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RELATIVISTIC GRAVITATIONAL POTENTIAL
AND ITS RELATION TO MASS-ENERGY

PAVEL VORACEK
Lund Observatory, Lund, Sweden

(Received 3 January, 1979)

Abstract. From the general theory of relativity a relation is deduced between the mass of a particle
and the gravitational field at the position of the particle. For this purpose the fall of a particle of
negligible mass in the gravitational field of a massive body is used. After establishing the relativ-
istic potential and its relationship to the rest mass of the particle, we show, assuming conservation
of mass-energy, that the difference between two potential-levels depends upon the value of the
radial metric coefficient at the position of an observer. Further, it is proved that the relativistic
potential is compatible with the general concept of the potential also from the standpoint of
kinematics. In the third section it is shown that, although the mass-energy of a body is a function
of the distance from it, this does not influence the relativistic potential of the body itself. From this
conclusion it follows that the mass-energy of a particle in a gravitational field is anisotropic;
isotropic is the mass only. Further, the possibility of an incidental feed-back between two masses
is ruled out, and the law of the composition of the relativistic gravitational potentials is deduced.
Finally, it is shown, by means of a simple model, that local inhomogeneities in the ideal fluid filling
the Universe have negligible influence on the total potential in large regions.

1. Introduction

Despite the fact that the general theory of relativity has passed successfully through
a number of tests, it is still possible to find problematic points in some applications of
the theory.

One of the problems is whether the mass of a particle depends in any way on the
gravitational field at the place of the particle [15]. The question whether the gravita-
tional self-energy of a particle contributes to its mass and how this possible interaction
occurs has often been discussed in the literature [1], [2].

According to Einstein, both gravitational and inertial mass depend upon gravita-
tional energy. Dicke is doubtful about Einstein’s conclusions. The problem of energy
conservation, which arises in Dicke’s theory, is solved by a possible violation of the
equivalence principle. In his theory, gravitational self-energy contributes to the
gravitational mass only, the inertial mass remains unchanged [/2]. Recently, Williams
et al. [18] made an important experiment proving again the principle of equivalence.
The proof is based on the null-result for the Nordtvedt effect.

Another problem is whether it is possible to establish a potential in the general
theory of relativity, with properties analogous to those of the classical potential
considering both energy and kinematics. This is denied by most experts. The main
problem is the definition of a reference-level for discussing potential energy. This is
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sometimes stated in the form, that it is impossible to localize the potential energy [/3].

Consider the following paradox: A test particle of negligible mass is falling radially
from a great distance to a massive black hole and is observed by a static observer above
the Schwarzschild limit, which is possible by principle. If the radial coordinate of the
observer is very close to that limit, the observed velocity of the particle will be near
that of the light and the relativistic mass of the originally negligible particle will
suddenly be comparable to the mass of the body generating the gravitational field.
As a consequence there should be a violent dynamical interaction between the particle
and massive body, which constitutes the paradox.

The aim of the present paper is not to give an exhaustive analysis of the problems,
but to indicate a possible easy and logical way for the solution. This should be com-
plete, self-consistent and in agreement with past experiments. Therefore in the follow-
ing analysis we start from principles of the general theory of relativity, i.e. from the
principle of equivalence [9], from invariability of the gravitational constant [/0] and
from the law of mass-energy conservation.

2. Mass and Relativistic Gravitational Potential

2.1. THE FALL OF A PARTICLE OF NEGLIGIBLE MASS IN THE GRAVITATIONAL FIELD
OF A MASSIVE BODY

To deduce a relation between the mass and the gravitational potential, let us use the
free fall of a particle in the gravitational field of a massive body with the mass in-
comparably greater than that of the falling particle itself. This assumption makes it
possible to simplify the theory in the first phase of the analysis: one does not wish
to complicate the theory in such a sense that the particle should influence in some way
the mass of the massive body.

The particle begins to fall from rest (dr/d¢z = 0), from the flat spacetime. The mass
of the particle is u for r — oo and dr/dr = 0. The space component of the particle’s
geodesic is a radial straight line relative to the massive body with mass M > pu.

The symbol r stands for a Schwarzschild radial coordinate with origin in the
center of the massive body, ¢ is a time coordinate in the flat space-time.

