should hold in nearly all situation of gravitational light bending.
Finally (Sect. 5) we discuss this result in connection with cos-
mological apparent luminosity-redshift relations.

2. Formulation of the theorem

In this section, we derive the lens equations and discuss the validity
of approximations used. We shall restrict ourselves to the case of
geometrically thin lenses (in the sense that the transverse distance
between the deflected and the undeflected ray is very much smaller
than the length scale over which the gravitational potential varies
significantly), to exclude multiple deflection of light rays. We also
assume that the deflecting mass distribution is transparent
(Bourassa and Kantowski, 1975), i.e. that every photon path
traverses the lens; therefore, the Schwarzschild lens (Refsdal,
1964a, b) is excluded (but in that case we know that at least one
image is amplified). Of course, gas in the lens may, apart from
gravitating, absorb or scatter photons from a light beam, thus
reducing the apparent luminosity of a source. The meaning of
“amplification”, therefore, is restricted to changes of apparent
luminosity due solely to gravitational action of matter on a light
bundle.

The third assumption we will make is the validity of linearized
Einstein theory; hence, we require the deflection angle to the small
(in the known cases of gravitational lensing the deflection angle is
typically a few arcsecs). For a point mass, the deflection angle is
given by 4G/c?M/r, where M is the mass and r is the impact
parameter of the light ray, provided it is much larger than the
Schwarzschild radius r,=2GM/c?. In linearized theory the total
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i deflection angle is a sum of Schwarzschild angles if the extended
mass distribution consists of point masses:

a=Ta=r ot )

i |rl| |rll

(Bourassa et al., 1973), where r; is the impact vector for the point
mass of mass M;, and the sign of «; is chosen to be positive for
deflection in the direction to the point mass M; In an exact
treatment, the r; should be the impact vectors of the distorted ray,
but for small deflection angles and thin lenses the deflected ray will
be not very different from the undisturbed one within the lens. The
last two assumptions will be very much weakened later on
(Sect. 4).

Consider a ray connecting a point source, which is far away
from the deflecting mass distribution, and the “center” of this lens
(which may be taken as the center of mass). Perpendicular to this
ray we construct a plane through the mass distribution, which in
the following will be called lens plane. Any ray from the point
source, which crosses this plane near the lens, will in astrophysi-
cally relevant situations have a very small inclination angle with
the normal of the plane, so they all hit the plane nearly per-
pendicularly. Therefore the total deflecting angle a is given in
sufficient approximation by

4G X
-

ar)=—|———5—r)d’r @

where X is the mass density projected into the lens plane [gcm ~?]
(Bourassa and Kantowski, 1975) and the integral has to be taken
over the whole plane. a(r) is the deflection which a ray undergoes
when crossing the lens plane at r.

In Fig. 1 a typical lens geometry is illustrated. An observer at x,
whose distance from the lens is D, can see a point source S, which
is at a distance D, above the lens plane, if there is a light ray
emitted at S with an angle § with respect to the optical axis, SO,
which hits the lens plane at r and is deflected by an angle a(r),
provided that

r=Ddsﬂ>
x=(Dy+D;)B—Dr),

(3a)
(3b)

where we have used tan(f)~xf for the small angles « and B.
Eliminating f, we get the lens equation

x=r DatDas _ D a(r) )]
D ds

which describes the mapping of the lens plane into the observer

plane, which is taken parallel to, and at a distance D, from the lens

plane.

Note that in general, where the light deflection takes place in an
expanding universe, the distance between the source and the
observer is not simply D;=D,+ D, (for a discussion of distance-
redshift relations in lens theory see e.g. Kayser and Refsdal, 1983);
however, this does not affect the validity of the following
discussion.

We now write the lens Eq. (4) in the simplest form by defining

szds/(Dd_'-Dds)x

and

2(1)=4G/c?DyD 4s/(Dy+ Dy Z(r);

observer plane /

Fig. 1. The geometry of gravitational bending of light

we get
X=r—a(r) ®
()= 1500,y ©

In the following we will drop the tilde.

