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ABSTRACT 

This paper deals with the question of whether the observed galaxy correlation functions could 
have evolved out of “reasonable” initial conditions in the early universe. The evolution of density 
correlations in an expanding universe can be described by the BBGKY equations. This approach 
has been the subject of several previous studies, but always under the assumption of small- 
amplitude fluctuations, where the hierarchy of equations has a natural truncation (one ignores the 
reduced three-point correlation function). Results of these studies cannot be compared to the 
present universe because the galaxy two-point correlation function f(r) is much greater than 
unity at r ^ \ h~x Mpc, and the three-point function £ is on the order of £(/*)2. In this strongly 
nonlinear situation the hierarchy is dominated by terms ignored in the linear analysis. Our method 
of truncating the hierarchy is based on the empirical result that £ can be represented to good 
accuracy as a simple function of f. We solve the equations via the velocity-moment method, and 
we truncate the resulting velocity-moment hierarchy for the two-point function by assuming that 
the distribution in the relative velocity of particle pairs has zero skewness about the mean. The 
second equation in this velocity-moment hierarchy is our main equation for £. It involves the 
three-point spatial correlation function £, which we write as a function of £ following the empirical 
result. The third equation involves the first velocity moment of the three-point position and 
velocity correlation function. We model this term in a way consistent with our model for £ and 
with a constraint equation that expresses conservation of triplets. 

The equations admit a similarity transformation if (1) the effects of the discreteness of particles 
can be ignored, (2) the initial spectrum of density perturbations assumes a power law shape, and 
(3) the universe is described by an Einstein-de Sitter model (D £ 1). The numerical results pre- 
sented here are based on this similarity solution. 

The main results are the shape of £(/*) and the value of the dimensionless coupling parameter Q 
in £ (eq. [4]). The computed Q is in good agreement with the observations. The prospects for 
testing the computed details in the shape of f are discussed elsewhere (Davis, Groth, and Peebles 
1977). Auxiliary functions in the computation are the mean and mean-square values of v2i, the 
relative peculiar velocity of particle pairs at separation x. The transverse and radial parts of 

at small x are close to isotropy, suggesting that clusters, once formed, leave little trace 
of radial infall. Also, <T2i

a> gives no evidence of “overshoot” or collapse of protoclusters. These 
results suggest that the velocity dispersion within a protocluster grows as it is developing as a 
density perturbation, so that when the cluster fragments out of the general expansion it is already 
“virialized.” 
Subject headings: cosmology — functions: numerical methods — galaxies: clusters of 

I. INTRODUCTION 

This paper is the first in a projected series on an attempt to numerically integrate the BBGKY equations 
describing the evolution of the galaxy correlation functions in an expanding universe. The goal is to discover those 
conditions (if any) under which the predicted functions would match the observations (Peebles 1974; Peebles and 
Groth 1975; Groth and Peebles 1977). The point of attack described here takes from the theory of nonideal 
gases the BBGKY equations for the «-point correlation functions in position and velocity (see, e.g., Montgomery 
and Tidman 1964). The attractive feature of this approach is that the theory deals with functions quite close to 
those that have been directly estimated from the data. The problem is that the theory yields an infinite set of 
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coupled equations involving all orders of the correlation functions. For plasmas, the standard approach is to use a 
“weak coupling” hypothesis which assumes that the particle correlations are progressively less important the 
higher the order, so that the hierarchy may be truncated by dropping the (reduced) correlation functions beyond 
some chosen order. This is appropriate for a stable plasma but not for a strongly turbulent plasma (Ichimaru 1973). 
For the galaxy distribution, we know that on scales r ^ 1 Mpc the reduced three-point spatial correlation function 
£ is on the order of £2 » £ » 1, where £(r) is the two-point function, and the four-point function T is on the 
order of f3 » £. At least to this order the reduced correlation functions increase going up the hierarchy, just 
contrary to what is assumed for a stable plasma. The basis of our approach is the empirical result that, to remark- 
able accuracy, £ can be represented as a simple function of £. We use this together with a consistency constraint 
(the law of “conservation of triplets,” eq. [49] below) to guess at a form for the three-point spatial and velocity 
function in terms of the two-point function. This closes the BBGKY hierarchy, leaving us with a nonlinear 
integrodifferential equation which, with further approximations, we simplify to the point where numerical 
solution is practical. 

The BBGKY equations have figured in a number of discussions of the evolution of irregularities in an expanding 
universe. The first approaches were directed to a Vlasov equation, where one considers a single-particle distribution 
function in a potential field given in a self-consistent way by the smoothed-out particle distribution (van Albada 
1960; Gilbert 1966; Bisnovatyi-Kogan and Zel’dovich 1971 ; Saslaw 1972). This is reasonable for a rich cluster of 
galaxies, but it is questionable whether the notion of a single-particle distribution function is useful for describing 
the general complex of groups and clusters. Gilbert (1965), Saslaw (1972), Fall and Saslaw (1976), Fall and Severne 
(1976), Inagaki (1976), and Yahil (1976) all have discussed properties of the cosmological BBGKY equations 
under the “weak coupling” approximation that the reduced third-order correlation function is negligible. This 
may be relevant at an epoch when the “particles”—perhaps hydrogen atoms, perhaps discrete galaxies—are nearly 
uniformly distributed. (Even under the assumption of the gravitational instability picture, it is not guaranteed that 
such an epoch exists, for it may be that the clustering always is strongly nonlinear on small enough scales.) None 
of these studies is adapted to the specific problem of describing the development of strongly nonlinear clustering 
in the gravitational instability picture. Because galaxies are strongly clustered, the universe must be considered 
as a strongly nonideal gas. Our goal in this paper is to find an approach that deals with the central features, though 
necessarily not all the details, of this problem. 

In the next section we list the main concepts and approximations that are employed, and we outline the main 
steps in the calculation. 

II. BASIC ASSUMPTIONS AND APPROXIMATIONS 

a) The Cosmological Model and the Description of the Matter Distribution 

We use the standard Friedman-Lemaître model with A = 0. Radiation is ignored. Matter is described as a 
collection of pointlike particles (perhaps hydrogen atoms, or, for some purposes, individual galaxies), each of 
mass m. The particles interact only through gravity as described in the linear, nonrelativistic, approximation— 
that is, Newtonian mechanics (cf. Peebles 1971a, pp. 213-217). We use spatial coordinates expanding with the 
background cosmological model, so a locally Minkowskian coordinate system is defined by 

ra = a{t)xa , (1) 

where a(t) is the expansion parameter. The time variable t is proper cosmic time in the background model. 
The particle distribution is taken to be a homogeneous and isotropic random process. Thus we imagine a 

statistical ensemble of universes with correlation functions defined by averages across the ensemble. Because we 
treat the perturbation to the geometry in the linear approximation for gi;, we can define a member of the ensemble 
by a list of coordinate xi

a(/),/7i
a(/1) for all the particles that happen to be in that universe. The goal is to compute 

the time evolution of the particle correlation functions under these assumptions. Of course it is a matter for 
separate discussion to decide whether the observation of the galaxy correlations yields useful measures of these 
mass correlation functions. 

b) Model for the Three-Point Function 

The central basis for the calculation is the assumption that the three-point position and velocity correlation 
function may be modeled in terms of the two-point function. The evidence for this assumption and its meaning 
are discussed here. 