In the geometrized system of units, the four-momentum of the particle is

p = Mo, (D)
where u is the four-velocity of the particle defined as

w = (1 —v?)~12 (2)

= vl — v?)~ 12, (i=1,2,3) 3)

where ' are the velocity components in a local reference frame and m,, the rest mass
of the falling particle.

In the flat space-time (indices of &-type) the particle, as well as the reference frame,
are at rest —i.e., u = (1, 0,0, 0), and according to (1)

p=pl = p. 4
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At a point with a finite r coordinate and in a local reference frame, which is at
rest (r is constant), is

20— il = (1 — )12 — . (5)

Local velocity of the particle in this reference frame is v = d//dr; [ is a proper radial
coordinate and T is proper time.

If we should stop the particle in such a way that its kinetic energy transformed
into matter (which is possible by principle, but in the decisive majority of physical
phenomena, which lead to the stoppage of a particle, the kinetic energy is simply
taken away; see Appendix), the zero-component of four-momentum is

Py = My’ = M. (6)

The symbol m, denotes the rest mass of the particle after the stoppage at the point
with the radial coordinate r.
Furthermore,

pPP=m= My = P?m- @)
From the relations

_dx® dx® dr
0 — pa " _ p0 " _ pb___
P=Pae =P ae ~ P ar ®)

describing a transformation from the local Lorentz frame of the moving particle
(T is a proper time in this frame) to the reference frame which is at rest (r is constant),
and from (4) and (7) it follows that

d
My = m = p gz ©)

At the point with coordinate r (finite) the curved space-time has a Schwarzschild
metric. For the particle at rest (dr/dt = d6/dt = d¢/dt = 0) its world line is described
by the equation

ds? = goo dz2. (10)
Further

ds? = —dr? (11)
and

dr = (—goo)*? dz. (12)

For a particle which continues to fall (d6/dz = d¢/dr = 0), the geodesic is described
by

ds® = goo d2* + g,, dr?, (13)
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where

8oo = _(1 - g‘i‘_l)’ Err = (1 - 2‘%)_1; (14)

so that
ds? = —dT?=. (15)

From (13), (14) and (15) it follows that

T2 = {(1 - 2%4) - (1 - 3;]‘1)_1<3—:)2} dr?. (16)

The fall is described also by the equation

dr 2M\ (2M\ 112
- (-2)Ry"

in accordance with the equation of the geodesic in the space-time with the Schwarz-
schild metric [5].
In accordance with Equation (17) we have

dT = (1 - 2%4) dr, (18)
which with (12) and (14) gives

dr 2M\ -12

a7 = (1 - T) ’ 4

thus, according to (9),

2M -1/2

¥

which agrees with Meller [15].

2.2. THE MASS-ENERGY OF THE FALLING PARTICLE AND THE ESTABLISHING OF THE
RELATIVISTIC GRAVITATIONAL POTENTIAL

The Hamiltonian for the motion of the particle along a geodesic in the time-independent
(stationary) gravitational field is (see [6] and [16]),

H=E+V, 21
where F is the special relativistic mass of the particle (then m), as described in formula
(5), and

V=E-[(1 —324—)”2— 1] 22)

is its potential energy. The Hamiltonian H is a constant of such a geodesic motion of
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the particle [17], which may be identified with the total energy of the particle. Accord-
ing to its physical significance it will be called the mass-energy and denoted m,.
Similarly E, which includes rest mass and kinetic energy of the particle, will be denoted
m,, and finally the potential energy ¥ is denoted m,_ . Thus

n, = Mg, + meps (23)
where
e, = m (24)
and
/
mep=m-[(1—2TM)12—l]- (25)

Consider now a distant, static observer in the flat spacetime (r — c0) observing the
falling particle. In the moment of the beginning of the fall (the particle is at the place
of the observer) is

me, = p (26)
and

m,, = 0. (27

Mass-energy of the particle is therefore equal to the proper mass of the particle, hence
p. We come to the same conclusion for a general position of the particle in the field
(r 1s finite) if we use relations (7), (20), (23), (24), and (25).
The function
1/2
<p=(1—g-j‘1)’—1 (28)

r

has, therefore, from the standpoint of the law of mass-energy conservation, the
character of an effective relativistic potential. Let us for convenience call it ‘the
relativistic potential’ only. One can arrive at the same conclusion another way.