It is straightforward, for a given mass distribution Z, to
calculate the image x of r. However, the inverse question, which
points r are mapped to a given point x, is very complicated and has
been solved exactly only for the simplest mass distributions
(Refsdal, 1964a; Bourassa and Kantowski, 1975; Chang and
Refsdal, 1979; Chang, 1981). Burke (1981) has proved that for
transparent lenses there is an odd number of r’s for every x; of
course, this does not apply if one considers star disturbances in
lensing galaxies (Chang and Refsdal, 1979, 1984), for they are not
transparent.

The amplification factor I of a light bundle is given by the
inverse Jacobian of the mapping (5), when the approximation of
geometrical optics applies; this is always the case except near to the
“critical lines” (Ohanian, 1983), where the Jacobian vanishes;
hence,

ox
[det 297] , (7)

where negative values of I belong to images with negative parity,
where, for example, a right-handed pair of vectors is mapped into a
left-handed pair. Of course, for certain r, |I| may become less than
one, but we shall prove that for every observer position x there is an
inverse image r for which |I| is greater than or equal to 1.

In Sect. 3 we prove this theorem for the special case of a
rotationally symmetric mass distribution X(r)=Z(Jr|]) where one
could easily see that this theorem holds. In Sect. 4 we will treat the
general case, which is a bit more technical.
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3. The rotationally symmetric case

Because of its simplicity, the symmetric case will enable us to
understand why the theorem is expected to hold; furthermore, it
will be instructive to compare results which are derived in Sect. 4
with the symmetric lens.

Let 2(r) =2(|r|) be the mass density which enters (6); introduce

polar coordinates R, ¢ in the lens plane, then for the point r= @

the deflection angle is given by

0 59 2n
a(o> = j(;dRRZ(R) !, de

1 (Q—RCOS¢> .
'(Rcosp—o) +(Rsing)? \ —Rsing ) ®

One easily sees that the second component of this equation
vanishes as is expected from the symmetry; the first component
can be written as (u=¢/R)

u—cos¢g

1—2ucosg+pu®’ ©)

© 2n
2, (Q) = [dRZ(R) | d¢
0 0 0
This second integral vanishes for p<1(R>g), and for p>1 it has
the value 2n/u, thus

o) _! L0
ax(())—E(I;ZanRZ(R)_ 2

(10)
where m(g) is the total mass enclosed by the circle of radius g; the
mass outside this circle does not contribute to the light deflection.
The generalization of (10),

a(r)= @r (11)
. . ox

leads to the Jacobian matrix A= a

m) 2mr2  mr? 2mrr,  mr.r,

1- 72 + ” - ) ” - 3

A= ; N s (12)

2mr,r, mr,r, m  2mr;, mTr;

— =y ____*7 1——=+ —

r4 r3 r2 r4 r3
where r=|r| and m'(r) =dm/dr. The determinant of 4 is
m dm

detA—(l—r—2>(l—E—r—>, (13)
and its trace
trd=2— '"T (14)

We now want to show that for every positive x =|x| there exist a
positive r which satisfies the equation

(15)

m
x(r)=r—7

and for which det 4 is in the range [0, 1]. As x(0) =0(m(r) rises as
7r22(0) for small r) and for large argument, r, x(r)—>r, and r—>x is

continuous and C! in 0 <r < oo, we know that we can always find,
for every x>0 a value of r = 0 which satisfies (15) and where dx/dr
>0; hence at this point, 1 —m/r? >0 and 1—d/dr(m/r) >0, so that
det A is positive. Rewriting (13) as

detd= (1 - <rﬂz)2) —m'fr(1—mfr?),

we see that at the point considered det4 <1, because m’=0; thus
we get the required result

(16)

O<detA<1 (<1,if m#0)

and hence

I=(detd) 121 17)
for at least one r which satisfies (15) (for every observer position x
off the axis). We therefore conclude that for rotationally symmetric
mass distributions the gravitational lens effect always leads to
amplification of at least one image.