The two-point spatial correlation function £(r) may be defined through the probability of finding a particle in 
the volume element dV at distance r from a particle randomly chosen from the ensemble, 

dP = n[l + i(r)]dV . (2) 

Flere n is the mean particle number density. The three-point spatial correlation function £ may be defined through 
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the joint probability of finding a particle in each of the volume elements dV^ dV2 that, with a particle randomly 
chosen from the ensemble, define a triangle with sides /*a, rb, rc \ 

dP = n\\ + + fe + UcW.dVz , (3) 

where the subscripts represent the arguments. The data from the Zwicky and Shane-Wirtanen catalogs are in good 
agreement with the models : 

f(r) ^ (rjr)1'6 , rc x 5 h 1 Mpc , r ^ rc ; 

Uc = Q(Ub + ffrfc + Ua) , (4) 

Q ä 0.85 (Zwicky), 

Q x 1.24 (Shane-Wirtanen) 

(Peebles and Groth 1975; Groth and Peebles 1977). The reliable estimates of f and I are in the range of separations 
~ 100 A-1 kpc to ~ 10 A-1 Mpc (A = Hubble’s constant in units of 100 km s-1 Mpc-1), where f ^ 1. 

Equation (4) for £ with Q = 1 resembles the Kirkwood superposition approximation occasionally used in 
liquid physics and turbulence theory, except that the term fafbfc is missing (Ichimaru 1973, p. 272; Totsuji and 
Ichimaru 1974; Rice and Gray 1975). If this term were present with coefficient close to unity it would have domi- 
nated the observations, since f ^ 1, making the variation of the angular three-point function with 6 very different 
from what is observed. Thus we believe that the Kirkwood superposition approximation is not relevant here. 

A model that does seem to be useful is the continuous clustering hierarchy. This can be stated as follows. Suppose 
the matter distribution is observed with resolution r, that is, after smoothing by a running average of width r, 
where r ^ 10 A-1 Mpc [so f(x) ^ 1]. It is assumed that the matter thus smoothed would appear in clumps, the 
clumps having typical size r, and the typical density within a clump being N(r). Then N(r) # n[\ -b f(r)] /?f(r) 
(forf ^ 1). To see this, suppose a particle is chosen at random and dV placed at distance r. Then the particle and 
dV tend to be in the same clump of size so the mean density at dV is ~N(r). Similarly, if a particle is chosen 
at random and dVa and dVb placed at distances ra and rb, then the probability of finding a particle in dVa is 
~ N(ra)dVa, because the chosen particle and dVa tend to be in the same clump of size ra, and the probability of 
finding a particle in dVb is ~N{rb)dVb. Thus the joint probability for finding particles in both elements is 
~ N(ra)N(rb)dVadVb. This is in general agreement with equations (3) and (4) in predicting (a) that if the triangle 
shape is held fixed £ scales with the triangle size r as r_2y, and (b) that if the small side of the triangle is held fixed 
at r then £ varies with the size r, of the large side roughly as rz"

7. 
Since £ measures the mean density at distance x from a particle, and £ measures the mean square density, the 

parameter Q in equation (4) measures the dispersion of the density in the clumps at characteristic size r. More 
generally, the number Nn of particles found within distance r of a randomly chosen particle satisfies (Peebles 1975) 

<An> = nV + n j Çd3r , 

<(7Vn - <^n»
2> = (Nn} +n2j d3r1d

3r2{;(r12) + (Q - l)«2 J £(r)¿3r * + 2Qn2 j í/
3r1¿

3r2|<>1)|(r12) 

x (3Q - l)(nF)2í(r)2, V = 477r3/3 , 

where the integrals are over the sphere of radius r and the last line follows if £ oc r-7, y < 3, and £(r) » 1. Thus 
Q cannot be less than about 0.3, and Q measures the dispersion in the number of neighbors. One therefore expects 
that, in the hierarchical clustering picture, Q ought to be on the order of unity, but of course this leaves considerable 
latitude in its actual value. 

c) Velocity Moments and the Stability Assumption 

To reduce the number of independent variables we take velocity moments of the second-order BBGKY equation 
(and of course we assume they exist). The relevant velocity here is the relative peculiar velocity of a particle pair 
at separation x. To truncate the resulting hierarchy of velocity moments, we assume that the velocity distribution 
has zero skewness about the mean (see § VI). In stellar dynamics zero skewness means that there is no kinetic 
energy flux as measured by an observer moving with the mean streaming velocity, and it is known that, in stellar 
dynamics, nonzero skewness is needed to describe relaxation processes (see, e.g., van Albada 1960; Henon 1961 ; 
Lynden-Bell and Wood 1968; Larson 1970). The meaning of the velocity distribution is different here, but we 
might expect that similar objections apply to the zero skewness assumption. This is not necessarily a problem, 
because the formation of protoclusters may not be appreciably affected by kinetic energy flux into or out of the 
protosystem. The more serious question is whether the clusters, once formed and “virialized,” continue to evolve 
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through relaxation processes. One suspects that dissipation has very substantially affected the pattern of the mass 
distribution on the scale of galaxy sizes and smaller. It is hard to judge whether two-body relaxation has been 
important in the scales where £ and I are observed, r ^ 100 /z-1 kpc, for we do not have a clear picture for the 
typical effective number of particles (coherent mass lumps) within a cluster on a given scale. We will be assuming 
that the clustering hierarchy, once formed and in dynamic equilibrium, has negligible subsequent evolution. 

d) Initial Conditions 

In the gravitational instability picture the nature of the presently observed clumping of matter, in galaxies, 
clusters, and so on, is determined by the character of the assumed growing density fluctuations in the early universe. 
We assume that these density perturbations can be approximated as a random Gaussian (random phase) process 
with power spectrum 

<|S*|2> oc kn , (5) 

where k is the wave number and /z is a constant (Peebles 1965). This is supposed to apply at any epoch t (subsequent 
to decoupling of matter and radiation) and at ^ 277-/Am(/), where Am(/) is the wavelength at which hpjp > 1. 
The character of the initial conditions thus is completely determined by two numbers, Am at some starting time ^ 
and the index n. This has the advantage of simplicity. Of course the test will be to discover how broad a range 
of phenomena can be successfully predicted from the assumption. 

The two-point correlation function is the Fourier transform of the power spectrum. For large x, where the 
relevant part of the spectrum is the “primeval” shape given by equation (5), this gives 

£{x) = Bx~i3 + n)D(t)\ (6) 

D2 oc /4/3 if Q = 1 , 

where# >0if—3</i<0or2<Az< 4 and# < OifO < « < 2 (Peebles and Groth 1976). The time dependence 
factor D2(t) depends on the cosmological model. For the Einstein-de Sitter model and a pure growing density 
perturbation, D2 oc ¿4/3, as indicated. Scaling arguments plus the stability assumption of § lie say that v at small x 
varies as (Peebles 1965, 1974; § IX below). 

Ç ce x~7, y = (9 + 3ri)l(5 + n). (7) 

The observed two-point correlation function at small x indicates that y ^ 1.8, and thus n çz 0. The theory de- 
veloped here applies when — 1 < n < 1, but the numerical method is not adapted to the special case « = 0. We 
approach this special case by taking n small but nonzero. Since the character of the observable part of the solutions 
does not change discontinuously at /z = 0, this should cause no problem. The goal of the present calculation is 
to see how ¿¡(x) makes the transition between the known asymptotic behavior at large and small x as given by 
equations (6) and (7). 

e) Scaling Behavior 

The existence of a similarity (scaling) solution to the BBGKY equations depends on two assumptions, that the 
expansion of the universe approximate the Einstein-de Sitter model (A = /? = 0, 13 = 1), so it presents no charac- 
teristic lengths or times; and that the matter interaction presents no characteristic lengths. The similarity solution 
applies if the initial conditions are suitably chosen, as described in this section. 