Let us take the effective potential [/1] for the radial motion only, and renormalize
it, so that for non-relativistic conditions it is equal to the Newtonian potential. We
obtain again the function ¢ as given by Equation (28).

The Newtonian potential is

ox = lim o= ~2L. 29)
2M|r—0 r
Furthermore,
lim ¢ = lim gy = 0. (30)

According to (20)

mey, = u(l + @) 7. (3D)
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In [/3] Misner et al. write: “Moreover, ‘local gravitational energy-momentum’
has no weight. It does not curve space.. .. Unhappily, enormous time and effort were
devoted in the past to trying to ‘answer this question’ before investigators realized
the futility of the enterprise.” On the other hand, among the quotations at the begin-
ning of the same chapter, one finds Einstein’s statement: ““ All forms of energy possess
inertia.” Misner’s explanation that it is not possible to localize a potential energy,
meets in every case certain logical difficulties. An observer (we assume a static one) is
placed at the finite distance r from the source of the gravitational field. Why not relate
the potential energy to the potential level on which the observer is placed (as is usual
in practical engineering) ? If the falling particle is just passing our observer, its potential
energy simply equals zero, and the problem whether or not it is possible to localize a
potential energy related to infinity, is for our observer actually solved. Moreover, with
this new conception there is no violation of the theory of relativity. The praxis to
always relate the potential energy to the distant zero-potential level without regard
to the position of the observer is very usual in the classical celestial mechanics, but
then the mass-equivalent of such an energy is without exception negligible.

Under those conditions, the mass-energy m, (Hamiltonian H) of the particle is for
a static observer constant, but for static observers in the different Schwarzschild
distances r from the source of the gravitational field, it is different. For our static
observer placed at the point B (its radial co-ordinate r is finite), where the falling
particle is just passing, is

m,, = Mg, (32)
where my is the special relativistic mass of the particle, further
=0 (33)
and therefore, relating to (23),

mep
me == mB. (34)

If the particle is situated at a point 4 # B, the law of mass-energy conservation
(23) (we assume the law is fulfilled for every static observer) implies that

m, = mg = My + My Apy_ps, (35)

where Ag.,_p, is the potential difference between the two points relative to the
observer. But according to (31),

my = p(l + @g)7? (36)
and

mp = p(l + @p)7 1. (37)
Using (36) and (37), we obtain from (35) that
Apia-py = TT_:SE' (38)

A@(A—B) = Q4 — @p Only fOI' ®p = 0 or Pa = @p.
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In accordance with (28)

1/2
1+<p3=(1—2i4) . (39)
rg
Because
dry  _ —ug _ (1 _ 2M\V2
(§), = @ = (1 - 2™, (0)

we have, according to (38),

Apea-py = (pa — (PB)(grrB)llz- (41)

Thus, the difference between two relativistic potentials depends upon the local value
of the relativistic potential or upon the value of the metric coefficient g,, at the
position of the observer.

It is important to note that

[Apcapy| # [A(P<B—A)]’ (42)
Apia-py # Apea-cy + Apioop (43)
and, the potential energy at a point A, relative to a point B,

_ o P4 — PB .
Me,ca-py = My DApea-py 'u(l + @)1 + @8) “

One can establish such a Afi,_p,, that (44) can be written
Me ca-py = K Afca-py, (45)

i.e., in accordance with (44)

_ Pa — PB
Moo = T3 020 + 70 (40

For Af(4_py is

Af<A—B> = _Af<B—A> (47)

and
Afca-py = Bfca-cy + Bfcc-n- (48)

Despite the algebraic properties of Af we shall use the potential difference A¢ only,
because it is related to the actual mass of the particle and thus in better agreement
with the usual definition of the potential.

Furthermore, it is useful to show that the function ¢ has properties of the potential,
not only from the standpoint of the law of mass-energy conservation, but also from
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that of kinematics. One has namely to prove that, for v = 0, a local acceleration a is
equal to a local gradient of the potential difference (41); i.e., that

_dy

a = EI— » (49)
where, according to (40)

dl = (g,)"2-dr (50)
and

df = lim Ap,_p;y, (1)

A—B

which gives, in accordance with (41),

dy = (g,)'?-de. (52)
Then,

df _ do

dl ~ dr (53)
Let us prove, therefore, that

a =97 (54)