From (13) one can read off that the critical lines, which are
circles, are given by the condition, that a,=1—-m/r’=0o0r a,=1
—d/dr(m/r)=0. In the first case, a, =0, the critical line is mapped
into the point x =0; one can also notice that tr A =a, + a,, so there
are two different kinds of regions where det A >0, namely those
wherea,, a, <0, tr 4 <0, and those where a,, a,>0,tr 4>0. As we
shall see in Sect. 4, a similar distinction can be found for the
general lens.

As a simple example, consider the case of a homogeneous mass
disk of radius R, so that

m(r)= {anZ(O) r<R

nR?*Z(0) r>R; (18)

then, for r <R, a, $0if 12(0) 21, and a, S0 if X (0) 2 1; so in any
case, we get for r < Rdet4 >0 and tr 4 S0 depending on 72 (0) 2 1.
Alllight rays which pass through the lens plane at r < R go through
a focus; depending on X(0), this focus lies between the lens and
observer (for 72(0)> 1] or behind the observer (72(0) < 1). If zX(0)
>2, we get detA>1, i.e. deamplification. This Ricci focussing is
due to matter in the light beam.

In the case that n2(0) > 1, then for r > R, we have a, >0, so that
r=R is one critical line; a, gets 0 for r=(nZ(0))*/2R which is the
second critical line, which is mapped, according to (15), into the
point x =0. We thus have a ring between those critical lines where
we get images of negative parity. Therefore, if |x| < R(nZ(0) — 1) the
observer at x notices three images of the point source S. For nX(0)
<1, no multiple imaging occurs.

Although this example is quite trivial, it shows all the
important features we will meet in the next section. It should be
noticed that there is always an image r, for which det4>0and tr 4
>0; for this image, I > 1. The reasons for the occurrence of such an
image lies in the fact that, provided #2(0) > 1, the mass inside the
circle r=R is large enough to bend rays, which hit the lens plane
just outside the region r <R, at least to the center of the observer
plane, x=0. For these light rays the mass distribution (18) acts like
a simple Schwarzschild lens (Refsdal, 1964a), and therefore it
always leads to amplification.

We now turn to the general transparent lens, where the
arguments used are somewhat more elaborate, but the line of
reasoning is the same as in this section.
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4. The general case

We first note, that the deflection angle a(r) (6) can be written as a
gradient of the scalar function y(r), a(r)=grady(r), where

wr) = [ 2 Injr—r|d*r, (19
which is the Coulomb potential in two dimensions. From this one
concludes that the lens equation, x=r—a(r) can be expressed in
terms of another scalar function as

x=grad¢, (20a)
where
Ir?

#)= -~ (). (20b)
In terms of ¢, the Jacobian matrix is

oo (¢n ¢) @1

or ¢yx ¢yy
. %9 . .

and we use the notation ¢;;= W; the interchangeability of

partial derivatives ensures the synllmjetry of A.
The determinant of 4 is given by

detA = ¢xx¢yy - (¢xy)2
=1 —Aw + [w:chJyy - (lpxy)z] >

where  A=0%/0x>+6%/0y*
Laplacian.

If one defines p=v,, A=3(p..—p,,), one sees that the
determinant can be reexpressed as

denotes -the two-dimensional

detA=(1—-1Ayp)*—12—pu?, (22)
and the trace is given by
trA=A4A¢=2—Ayp. 23)

To calculate Ay we first remark that a(r) is a continuously
differentiable function provided X is C°, has compact support and
is C! on the support (these are no serious restrictions, for even the
projection of a homogeneous sphere fulfils these conditions); thus,
the second derivatives of p are well-defined; especially, 4y is given
by

Ap(r)=[ Z(r) A Injr—r'|d% . (4)

The Laplacian in polar coordinates is

1d( d

from this one concludes that 4 In|r| vanishes for r=0; thus it is
proportional to the Dirac é-function. To obtain the constant of
proportionality, we integrate 4 In|r| over a circle of radius R:

1.
r dg?’