Scale invariance of the matter interaction means that (1) nongravitational forces are negligible, and (2) the 
length n ~1/3, where n is the mean particle density, is negligibly small (see § Illg). The first assumption is not valid 
on scales less than the size of a galaxy, where gas dynamics is thought to have been important, but this should not 
affect the evolution of structure on scales of interest, r ^ 100/z-1 kpc. That is, in the computation we assume 
that the matter clustering satisfies a universal scaling behavior down to arbitrarily small lengths, and we argue 
that the results may be a reasonable approximation for length scales of interest, even though they are not valid 
on small scale. The second point couples to the first: if the “fundamental particles” m were giant pointlike galaxies, 
then n ~1/3 would be on the order of 5 /z_ 1 Mpc, and the scaling solution could be valid only at very large separations. 
On the other hand, if one assumed that galaxies and clusters of galaxies evolved out of small-scale initial irregu- 
larities according to the same physical process operating on different scales, with gas dynamics subsequently 
removing the subclustering on scales ^ 10 /z-1 kpc, then, as argued for the first point, the similarity solution may 
well be valid at r ^ 100 /z_1 kpc. 

In a similarity solution the initial conditions are fixed: the power spectrum at k < 27r/Am must be a pure power 
law, for otherwise it would present a characteristic length, and Skatk < 27r/Am must be evolving like a pure growing 
density perturbation. (As discussed in §XI, other similarity solutions involving the decaying mode exist but 
are not acceptable because $ diverges at infinite spatial separation.) This latter condition could not apply just after 
decoupling (redshift z 1000) because the radiation drag has substantially affected the matter velocity, but it may 
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No. 4, 1977 NONLINEAR CLUSTERING IN EXPANDING UNIVERSE 429 

be that by z ä 100 the decaying mode has become small compared to the growing mode. If so, and if the power 
spectrum agrees with equation (5), then the boundary conditions agree with the similarity solution. 

Scaling greatly simplifies the numerical problem because it eliminates the time variable, replacing x with s oc xjt“, 
with a a constant (§ IX below). In an open or closed cosmological model scaling is not valid when D is substantially 
different from unity, but the similarity solution still is important because it applies in the early universe, where 
the universe expands as if it were cosmologically flat. The similarity solution thus can be used to fix initial con- 
ditions for the integration forward in time. 

/) Plan of Attack 

In § III we derive the first three BBGKY equations. The first two of these have been derived in somewhat 
different forms in the references cited above, but it seems useful to repeat the derivations using concepts and 
conventions more closely adapted to the present problem. In § IV we obtain velocity moments of these BBGKY 
equations. The central equation for the calculation is the first moment of the second BBGKY equations, which 
reduces to a differential equation for f(x, t) (eq. [50c]). This equation has two “difficult” terms, an integral over I 
and the second moment of the relative peculiar velocity (eq. [50c] below). We deal with the first term by using 
equation (4). To get at the second term we go to the second velocity moment of the second BBGKY equation 
(eq. [50d]). This introduces the third velocity moment of the two-point correlation function. In § VI we reduce this 
third moment under the assumption of zero skewness. It also introduces the first velocity moment of the three- 
point position and velocity correlation function d. In § VII we arrive at an assumed form for d (eq. [62]) guided 
by equation (4) for the spatial part and an equation expressing conservation of triplets (eq. [50e]). This leaves a 
closed set of equations in two variables, x and t (eqs. [71], [72], [76], and [79]). Application of the scaling transfor- 
mation to reduce to one independent variable is described in § IX. 

Even with the scaling assumption the numerical problem is formidable, so in § X we introduce approximate 
expressions to simplify some multidimensional integrals (eqs. [73] and [75]). The expressions are accurate at small 
x, where they play an important role, but are only approximate in the “transition region” where £ ä 1. This 
approach is not unreasonable because the empirical basis for our modeling of the three-point function d is accurate 
at I » 1, rather weak at f æ 1, and nonexistent at £ « 1. The last part is unimportant because when f « 1 we 
can assume that d is negligible compared to other terms in the equation for £. The treatment of the transition 
region necessarily is uncertain because of the problem with d, and the best we can do is to ask how sensitive the 
final results are to the approximations used in treating the transition. As described in § XIII, the results are not 
very sensitive to the treatment of the three-point function. 

In § XI we derive asymptotic solutions to the equations in the limiting cases of small separation and large 
separation. The initial condition (eq. [5]) is applied via the selection of the wanted asymptotic solutions. As 
discussed in § XIc, joining these solutions gives rise to an eigenvalue problem, which serves to fix Q (eq. [4]). The 
method of integration is described in § XII, the results are presented in § XIII, and the possible implications of the 
results are considered in § XIV. 

III. DERIVATION OF THE BBGKY EQUATIONS 

a) The Equations of Motion 

A Lagrangian for the path xa{t) of one particle moving in the field of the others is, under the assumptions in § Ha, 

& = 
tr- 

giving the canonical momentum 

pa = ma* 
, dxa 

IT 

(8) 

(9) 

which is related to the proper peculiar velocity va (proper velocity relative to the background cosmological model) 
by 

pa = mava . (10) 

The equations of motion are 

dpa _ __ d(f> 
dt m dxa (11) 

The field equation for the potential (f> is 

= 47rGtf2[p(*, 0 - <P(0>], (12) 
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430 DAVIS AND PEEBLES Vol. 34 

where <p> is the density in the background cosmological model. The Green’s function solution to equation (12), 
differentiated to get the force, is 

= Ga2 J ip(x') - <P>] d*x'. (13) 

This integral is well behaved at large \xf — x\ because p — <p> fluctuates around zero. We can write it as the 
difference of integrals over p and <p> if we adopt the convention that one integrates first over angles at fixed 
\x' — x\9 then over |jc' — jc|. In the point particle picture, p is a sum of terms like ma~38[x — x^t)], and equation 
(13) becomes 

d<£ _ Gm y- xf — 
dx* a y1 \xj — 

with the prescription that the sum is ordered by increasing |xy — jc| and that 

Xiu - 

/ 

(x'a — 
d3x' 'Ç-, 17 = o . 

\x - x\ 

The equation of motion for the z'th particle is then (eqs. [11] and [14]) 

dpia = Gnd y xl_ - x? 
dt - a yfi |xy - Xil3’ 

where the right side is the ordered sum over all particles other than i. 

(14) 

(15) 

(16) 

b) Definitions of the n-Point Correlation Functions 

The one-point distribution function gives the probability of finding a particle in the small volume element d3x 
and moving with momentum p within the small range d3p, 

dP = Pi(pi t)d3xd3p . (17) 

The assumptions of homogeneity and isotropy say that p1 depends only on the magnitude of p. The normalization 
condition is 

J Pid2p = na3 = constant, (18) 

where na3 is the particle number density in x coordinates. 
The two-point function gives the joint probability of finding a particle in d3x1 moving with momentum px in 

the range d3pu and of finding a second particle at x2,p2 in d
3x2, d3p2\ 

dP = p2(l, 2)d3x1d
3p1d

3x2d
3p2. (19) 

The reduced two-point correlation function c is defined by the equation 

p2(l,2) = Pi(1)pi(2) + c(l,2). (20) 

The first term is the distribution expected if the particles were uncorrelated. The term c integrated over momenta 
gives the spatial correlation function (eq. [2]), 

J d3p1d
3p2c(l, 2) = H2a6!(|*2 - *i|, 0 ■ (21) 

The three-point correlation function p3(l, 2, 3) is defined in exact analogy to equation (19). The reduced three- 
point function d is defined by 

p3(l, 2, 3) = p1(l)p1(2)p1(3) + Pi(l)c(2, 3) + Pl(2)c(3, 1) + p^Ml, 2) + d(l, 2, 3). (22) 

On integrating p3 over all momenta one finds 

J dd9p — n3a9Ç(l, 2, 3), (23) 

with £ the spatial correlation function (eq. [3]). 
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c) The BBGKY Equations 