T dr

We start from the Schwarzschild metric and solve the equation for a geodesic. (Under
different conditions for the solution of the differential equations, which we obtain
after substitution of non-zero connection coefficients into the general equation of the
geodesic, and with the use of the equation describing the metric of the Schwarzschild
field, we can arrive at the solutions explaining today already ‘classic’ (and, by observa-
tions, definitely confirmed) conclusions: namely, the angular advance of perihelion
for Mercury and the gravitational deflection of a light in vicinity of the Sun. For a
more detailed treatment see, e.g., [7].) If we solve those equations under conditions
for a radial free fall (6 and ¢ are constant) from rest from a point with the co-ordinate
r = R (vy = 0), the number of equations is reduced to three and the solution is

(B

(Compare with [5] for ¢ = 1.) For a free fall from the flat spacetime (R — o) we
obtain the already used formula (17). It is pertinent to indicate that, by using formulas
(12), (14), (17) and (50), we obtain for the locally measured velocity of the falling
particle (under condition R — c0), the expression

b= (2&)”2. (56)

Tdr o \r
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By using (5) and (7) it is possible to arrive more easily in another way to the conclusion
(20).

Taking the derivative of the expression (55) with respect to ¢ and after resubstitution
of the same expression under conditions » = R for v; = 0, we obtain:

d?r M 2M
a1 -2 7
The local acceleration a can be expressed as
d2!
a = —P s (58)
and by (12) and (50) again
a2 _ (g2 dor
& " —gd® e
Using (14), from (58) it follows that
2M\ -2 4%
Referring to (57), we finally find that
M 2M\ -2
azﬁ.(l _T) § (61)
According to (54), we ask if
dp M 2M\ -2
5‘72’(1_7) . (62)

This is actually fulfilled by function ¢ given by relation (28). Referring again to the
Equations (29) and (30) for the non-relativistic and boundary conditions, it is possible
to claim definitively that function ¢ is the relativistic potential.

Here one may ask: Is the last statement justified, when, in the deduction of the
Schwarzschild metric, one identifies the constant M with the mass of a source of the
gravitational field with use of

—8o0 = 1 + 2, (63)

where x is the Newtonian potential? The answer is that relation (63) is deduced for
weak fields only ([4] and [8]), i.e., under the boundary relativistic conditions. But such
conditions are possible to use (and really are used) for determination of the constants
without limitation of the validity of the general solution. Consequently, the constant
M represents the mass under general relativistic conditions just because, with rela-
tivistic boundary conditions, the function ¢ becomes equal to the Newtonian potential
as described by (29).
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2.3. SOME GENERAL CONCLUSIONS

The mass of the particle is related to the local value of the relativistic gravitational
potential, as described by (31). The expression ‘mass’ means the mass when the
particle according to (7) is momentarily at rest; otherwise, it means the relativistic
mass relative to a static observer. The interaction between the particle and the massive
body takes place on the purely spacelike hypersurface (df = 0; ds? > 0), i.e. immedi-
ately. The particle interacts with the time-constant (stationary) gravitational field of
the massive body. The particle itself does not influence the mass of the massive body,
due to the assumption made at the beginning.

In accordance with (31), the mass of the particle at rest depends upon the local
value of the relativistic gravitational potential ¢, which is a scalar. This means that
the inertia is isotropic. This conclusion is in agreement with [3].

Despite the high improbability of a spontaneous stoppage-process, in which kinetic
energy of the falling particle would be transformed into matter, we can take every
particle with rest mass m,, which is at rest on the potential level ¢(r), as if it would
be a result of such a stoppage-process; and, with use of formula (31), we can calculate
its proper mass p pertaining to the particle in the flat (Minkowski) space-time.

If a particle falls from the flat space-time (from rest for »r — o), then Equation (4)
is always fulfilled in the local Lorentz frame connected with the particle. It means
that the relativistic potential ¢ for a particle which is moving along a geodesic,
according to Equations (7) and (31), is equal to zero, because the rest mass of the
particle remains equal to its proper mass u. (More simply and perhaps even more
correctly: In the local Lorentz frame of the moving particle, the influence of the
relativistic potential ¢ is eliminated.)

If the particle falls from a point with finite radial co-ordinate » towards the massive
body, then in the local Lorentz frame connected with the particle, the potential
difference Ag is equal to zero (is eliminated). It is so because the rest mass is equal
to the mass the particle had at the point with the radial co-ordinate r.