§ Aln|r|d?r= | div grad In [r|d?r
4 4

d d
= i(alnlﬂdy— d—ylnlrldx) .

At a point R(cosg, sing), dx= — Rsingd¢, dy=R cosgdg, and
grad In|r|=1/R(cos ¢, sin ¢); therefore the last integral is independ-
ent of R and has the value 2z. Hence,

Aln|r|=2m6(r),
and from (24) we have

Ap(r)=272(r),

which gives
detA=(1—nX)2—12—u?, 25
trA=2(1—-=Z). (26)

The first term in (25) is a local quantity, describing the effect of
material in the light beam; it is called Ricci-focussing, while A% + p?
is a non-local quantity, called shear. (26) was first derived by
Young (1981).

As X' is a non-negative function, tr 4 <2. If at a point r, det A(r)
>0 and trA(r) 20, we have (1 —nX)e[0, 1] and det A¢[0, 1], which
implies that the amplification factor I=(det4) !=1. We now
show that for every observer position x there exists always an r
which satisfies the lens equation (5) and where det 4=0 and tr4A
>0.

Let the observer be at x = a; he will see an image of the source at
the point r if r — a(r) = a, or where the vector field y(r) =r—a(r)—a
vanishes. We express this new vector field as a gradient over a
scalar function 60(r),

y(r)=grad6(r), (27a)
where

Il
0(r)=¢(r)—a-r=T—w(r)—a-r. (27b)

For large ||, 6(r) increases as |r|%/2, thus it must have a minimum.
(Note that the conditions imposed on X stated below (23) imply
that the total lens mass is finite). Let r, be the location of a
minimum, then # must be minimal along every curve through r,,.
Define the functions

cp(t)=0(ro+tey) ,

where e, = (cos ¢, sing), then the condition that § has a minimum at
r, translates into

¢s(0)=0 and ¢&,0)=0

for every ¢. The first condition implies grad 6(ro) = y(r,) =0, thus
the point r, satisfies the lens equation [besides, this shows that any
point in the observer plane is hit by the mapping (5)].

The second condition implies

0, cos®¢+20,, cos@sing+0,,sin*¢ =0

or

e,Ae,=0; (28)
note that according to the definition (27b), 6;;=¢,;. Choosing ¢ =0
and 7/2 in (28), one gets 6,,=0 and 6,,=0, respectively; hence,
tr4=0. 29)
The determinant of A is generally defined as

detA=e Ae,-e,Ae,—e Ae, -e,Ae,, (30)
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where e, and e, form a orthonormal basis in R?; especially we can
write them as e; =(cosg, sing), e,=(—sing, cosg). As A4 is
symmetric, one can choose ¢ such that the second term in (30)
vanishes; this happens if the equation

tan?g+ (M> tang—1=0
0.,
is satisfied (if 0,,=0, choose ¢ =0). From (28) and (30) we finally
have

det4=0, 3D
which together with (29) implies I > 1, so an observer at a sees a
non-deamplified image at r,. This proves the general fact that
every geometrically thin, transparent lens leads to at least one
image of a source which amplification factor is greater than or
equal to one.