The standard derivation of the BBGKY equations for the pn starts from an imagined fixed number of particles 
confined to a box (see, e.g., Montgomery and Tidman 1964). For the cosmological problem it seems more direct 
to proceed in another way. Isolate a small (in the limit, infinitesimal) patch of space around xx and a small range 
of momenta around pi. The positions jct of all the other particles in the universe at fixed time t can be specified as 
some configuration Next, select from the ensemble of universes those with a particular configuration 3^. In 
this subensemble the probability of finding a particle in the infinitesimal element d^x1d

Qp1 in the patch is written as 

dP = PiOc!,/?!, t\3^?)d^x1d^p1. (24) 

A particle found in the patch is moving in a definite way under its interaction with all the rest of the matter as 
specified by 3^ (we can assume that the probability that there are two particles in the patch is negligible compared 
to the probability that there is one). By Liouville’s theorem (with eq. [9]), 

iL 4_ P1<X 8 

dt ma2 dxi* 
(25) 

This expression may be averaged across the configurations. We have 

t\jep)y#’ = Piipu t), 

<dp1ldx1
a')J? = dp^Pi, = 0 , (26) 

(.dpjdty^ = dp^p^ t)/8t, 

where the last line follows because is specified at fixed time t. The last term in equation (25) is 

Gm2 8 dpia dpi 
dt Sp^/ ^ 

a 
dPl“ rJ a dp 

*21“ = *2“ - *1“, 1*211 = *21 

d3x2d
3p2^p2(),2), 

X21 

(27) 

where we have used equations (16) and (19). On replacing p2 with c (eq. [20]), and using equation (15), we arrive 
at the first BBGKY equation, 

dpiiPi, t) + Gm2 

dt a dp 
Lf ia J 

d^x2d
3p2c{\, 2) ^3 X21 

= 0. (28) 

This is equivalent to Fall and Severne’s (1976) equation (2.6). 
In a similar way we can isolate two small patches around x^Pi and x2,P2, label the positions xt of all the 

other particles in the universe by the configuration and for the subensemble of universes with configuration 
Ji?' write the joint probability of finding particles in each of two infinitesimal elements, one in each patch, as 

dP = p2(l? 2, t\3>if?')d3x1d
3x2d

3p1d
3p2 . (29) 

Particles in 1 and 2 are moving in a definite way under the interaction with each other and with the rest of the 
universe. This is described by the Liouville equation 

(ÍL + HiLJL- + EiL 
\dt ma2 dx^ ma2 dx2 

+ 
dpia d 

dt dpi 
+ (30) 

On averaging this across 34?', using p3 to evaluate <p2(l> l^^dp^Jdt), and following the arguments that lead to 
equation (28), one finds 

3 n ^ . Pia 3 n , Gm2 x2ia 3 n ^ ^ p2(l, 2) + 7T—¿ P2O, 2) + —— T—Tg p2(l, 2) dt 

+ 

ma2 dxi 

Gm2 d 
a dp 

dax3d
3p, 3 v 3 -*31 

I *2113 2/>i“ 

P3(l,2,3) + 1 <-> 2 = 0 . (31) 

As indicated, the equation must be symmetrized by adding the result of exchanging .V;. Pl < -> x2, P.i in the last three 
terms. On using equations (20) and (22) to replace p2 and p3 with the reduced functions c, d, using equation (28) 
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432 DAVIS AND PEEBLES Vol. 34 

to eliminate the time derivative of pl9 and using equation (15) to eliminate the spatial integrals over pl9 we find the 
second BBGKY equation, 

íc(l,2) + ^-2 dt ma2 dx- S c(l, 2) + —— 
Gm2 x21

a d 
a x21

3 dp^ [/)1(l)p1(2) 4- c(l, 2)] 

+ 
Gm2 dp^p^ 

dp 

4“ 1 ^^ 2 = 0. 

d3x3d
3p2 

^31 
t3l| 

¿(1,2,3) 

(32) 

As before, the equation must be symmetrized by adding the result of interchanging coordinate labels, xu px jc2, p2 

in all terms save the first. Equation (32) is equivalent to equation (2.7) of Fall and Severne (1976). 
For the third BBGKY equation we have from the corresponding Liouville equation, 

|p,d,2,3) + 
ILA. 
ma2 dXia = 0. (33) 

Here Fa represents the sum of contributions to the rate of change of the momenta of each of the three particles. 
The form of Fa is lengthy and, since it is not needed here, we do not write it down. 

IV. VELOCITY MOMENTS 

To reduce the[ number of independent variables we take velocity moments, that is, we multiply each equation 
by a power of momentum and then integrate over all momentum arguments. This technique, standard in fluid 
mechanics, offers the simplest scheme of solving equation (32) while yielding only the most elementary information 
about the momentum dependence of c(l, 2). 

a) The First BBGKY Equation 

The lowest nontrivial moment of equation (28) is the second. On multiplying the equation by /?i2 and integrating 
over /?! one finds 

7, iSf c(1' • (34) 

where equations (10) and (18) have been used to reduce the first term to the mean square value of the proper 
peculiar particle velocity. 

b) Pair Conservation Law 

The result of integrating equation (32) over px and p2 and using equation (21) is 

«2*6 I ¿(*12, t)+~\Ki C(l, 2)d*p + C(l, 2)^p = 0 . 

This may be simplified by using the symmetry properties of c : 

homogeneity: c( 1, 2) = c{x2 - x1,p1,p2) ; 

exchange: cix^^p?) = c(-x, Pa./h) ; 

parity: c(x,p1,p2) = c(-x, -pu -p2) = c(x, -p2, -p^) . 

Thus, forms equivalent to equation (35) are 

where 

Xa = x2
a — X^ , X = \x\ . 

(35) 

(36) 

(37) 

(38) 
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No. 4, 1977 NONLINEAR CLUSTERING IN EXPANDING UNIVERSE 433 

The equation is further simplified by introducing the mean relative peculiar velocity va = <^a — v-f') averaged 
over pairs at separation Xa. (Since v-f is the proper velocity of particle 1 relative to the background, the net mean 
proper velocity of particle 2 relative to 1 is + xada¡dt.) By symmetry, we can write 

and by equations (19)-(21), 

Equations (37)-(40) give 

Va = VXalx , 

I^ma1“ C(1> 2)d6p = n2a6[l + t)]v* ■ 

(39) 

(40) 

(41) 

This just expresses conservation of particle pairs. Another derivation is given by Peebles (1976a, eq. [16]). 
It will be convenient below to use the function A defined by 

By equation (37), 

J (P2a - Pia)c{l, 2)d6p s n2a6A(x, t)xa . 

dl 
dt 

+ 
1 a 

mx2a2 dx 
(x*A) = 0. 