3. Finite Bodies and Other Applications
3.1. THE PROBLEM OF GRAVITATIONAL SELF-ENERGY AND MASS OF A BODY

A body with a mass M is formed by a thin spherical shell with Schwarzschild radius r.
The relativistic potential on such a shell is determined by formula (28). But it means
that the mass of every particle pertaining to this formation will increase in accordance
with the relation (31). Therefore, for an observer situated on the surface of such a shell,
the mass of the whole body will increase in the same way. It would appear that this
can lead to the wrong opinion, that the mass of the formation determines itself by
the pertinent relativistic potential in the feed-back way.
If the mass of the body for an observer on its surface is

M=M1+ 91, (64)
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then the supposition

¢ = (1 - %)m -1, (65)

r

is incorrect: instead of .# in this relation we have to use the proper mass M of
the body. This follows from the fact that in the derivation of the Schwarzschild
metric, we have in the formulae (14) for g4, and g,, a general constant instead of M.
Only from boundary conditions, when r — oo, can one conclude that this constant
is equal to M, i.e. the mass characterizing the body at great distances [4]. The rela-
tivistic potential is then determined exclusively by the variable r and the constant M.
But this does not mean that everywhere outside the body its mass is equal to M,
which is frequently assumed in the literature [/4]. The mass as such is really given by
Equation (64). For a distant observer (r — o), the increase of mass is compensated
by the negative gravitational self-energy, in such a way as explained in the text directly
preceding Equation (28).

In order to fulfill the equivalence principle it remains to show that, for a nearby
observer, ./ is not only the inertial mass, but also the gravitational mass. At a point
B, with the Schwarzschild coordinate r, the length-unit is contracted in the radial
direction (relative to a distant observer). Consequently, for a static observer at B,
the radial distance r will be observed as

d/
L=(g), (66)
which, in accordance with (39) and (40), means that

L=r(+ gpt. (67)

The distance L we call the local radial coordinate. In contradistinction to / (proper
radial coordinate), the L is not an integral over d/ from zero to r.

For the observer at point B a relativistic potential g5 is determined by the mass .#
and the local radial coordinate L. Formula (28) then yields

2.4\ 12
But, according to (64) and (67), we arrive at the relation
o, 2M 14 g5\t

We thus again obtain the feed-back-free relation (28). Simultaneously, the equivalence
principle is fulfilled.

This solution at the same time explains a paradox concerning the mass of a par-
ticle falling into the vicinity of the event horizon (r — 2M). According to (28) and
(31), the mass of the particle, even though of negligible value at a great distance r,
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would increase in the vicinity of the Schwarzschild limit to such values that it would
become comparable to the mass of the black hole, to which the Schwarzschild limit
pertains. But, for every static observer, the special relativistic mass of the particle
falling from infinity is equal to the proper mass p multiplied with (I + ¢)~*' and the
locally observed mass (mass-energy) .# of the black hole is equal to the same multiple
of its proper mass M. Every static observer can thus claim that

m. M =u M. (70)

Finally it is necessary to specify the concept of mass, which for simplicity was used
several times in this section instead of the mass-energy. We shall understand hence-
forth under the expression ‘mass of the formation’ a value given by formula (64),
when the observer is situated at the surface of the shell. The mass is then invariant
relative to r. If the observer is situated above the surface of the shell, we shall call
the .#, which is not invariant relative to r, the locally observed mass-energy of the
formation. For r — co the mass-energy of the formation is identical to its proper
mass M. The situation for a particle is analogous, but correct terminology was
strictly kept in the relevant sections.

3.2. ISOTROPY OF THE MASS AND ANISOTROPY OF THE MASS-ENERGY

It is easy to see that the conclusion on the isotropy of mass holds in a Schwarzschild
gravitational field only locally; or stated more precisely: it holds only for the locally
observed mass-energy at the point where the particle is situated (therefore, for the
mass). This is in accordance with the measurements [3].

But generally the mass-energy of the particle is anisotropic. For a distant observer
(r — o0) the mass-energy, considering the change of a length unit in the radial direc-
tion, will be equal to u, and in the transverse direction it will be equal to m, in
accordance with (31), where ¢ is the relativistic potential at the point of the particle.
According to the definition of the Schwarzschild radial co-ordinate, the geometry in
the transverse direction for every observer is locally Euclidean (the curvature of the
equipotential surface may be neglected). We determine here the mass-energy of the
particle from the shape of the equipotential surfaces of its own gravitational field.
These equipotential surfaces have locally (and on the background of the gravitational
field of the central body) the shape of concentric spherical shells.