What happens if the lens is not transparent everywhere? From
the proof it is evident that the only condition that matters is the
existence of a point r, where 6 has a minimum. If the lens is
transparent in a surrounding of r,, an observer at a will see an
image with I > 1. From (25) and (26), at ro, 72 < 1, so that regions of
non-transparency with X >1 will not influence the result of the
theorem. To give physical numbers, a surface mass density of
og/cm? leads to X = 16.7 gn/h, where is DD 4,/(Dy+ D,) in units
of Hubble length, ¢/H,, and Hy=h-50kms *Mpc~!. Fur-
termore, if the shear u? + A2 is large enough in a region of opacity,
then no point with det 4 >0, tr 4 >0 will occur in that region. For
example, consider a star in a distant galaxy; the region where det 4
<0 or X >1 has a radius of roughly a few 106 (M/M ;)*/? cm for
reasonable redshifts of the star and the source; this of course is
much larger than the region of non-transparency of this star. We
therefore expect that the theorem also holds for real galaxies and
clusters which contain stars.

The assumption that the gravitational fields are weak can also
be weakened. If, for example, the lens contains a black hole of mass
M, the lens equation no longer holds for values of r near to the
hole. But the region where detA<O0 has a radius of
R=(c/HAGM/cHY?,  so  that  R/ry=2.510'*(n/h)*/>
(M/M o)~ */2; thus, even for very massive black holes the strong
field region is very much smaller than the region of negative parity.
Therefore, the weak field (or linearized) approximation should
hold in all points of interest.

5. Discussion

Starting with the simplest form of the lens equation we have shown
that any mass distribution, lying between the source and the
observer, leads to amplification, i.e. the apparent luminosity of at
least one image is larger than it would be without light bending —as
long as the regions of opacity within the mass distribution are
small enough in the sense discussed above. There has been some
confusion in the literature (e.g., Turner, 1980; Avni, 1981; Peacock,
1982; Canizares, 1982) about the point that light bending must not
violate the law of flux conservation; this point deserves some
clarifying comments (Weinberg, 1976; Peacock, 1983).

To discuss this we first remark that gravitational lenses of
astrophysical interest are imbedded in the universe, that is, the
lensing event takes place within a curved space-time. Given the
geometry of the space-time manifold, the apparent luminosity of a
given source depends on its position relative to an observer as well
as on the properties of null geodesics on this manifold.

123

In the standard Friedman-Robertson-Walker (FRW) model
the universe is described as being filled with homogeneous,
isotropic ideal fluid. For this model, the null geodesics are known
and the apparent luminosity can be calculated for a source of given
absolute luminosity and redshift (Robertson, 1938). In particular,
the propagation of light takes place in this perfect fluid; thus there
is matter in the light beam which causes Ricci focussing.

While the perfect fluid description of the universe may be
justified with regards to the large-scale geometry of the universe, it
is certainly not correct to account for the details of light
propagation; especially, a light ray from a distant galaxy which
reaches us has not traversed a perfect fluid of the average mass
density of the universe (Zel’dovich, 1964; Refsdal, 1970). To
account for this, Dyer and Roeder (1972) have considered the light
propagation in a lumpy universe, i.e. a universe where the
large-scale geometry is of the FRW type but where the matter is
concentrated in lumps, such as galaxies. A light bundle which
happens to miss any lump will not experience Ricci focussing; so
for a given source the apparent luminosity will be less than that in
the standard FRW-model. Later (Dyer and Roeder, 1973) they
extended their discussion to the case that there is some smeared-
out matter, besides the lumps.

Weinberg (1976) gave the following argument: consider a
source and a sphere, centered on it, with fixed radius (measured,
say, with redshift), in a universe of given large-scale geometry. If
the matter within that sphere is transparent, the integrated flux
over the sphere of the light emanating from the source must be
independent of the matter distribution within the sphere; hence, if
the matter is concentrated in lumps, the average apparent
luminosity must be the same as it were in a pure FRW-model. He
thus concluded, that on the average the gravitational lens effect must
lead to an amplification relative to the luminosity-redshift relation
obtained for the lumpy universe.

Thus our result does not violate the law of flux conservation, as
the amplification we consider is the amplification relative to the
lumpy universe model, or more general, amplification relative to the
case where the lens mass were absent (and not smoothed out!)
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