(42) 

(43) 

On using 

c) Cosmic Energy Theorem 

x21
a = d_\_ 

X21 dx2
a x21 

in equation (34), integrating by parts, and using equation (37), we find 

or 

where 

j («’<»“» - HJ = CWJ 

J. <t>i2> = 4. l^\r/ 
\dt adt) 2 \dt^ adt) ’ 

U = iGPa2j ^ i) , 

p = nm 

(44) 

(45) 

(46) 

is the mean mass density. Equation (45) is the Irvine (1961)-Layzer (1963) energy equation. It was independently 
derived from the BBGKY equations by Gilbert (1965) and by Fall and Severne (1976). 

d) A Momentum Flux Equation 

Next, we consider the first moment of equation (32): multiply the equation by/72/ = P2ß — and then integrate 
over momenta. The expression is simplified by taking the divergence djdx“ and using equations (21), (23), and (37) 
with the identity 

The result, after some manipulation, is 

d2f(x, t) 2 da 
dt2 + a dt dt 

1 d2 

m2n2a10 dxadxß 

IGmdÇ 

J depp21“p21
ec(l, 2) + ^ S(x)[l + m] 

+ 8.Cpf + 2C(,|!gs5Jjr.«l,2,3). 
82 

a3x2 dx 
(47) 
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434 DAVIS AND PEEBLES Vol. 34 

An equation equivalent to this has been derived in another way (Peebles 1976a, eq. [23]; this equation differentiated 
with respect to x becomes eq. [47] above). We take equation (47) as the central equation for £ in the numerical 
analysis. The two “difficult” terms are the last, which we write in terms of £ by using equation (4), and the third, 
which involves the relative velocity dispersion. In the next section we derive a differential equation for this latter 
term. 

e) A Dispersion Flux Equation 

The result of multiplying equation (32) by PZ1P21 and integrating over momenta is 

^1^21^21^(1, 2)d6p + ¿ ¿ J/>2i7>2i>2irc(l, 2)d6p + 4Gm2n2a5A(x, t)xBxv¡x3 

+ 2GmW J ¿3*3 A(x23) + 4 ^ J ^2 ¿ J d°pp21>d = 0 . (48) 

The third and fourth terms have been simplified by using equation (42). As discussed in § VI, the first term measures 
the relative velocity dispersion in the directions perpendicular and parallel to the line joining the points 1 and 2. 
The second term measures the flux of the dispersion, and the remaining terms the effect of gravity. 

/) Law of Conservation of Triplets 

This is obtained by integrating equation (33) over all three momenta, using equation (22) to replace ¿>3 with the 
reduced correlation function d, and using equation (35) to eliminate the terms involving c. The result is 

kV § + 
ot 2 ¿4 ^ i=r,3^xi j ma2 d=0. (49) 

Just as equations (35) and (41) express conservation of particle pairs, equation (49) may be called a triplet con- 
servation law. 

g) Summary: The Limit m~>0 

As discussed in § lie, the equations are simplified by taking the limit w 0, « 00 such that p = nm = constant 
and £ and £ are fixed. By equations (10), (21), and (23), p cc m, c oz n2m~6, dcc n3m'9, and A oc m. Thus in this 
limit the second and third terms on the right side of equation (47) and the third term in equation (48) drop out. 
We summarize here the final set of equations on which the integration scheme is based (eqs. [42], [43], and [45] 
to [49]): 

dt2 + 

(d_ 2 da\ C/?!2) / ¿ 1 M Gpd^ f 
\dt ^ a dt) 2m2a2 \dt adt ) 2 J 

J 

2m2a2 

P2iacd6p = n2a6Axa 

d2 

1 
dt x2a2 dx 

d3x 
2“J ~ 

d {x3A) 

f ; 

m 
= 0; 

+ a r ¿ + 
adt dt 77 P dxadxß jd’p P21 P21 ß c(l,2) + 2GPj 

82 d3Xn 
jc3i dx2adx{ 

-*£ = 0; 

(50a) 

(50b) 

(50c) 

f P2ißP21 cdQp 
dt) m2n2a6 

, JL C P2iaP21ßP2iy 

dxa J m3n2aQ c(l, 2)d6p 

+ 2GPa2 J d3x -y31g-*:23y A(x 23; 
3 x31

3 m 
t) + 4Gp í f - f (Pp = 0 ; (50d) 

J X31 dxf J ^ mtfa1 

y fd2
P-

p^d- 
dt iii,3 dxf J P mrfa11 

= 0. (50e) 

By taking the limit m -> 0 in equation (47), for example, we are ignoring the direct gravitational interaction of 
particle pairs (third term on right side of eq. [47]) in favor of the acceleration due to all the other particles clustered 
about each particle pair (last two terms of eq. [47]). Equations (50) are not closed, but, as discussed in the following 
sections, they offer a reasonable guide to approximations that yield a tractable set of equations. 
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VI. TRUNCATION OF THE VELOCITY MOMENTS 

The second momentum moment of c(l, 2) occurs in equations (50c, d). This moment defines a second rank 
tensor which by symmetry has only two nonzero components. We define these components by functions U(x, t) 
and 2(x, t), given in Cartesian coordinates by 

J d6pp21
ap21

ßc(x,p1,p2, t) = S(x, t)haß + [n(x, t) - Y,{x, 0] ^3 • (51) 

II and S are respectively the parallel and transverse (one dimension) correlated parts of the relative peculiar 
momentum dispersion of correlated particles. II need not be equal to 2, and indeed in the linear region of the 
solutions II ^ —«2. 

The physically observable function <f2i
a^2i/5)5 the expectation value of the relative velocity dispersion of two 

particles as a function of their separation, is related to II and 2 by consideration of the full two particle probability 
density (eq. [20]) 

^21^21^) 
|^b2i^2i7(^)2][Pi(l)Pi(2) + c(l,2)] 

j>p[Pi(l)Pi(2) + c(l, 2)] 

[I,I(ma)2 + 2/3<r1
2>]agg + [(II - Z)l(ma)2](xaxßlx2) 

1 + £(x, t) 
(52) 

where <^i2> (eq. [34]) is the proper peculiar velocity dispersion of particles. 
Similarly, using equation (42) we can write <r2i), the mean relative peculiar velocity of two particles separated 

by a comoving coordinate v, as 

_ / d6p(p2ilmd)[p1{\)p1{2) + c(l, 2)] ^ xA(x, t)lma 
1,21 " /¿7>[Ml)Pi(2) + C(l,2)] “ 1 + f(*> 0 ' } 

Our velocity truncation procedure is to express the third moments, which occur in equation (50d), in terms of 
{t»!2), A, II, and 2. This may be done if the skewness about the mean is 0. In one dimension we would have 

((v - <t>»3> = 0 = <^3> - XvXv2} + 2<i;>3 . (54) 

In three dimensions, we note that <u2i> = so that if we write 

((V21 ~ <\V2l))CC(V21 ~ (,V2l)Y(V21 ~ ^21))^ ~ 0 , 
we have 

<V2i
aV21ßV217> = -2<r21>: xaxßxy 

+ <^21> + — <v21
av21

yy + — <v21 

an ßn - 

^2/>) 

The desired moment of c(l, 2) occurring in equation (50d) is related to hy 

. a e y |'ö'6JD[p2i
aP2ii!P2i7(wa)3][p1(l)pi(2) + cd, 2)] 

<^21 t>2/^2ir> =  ?  
JW[pi(l)Pi(2) + C(l,2)] 

Using equations (52) and (53) in (55) and (56), we have 

[ deP a B V ^ _ A f/irr ov 2^2x2\ XaXeXr 

J n2aeP21 P21 P21 c(1, 2) 1 + f \V n 32 1 + Í/ ^ 

+ [2 + fO^Xma)2]^^ + xe8ay + x^S^) 

(55) 

(56) 

(57) 

VII. MODEL FOR THE THREE-POINT FUNCTION d 

The three-point correlation function £ which enters equation (50c) is the zeroth momentum moment of the 
reduced three-particle correlation function (eq. [23]). The first momentum moment of d occurs in equations (50d) 
and (50e), and to evaluate this we express d in terms of c in a manner consistent with equations (4), (23), (50b), 
and (50e). In this section we construct an analytic model for d consistent with these constraints. 

First we express c(l, 2) in terms of the average and relative momenta of the two particles, 

P2i= P2- Pi, P = {Pi + A>/2 • (58) 
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436 DAVIS AND PEEBLES 

Assume that we can approximate c(x, p±, p2-1) as a separable function of p2\ and P, 

C{x,pup2, t) = C(x,p21i t)E(P, t) . 