For an observer, situated at a finite » coordinate, the mass-energy of a particle in
infinity is p in the transverse direction and m, in the radial direction according to
(31); @ 1s the relativistic gravitational potential of the central body at the place of the
observer.

The mass-energy of a particle situated at a point 4 in an arbitrary direction of a
unit vector n (in the co-ordinate system of the particle) will, for an observer situated
at a point B, be given by

1 +
m, = m(o)n' (1 + (;:5 1) . (71)
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If w is a unit vector in the coordinate system of the observer, the same relation will be

1 + 2 -1/2
m, = me(w, + w)| (w, ——2) + wi| - (72)
B 1 + ¢4
The first component of the vector is the radial one and the second one is the transverse
one.
If the observer is situated on another radial line than that of the particle, then

w=s-(COSB’ sinﬁ)’ (73)

—sin B, cosf

where B is an angle counted from the radial line of the observer to that of the particle,
and s is an arbitrary unit vector at point B.

3.3. A GRAVITATIONAL INTERACTION BETWEEN TWO BODIES WITH COMPARABLE
MASSES

If one analyses a situation where instead of masses x and M (M > ) there are two
masses with comparable values p, and p, (relative to flat space-time), the whole
analysis is complicated by the fact that the mass of the attracting body is influencing
the mass of the attracted body. Both bodies play two parts at the same time, both
as attracting and attracted bodies, with all the consequences for their masses.

The question is whether the interaction will appear in the form of a feed-back
between the masses, and if so, whether that coupling has a convergent or a divergent
character.

We stated above that the relativistic potential at a specific point of space is invariant
relative to the position of the observer. Because the radial mass-energy of both bodies
is constant for a distant observer (we assume that velocities in other directions than
that of the connecting line between the bodies are equal to zero), despite the increase
of masses of bodies, their relativistic potentials, at least in the radial direction (connec-
tion line direction), are determined, analogously to the transition from Equations
(68) to (69), by their proper masses u, and uy only. Therefore, even for a local observer
there will be no feed-back between the masses. It can happen that when the bodies are
approaching, as seen by distant observer, for a local observer the bodies are incidentally
moving apart.

If the two bodies are particles of comparable masses on an equipotential surface
of a body with much larger proper mass M than the particle masses m, and ms,
then the particles will gravitationally influence one another on the equipotential
surface (on the background of the potential of the more massive body) in such a
manner as is determined by their masses m, (not their proper masses ) and their
Schwarzschild distance. Here we have neglected the curvature of the equipotential
surface in a certain small region.

If it is possible to assume that in a sufficiently large region the potential of the mas-
sive body is constant in the radial direction, the interaction between the particles
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has naturally a locally isotropic character: in such an interaction, the ‘proper masses’
of the particles are locally m, and their distance is determined by a set of measure-
ment rods, which, despite the anisotropy for a distant observer, is locally isotropic.

3.4. THE COMPOSITION OF THE RELATIVISTIC GRAVITATIONAL POTENTIALS

At a point where the relativistic potential of the body is equal to ¢,, let us assume that
in a sufficiently large region of space the gravitational field is everywhere homogeneous
(p, is approximately constant). In this region we have a particle with mass m, < M
(M is the proper mass of the body). At a certain point S in this region the relativistic
potential of the particle on the background potential of the body is equal to g,.

On the background-field in this region it is possible to derive the formula for the
Schwarzschild metric, in the vicinity of the particle, in such a manner that for a
sufficiently great local r’ (from the particle) the relativistic potential is equal to the
potential of the background, i.e. the local relativistic potential of the particle is equal
to zero.