Vol. 34 

(59) 

This expression is not meant to be literally true; it is used only to arrive at a self-consistent model for the first 
moment of d (eq. [74]). By symmetry we have 

J E{P, t)Pd3P = 0 . (60) 

We shall normalize C and E according to 

J E(P, t)d*P = no3 , J C(x,p21, t)d
sp21 = £(x, t)na3. (61) 

No further information is needed about E; all the needed velocity moments are moments of C(x,p, t). 
Equation (4) suggests we try writing d in terms of C as 

¿(1, 2, 3) = QEz[(Pl + + p3)l3, t][C(U 2)C(2, 3) + C(2, 3)C(3, 1) + C(3, 1)C(1, 2)]. (62) 

The function E3, like E, satisfies equations (60) and (61). 
Equation (62) is obviously compatible with equation (4). To demonstrate its compatibility with equations (50b) 

and (50e), multiply equation (62) by the operator 

(63) 

To evaluate the first term on the right side, transform to integration variables p12 = p± — p2,p23 = p2 — p3, and 
P ^ (Pi + P2 + Po)ß- The Jacobian of this transformation is 4-1. Then write 

Pi — (2/3)/?i2 + (l/3)/>23 + E, 

and we have for the first term on the right side of equation (62), 

Q_A 
ma2 dx- 

(64) 

~aj d3Pd3p12d
3p23(2ßp12

a + \ßp2Z
a + Pa)C{\, 2)C(2,1)E3(P) 

Qna3 d_j dspi2dSp2Á2¡3pi2. + p^)C(l, 2)C(2, 3) 
ma2 dxT_ 

= Qn3a°[-2l3i(2, 3) | ^(1,2) + ¿ x23«A23 ^ |(1, 2) (65) 

where for the last line we have used equations (37) and (42). Similarly, for the second term on the right side of 
equation (62) we write 

Pi = -(2l3)p31 - (l/3)/723 + P, (66) 

and we have 

ma2 dx- 
^ J d3Pd3p31d

3p23{-2ßp31“ - \pp23° + Pa)C(2, 3)C(3, l^P) 

= Qn3a9 
-2im, 3) I f(3, 1) - ^ «3, 1) 

For the third term of equation (62), write 

which yields 

Q a 

Pi = P - P21P - Pai/3 , 

(67) 

(68) 

ma2 ox 
^ J d3Pd3pX2d

3p31{p12°P - P3i73)C(3, 1)C(1, 2)E3{P) 

= Qn3a9 
öl Z12 + èl2 Jt lis) + 3^2 ^12^12“ ^ fis - ^31^31“ ^ Il2^ (69) 
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No. 4, 1977 NONLINEAR CLUSTERING IN EXPANDING UNIVERSE 437 

Upon replacing (d/dx^p^ by (dldx2
a)p2a and (dldx3

a)p3
a in equation (63) and then adding the results, we have, 

after using equation (50e), 

3 3 
= (^12^23 + ^23^31 + ^31^12) 5 (70) 

which is the desired result. All the last terms of equations (65), (67), and (69) have canceled in pairs. Therefore 
equation (62) is a self-consistent expression for d, properly expressing the conservation of triplets, and we can use 
it in equation (50d). 

VIII. THE COMPLETE EQUATIONS 

We can use the results of §§ VI and VII to write equations (50) in terms of five equations for the five unknowns 
i(x, t), <^i2(0X A(x, t), II(x, t) and S(x, t). We change to spherical coordinates where x is the distance between 
particles 1 and 2. Equations (50a)-(50c) become 

(71a) 

1 3 
ma2x2 3x 

[x3A(x9 /)] = 0 , (71b) 

^ ê {s O! - '>}+ ') ■ <72) 

where we have defined 

Ai*, = ¿ ¿ ^ is £(*> k - *1) 

= J d*zÇ3[$(x)Z(z) + £(x)«|;c - z\) + í(z)f(k - z\)] 

= ¿ J ¿3z P ^(1^ - zl)[^) + £(z)] • (73) 

The last line of equation (73) follows by rotational symmetry. 
The last term of equation (50d) is reduced using equation (62). We have 

4G^j ¿3*S1 ÿ J dspp2/d(l, 2, 3) 

_ 4Gpa Q j (i3zL_^xsA(x^jx _ + ^(z)] - (2 - x)BA(\z - Jc|)l(z) + zBA(z)i(\x - z)|} 

mn 

m 

ZirGpa2 

m ']■ 
(74) 

where we have defined the functions and *f3
aß as 

^ J2{x) = ^ J [A(x)£(\z - *|) + A(\z - *D£(z)], (75a) 

Aaí¡(x) = ^ J _ ~ A(\z - XD£(Z)] • (75b) 

J2 is directed in the radial direction, whereas *f3
aß has radial and isotropic components. Jq is much smaller than 

J^, and in the limit of a power law model for A oc £ and is zero. 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
7 

7 A
p J

 S
. 

. .
34

. 
.4

25
D

 

438 DAVIS AND PEEBLES Vol. 34 

If we take the divergence of equation (50d), we can eliminate the integral on the third term, and we have, using 
equation (51), (57), and (74), 

d._L 
dt x2 dx 

(x2U) — 2x2 + ¿ ¿ íx2V(x, t)] 

2m 82 

- 5 ¿2 [x3V2(x, t)A(x, 01 + 8-rrGpma2xA(x, t) 

+ StrGpQma2 ± ■£ WA{x)] + ^GpQma2 ^ ¿ ^(x) = 0 , (76) 

where 

Vtv f \ xA(x’t)/ma r'77'» V(x’ 0 - 1 + !(*, r) ’ (77) 

and where the repeated indices a and ß in the last term are summed over. 
A final independent equation can be derived from the transverse component of equation (50d), that is, the part 

perpendicular to xaxß. 
Defining a perpendicular projection operator Aaß by 

A“* = i (8“* - (78) 

we can multiply equation (50d) by Aaß, which gives 

_L_a_ 
ax4 dx 

¿S(x, 0 + -L 1.{^K(X, 0 [S(x, 0 + KmafW}]} 

— G pma2 ^ J dzziA(z) + J dzzA(z) + %-nGpma2J^h.aR = 0 , (79) 

where repeated indices are summed. The angular integral on the third term of equation (50d) has been analytically 
reduced to yield the third term of equation (79). 

Equations (71), (72), (76), and (79) define a system of five equations and five unknowns. The system is a nonlinear, 
integrodifferential initial value problem that can be solved for a given set of initial conditions at some specified 
starting time. As discussed in § II¿/, we fix initial conditions through the similarity solution derived in the next 
section. 

IX. THE SIMILARITY TRANSFORMATION 

The similarity solution is based on the time scaling in the Einstein-de Sitter universe, 

H = (da/dO/a = 2/3t, SttGp = Aßt2. 

The scaling relations are 

PÁP, t) = t~30l(pltß) , C{x,p1,p2, t) = t-^gixlt^pjt^pzlt6) , 

d(xi, *2, x3,pup2,pz) = t~9eh(x1lt
a, x2¡ta, , 

where a and ß are constants related by 

ß = a+ Iß. 

Equations (81) yield the scaling relations for the spatial functions (eqs. [18], [21], [23]), 

J l(p')d3p' = na3 = constant, ¿;{x, t) = %(x[ta), ((x12, x23, x31, t) = Ç(x12/i
a, x23¡t

a, x31[ta) . 

(80) 

(81) 

(82) 

(83) 

As indicàted, in the similarity solution Ç and Ç are functions of the scaled variable x/t“ only. The result of sub- 
stituting equations (80)-(83) into equations (50) is to produce a set of equations in the independent variables 
s = xlta,p' = p[tßi the time no longer appearing explicitly. In a solution to these scaled equations, characteristic 
coordinate lengths scale with time as ta, proper lengths as ata cc tia + 2l3\ proper velocities as tßlacc ¿(a + 2/3)/í; 
canonical momenta scale as tß, consistent with ß = a + 1/3. 

Equations (80)-(82) are solutions to equation (50) for any value of the parameter a. We constrain a by the 
asymptotic boundary conditions. 
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No. 4, 1977 NONLINEAR CLUSTERING IN EXPANDING UNIVERSE 439 

At large separation x the correlation function is given by the linear perturbation result (eq. [6]). This, combined 
with the second of equations (83), says 

£ OC ^/S^-O + n) = ? £ « J ? 

SO 
a = 4/(9 + 3«) . (84) 

We assume that at small x, where f » 1, the particle pairs generally are in the same gravitationally bound and 
stable cluster. This would say that the mean rate of proper separation of the pairs is close to zero, or, since v 
(eq. [40]) is measured relative to the general expansion, that 

v=-jta{t)x, ¿»1. (85) 

This expression in the pair conservation law (eq. [41]) with f = %(xlta) » 1 gives 

as a, + 2/3 s 

whence 
%ocs~\ y = 2/(a + 2/3). (86) 

By equations (84) and (86), 
y = (9 + 3n)[(5 + n) , (87) 

as in equation (7). 
In summary, the similarity solutions to equation (50) are parametrized by the spectral index n of small perturba- 

tions, in conjunction with the following boundary conditions: (1) stability of the bound clusters at small separations, 
and (2) asymptotic agreement with linear perturbation theory at large separation. In the similarity solutions, 
Ç(^) oc s-y for Ç » 1, and Ç(^) oc ,y-(3 + n) for Ç « 1. 

The stability boundary condition at small separation is the only physically reasonable condition one could 
impose. Our truncation scheme for the velocity moments has deleted those terms which describe the subsequent 
relaxation of virialized systems, so the imposed boundary condition is the only condition physically consistent 
with our equations. 

In the similarity solution it is convenient to introduce new scaled functions and a new independent variable, 

s = axlta + 213 oc xt~a , £(x, t) = Ç(iS') , A(x, t) = ma2t~1A(s), 

D(x, /) = m2a2t2a-2l3U(s) = (ma)2(axlst)2Tl(s), (88) 

£(x, t) = m2a2t2a-2l3Z(s), <^2(0> = a2t2a~2K = {ax¡st)2K. 

As may be verified by using equations (81)-(83) in equations (10), (17), (42), and (51), Ç, A, 2, and II are functions 
of s alone and /Hs a constant. These new functions are independent of m and they are independent of the units 
of the “unphysical” coordinate x; that is, they are unchanged if a is multiplied by a fixed factor but ¿zx held fixed. 
On using equations (80) and (88) in equations (71), (72), (76), and (79), we find 

K = TCT\\ * sVs')ds' ’ (89a) 

-asjs !-(*) +j2js [5^(5)] = 0 , (89b) 

d 
' ds 4 i«) -3^5-<4/3)5 = I 4 (4 TO*)] - 2,Æ(.s)\ + (4/3)^Cs-), 

s2 ds (ifc 
(89c) 

(“ + Í - " s){? S [s’nwl} + ? £J (> + i - « - I ^ 

+ 2-íjsS*Is^J1-72í ['S'3y2^A^ + (4/3)^) + 4/3^') + 4/3(Çj ¿ JV'W = 0 , (89d) 

(2* + i- + I4 4{^>4P(5) + 2/3JST]} 

_ 4/9j4 J' ds'is'fAis') + J ds's'A(s) + fy3
uv(s)Auv = 0 , (89e) 
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where we have defined 

DAVIS AND PEEBLES Vol. 34 

V(s) = 
sA(s) 

r+W)’ 

^(s) = 

(90a) 

(90b) 

<¿1, ^2» and y3 have the forms given in equations (73) and (75) save that A is replaced with A and jc with s. 

X. SIMPLIFICATION OF THE INTEGRAL TERMS 

Equations (89a)-(89e) are still extremely difficult to solve because and y3 are integral operators that are 
nontrivial in two dimensions. If, however, Ç(l, 2, 3) (or, equivalently, Ç via eq. [4]) assumes a power law shape, 
then ^l(s) and ^(s) can be reduced to differential operators, and = 0. This then enables one to solve the 
equations using standard one-dimensional boundary value techniques. Except for equations (89a) and (89e), the 
equations become local, which greatly simplifies the numerical analysis. 

<#1 and are on the order of Ç2 and so are dominant when Ç » 1, and negligible when Ç « 1. The expected 
solution for Ç is a power law when Ç » 1. If we replace ^ and ^ by differential operators valid when Ç is a power 
law, then our expressions for these terms will be correct when Ç » 1, but will not be correct when Ç departs from 
a power law at Ç ^ 1. In this transition zone, however, the integral terms ^ and are becoming unimportant in 
equations (89), and furthermore, in this region we can no longer justify equation (4), the expression of Ç in terms 
ofÇ. 

Therefore, in order to facilitate the numerical solution of equation (89), it is not unreasonable in this first 
discussion of the equations to replace one approximation that is difficult to compute by another approximation 
which is easier to compute. Both the integral operators, and the differential operators that replace them, are 
accurate when Ç » 1. Neither is expected to be exactly correct when Ç ^ 1. 

The expressions for ^[(s) and ^C?) given by equations (73) and (75) can be readily evaluated when Ç has a 
power law form. If ^(s) = B/s7, we have 

^s) d’z 7 (17=^)-. (? + ?) = ! S 

where 

My = [2(2 - r)(4 - y)] 
"/pf1 +?) 

X {(1 + y)4-' - |1 - Jl4-’' - (4 - yM(l + j)2-1' - |1 - y\2-*]}. 

With Ç(.v) a power law, equation (91) is equivalent to 

A(s) = ß(3 - 2y)M&(s). 

(91) 

(92) 

(93) 

Since ÇÇs) is expected to depart from a power law when ^ ^ 1, equations (91) and (93) will not be equivalent in 
this region, and My will itself be a function of s. However, we emphasize again that the observational justification 
for equation (4) is rather weak when Ç ^ 1, so we are not introducing much additional uncertainty by simplifying 
^(s) to equation (91) or (93). 

A similar reduction can be applied to ^4(s) by noting that in the power law model A(s)¡^(s) = constant. The 
result is 

Stis) = QMy p Js [sUisKis)], (94) 

or, equivalently, in the power law model, 

S4(s) = (4 - 2y)QMysA(s)l(s). (95) 

In the power law model all components of ^3
aß{s) vanish. 

Since y < 2 when Ç » 1, and y > 2 when Ç « 1, as given by equation (94) changes sign beween the linear 
and nonlinear solutions, whereas no sign change occurs in equation (95). These two expressions for ^ are thus 
very different when Ç ^ 1, and an important check on our model is to see whether the solutions are also strongly 
dependent on the form of Another check is to compare solutions obtained using equations (91) and (93) for 

although here no sign change occurs in either expression if the logarithmic derivative of Ç is less than —1.5. 
As described below (§ XIII), the different reductions of do not seriously affect the solutions. However, because 
of the shape of Ç in the transition region, equations (91) and (93) for behave very differently, and in fact no 
solutions satisfying the boundary conditions were found using equation (91). 
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XI. ASYMPTOTIC SOLUTIONS 

tf) Ç « 1 

In the limit of Ç « 1, equations (89) must reduce to linear perturbation theory. All the nonlinear terms of 
equations (89) vary as Ç2, and can be neglected. The equations become 

-“Sç + ?2^>-°. <9&> 

a i B çHs s5 -4'35=? s {I- <%b) 

^3« + I - « [js (i
2n) - 2isj + = 0 , (96c) 

(2« + I - «51) S(5) - ! [I £ ds'(s'yA(s') + J£ ds's'Ais') = 0 . (96d) 

Equations (96a)-(96c) are three equations in the three unknowns Ç, A, and = {djds)(s2Jr) — 2Æ. Since the 
equations are equidimensional, the most general solutions will be power laws, Çoc/iocs-<5, J^ocs3-0, IIocEcc 
s2~ô. Equations (96a)-(96c) define an eigenvalue problem for 8, with solutions given by setting the determinant of 
the defining matrix to 0. This factors to 

(a8 - t)(aS + i)(a8 + 2)(8 - 3) = 0. (97) 

The first solution is the desired one, since it implies £(x, t) cc i4/3, in accordance with the growing mode of linear 
perturbation theory. Linear perturbation theory also predicts density fluctuations that decay as ¿-1, and since 
£ oc \Sp[p\2, there exist solutions where £ varies as and as t~113 for the purely decaying and the mixed modes, 
respectively. These modes correspond to the second and third parentheses of equation (97). The 8 = 3 solution 
does not correspond to density fluctuations, since it gives Ç = 0. There also exists a 8 = 4 mode which is purely 
a homogeneous II solution, with A = % = 0. 