A test particle with proper mass pqo < My, is placed into the gravitational field
of the body, where the relativistic potential is equal to ¢, (to a point R, far away from
our particle). Then the mass of the test particle is

= 74
Mo 1 1 @1 ( )
Hereafter the test particle is placed into the point S and its mass becomes
Ho
— . 75
If we establish the representative relativistic potential ¢ such that
o= (76)

1+
then according to (74) and (75)
=1+ ) + @) — 1. (77)

It is also possible to state that the local relativistic potential on the background of
the gravitational field of the body is equal to the potential difference related to the
Minkowski (flat) space-time, because the mass as well as the relativistic potential related
to the flat space-time are the same for all static observers. Then

P2 = A(P(S—R)a (78)

which again leads to formula (77).
If the number of bodies were larger, the representative relativistic potential would be

p=T]0+9)1. (19)
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In the Newtonian approximation (|g;| < 1)

0x > 9 (80)

and
pR V«oo(l -2 %)- (81)

4. The Effect of Local Inhomogeneities in the Universe on
the General Gravitational Potential

Up to now we analysed situations which may be characterized as local perturbations
in the Universe. It is advisable to show that such local perturbations of the homo-
geneity of the fluid (substratum)filling the Universe does not have any global effect
on the potential of the Universe as a whole. In accordance with the observations,
these perturbations (on the level of galaxies and groups of galaxies) are situated
uniformly and therefore a certain type of homogeneity exists.

In the frame of a model it is possible to find, for every locality with higher mass
density than that of the ideal fluid (a positive perturbation), another locality at the
same distance, where a lower density (a negative perturbation) exists.

For simplicity let us assume that in a certain region of the Universe there exists
the same potential everywhere. On a level, where it is necessary to consider inhomo-
geneities of the substratum, this presumption is quite acceptable. The homogeneous
fluid is therefore equipotential in the considered region.

However, in the fluid, a partial negation of its total continuity (a vacuum ‘bubble’)
is found. This arose because matter from the region of the negation were transferred
to its close vicinity (at the distance A).

We can consider the negation as a body with negative mass m~ = —u < 0 rela-
tive to the substratum. The fluid from the region of the negation forms a body with
the mass m* = p > 0 relative to the substratum.

An analogous formula for the relativistic potential of the negation would be, in
accordance with (38) for ¢, = 0

—p*
T = 82
? 1 + ¢ (82)
where ¢* is a relativistic potential of the ‘positive’ body which is situated at the same
distance r as the negation.

The representative relativistic potential at the distance r (r > A) from the model-
perturbation is in accordance with (77)

p=(0+¢" )l +o¢7)—1 (83)
and according to (82) is ¢ = 0. -
But Equation (82) is derived from an analogy only, and its validity need not be
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general. Therefore, it is better to use a Newtonian approximation; due to the low
density our case becomes relativistic only when the dimensions of the region are
comparable with the dimensions of the Universe. But such great inhomogeneities
do not exist in the Universe. In the Newtonian approximation we have

+

. _ M _ _F
PN = 7 r (84)
and
- _m
oy = = =t (85)

and according to (80) the conclusion is the same, ¢ = 0.
This means that in the substratum the potential remains constant, except in a
small region in the vicinity of the perturbation.

Appendix

It might be objected that it is impossible to stop a particle falling in the gravitational
field of the central massive body and to conserve, at the same time, a four-momentum
of the particle as mentioned above in part 2.1. One possible solution would yield two
particles with geodesics centrally symmetrical relative to the central body. The
stoppage process should be mediated by two identical photons emitted from the
central body so that they would move on the centrally symmetrical null-geodesics
directly against the falling test particles. After a head-on encounter between the
photons and the particles the energy of the photons, as measured by the static
observers, should be radiated in a centrally symmetric manner relative to each stopped
particle. Note that the energy of the photon is higher in the reference system of the
falling particle than in that of an observer who is static relative to the central body.
After this process the total energy of the photons emitted by our two particles will be
equal to the sum of the energy of two originally emitted help photons. During the
process, their total momentum is always zero. Therefore the four-momentums are
conserved both in the system of the two particles and in that of the help photons.

If the transformation of the potential energy into matter and vice versa would take
place continuously, the following mechanism would in principle be possible: From a
rigid circle with its center in the central body two opposite radial wires are suspended.
This rigid supporting system has a negligible mass. Two lifts are moving (climbing)
along the wires on the centrally symmetric world-lines relative to the central body.
Each lift has a mechanism which can transform its own mass into energy for ascension,
or its potential gravitational energy into mass. The velocity of the lift (a “particle’ in
the subsequent paper) is theoretically infinitesimally small, but in practice always non-
relativistic. We call this transformation of matter into potential energy of the particle
(and vice versa) the adiabatical transformation.
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