In the two solutions involving decaying modes, Ç increases with increasing spatial separation (increasing s). 
As discussed in § II, we adopt the pure growing mode, that is, we take aS = 4/3, so £ oc s-0, 8 = 3 + « (eq. [84]), 
and by equation (96), 

A-4mn), ^-9„(2_
8gi+„r 

n “ ~"S ' W 

These are the boundary conditions at large 
Since we will be assuming « ^ 0, there is in the linear region a significant anisotropy of the correlated com- 

ponents of the relative velocity dispersion of pairs. For — 1 < « < 0, both II and 2 are negative, indicating that 
the relative velocity dispersion for particles separated by distance s is slightly less than the relative dispersion of 
random particle pairs at very large separation (see eq. [52]). This is true both in the transverse and radial directions. 
For 0 < « < 2, Ç^) is negative at large s, and Z(s) is also negative, but now II^) is positive. This in turn implies 
that the radial relative velocity dispersion is above the random value, and the transverse relative dispersion is 
below the random value. 

t>) %» 1 
In the limit Ç » 1, equations (89) again simplify considerably. Keeping the highest order terms in each equation, 

we have 

= (4/3)(2y - 3)QMr¥ , 

(«+i-B)?z<sSn>+!£<sI,/n>- (2/s) 2oc + f — otf — 
ds s-?&2rs> 

(2* + i-B)s + 7.S[s,,,ws! = 0 

V = sA/li. 

+ 1(4 - 2y)QMysAÇ = 0 , 

(99b) 

(99c) 

(99d) 

(99e) 
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Here we have reduced ^ and according to equations (93) and (95). The mean relative peculiar velocity of 
particles separated by distance x is axA[(t%) when £ » 1 (eqs. [40], [42], and [88]). By hypothesis and our truncation 
scheme discussed above, this velocity should just cancel the Hubble flow Hax/t) because the particles are expected 
to be in stable clusters. Therefore A(s)[%(s) = —2/3 and V = —Isß. By equation (99a), this can occur only if 
%(s) varies as a power of s, and, as discussed in § IX, equation (99a) fixes the power law index in terms of a, and 
hence n (eqs. [86] and [87]). 

Equation (99d) is a first-order homogeneous equation for 2^). Since it is equidimensional in ^ the solution is a 
power law which, when V = —2s¡3, reduces to 2 oc s2~2v. Equations (99b) and (99c) are also equidimensional, 
and also imply that n^) will have a power law solution II oc s2~2y. For this power law solution, both equations 
(99b) and (99c) reduce to an algebraic relation between Ç, II, and 2, 

2(s) - (2 - y)U(s) = (2/3 QMy)s2£>2(s). (100) 

2 and II should of course be positive in this domain and Mv is positive over the domain of y we shall consider. 
In this asymptotic limit the physical velocity dispersions <^2i

2) (see eqs. [52]) in the parallel and perpendicular 
directions will be given by 

<V21^y X Seisms) + [11(5) - S(5)]/i(5) , (101) 

and by equation (100) the ratio of velocity dispersions in the radial and transverse directions is 

WyKvr2} = 2-y + 2QMys
2l2l3U. (102) 

The solution in this limiting case does not constrain the velocity dispersions to be isotropic, that is, (v2} = (v2}; 
rather, the value of the constant s2^2/!! depends on the join to the solutions valid in the limit s -> oo. This agrees 
with van Albada’s (1960, 1961) argument that in large clusters the velocity dispersion could be expected to be 
larger in the transverse than in the radial directions relative to the cluster center because of centrifugal force and 
the conservation of angular momentum. 

c) Eigenvalues 

In the linear asymptotic region, the amplitude of Ç at a coordinate point completely specifies the solution (eqs. 
[98]). The nonlinear asymptotic solution is completely determined via two parameters, for example the values of 
I and 2 at a specified point. We seek a solution that smoothly joins the two asymptotic solutions, and for this we 
must solve equations (89) numerically. 

Consider for a moment equations (89) as an initial value problem for which we prescribe initial values at some 
small s, according to the desired asymptotic behavior in this limit. If the equation is integrated toward large s 
eventually the nonlinear terms will lose importance, and the solution will become a linear superposition of power 
laws with indices 3 fixed by equation (97). In general this solution will contain negative values of S, so the solution 
will blow up at infinite spatial separation {s oo). Conversely, if we start at large i1, with the wanted linear solution 
and integrate inward, there is no guarantee that the solution will settle down to a power law at Ç » 1. If it does 
not, then v cannot be arranged to cancel the Hubble flow, so the wanted stability condition cannot be satisfied. 
The boundary value problem thus is an eigenvalue problem. Only for selected values of parameters defining the 
equations can solutions exist which have the desired asymptotic boundary conditions. Of course it is always 
possible that there are no eigenvalues which produce the desired solution. With this highly nonlinear system, the 
proof of an existence theorem would be extremely difficult. 

In our system of equations as formulated, there is only one parameter which is not completely specified and 
which can serve as an eigenvalue. This parameter is Q, which measures the strength of the three-point correlations 
in terms of the two-point correlations. One reason for thinking Q might be the key parameter is the fact that 
the velocity dispersion depends on Q when Ç » 1 (eq. [100]) but is independent of Q when Ç « 1. Thus there 
exists a value of Q for which the match of dispersions at the transition region Ç ^ 1 is best. This still does not 
guarantee the existence of a solution having the desired boundary conditions at both asymptotes, but we do find 
that, within the accuracy of the numerical integration, the desired solutions usually do exist. 

Thus an extremely important outcome of this calculation is the eigenvalue of Q which yields solutions having 
the proper asymptotic solutions. Q is an observable parameter, and it will serve as a check on the theory to see 
if the eigenvalues of Q are within the observed limits. It is also clear that the eigenvalue of Q may depend on 
which reduction scheme for ^ and ^ is used because the different reductions behave differently when | ^ 1. 

XII. NUMERICAL TECHNIQUE 

To solve equations (89) we first transform to a logarithmic coordinate «, 

u = \ns , ~r = s ~r > (103) 
du ds 
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and convert the equations to difference equations. Second-order differences are employed for equations (89b, c, d) 
but in equation (89e), where it is necessary only to specify a boundary condition at large s, we use first-order 
forward differences. The difference grid consists of 200 points, with the step increment du = 0.05, so 5 varies from 
0.01 to -209. 

Boundary conditions are chosen so Ç £: 1 occurs near the midrange of the grid. This insures that the equations 
are well described by their asymptotic limits at each boundary. At the small s boundary we specify A, d^/du, 
and (d¡du)(\n H). At the large s boundary we specify the logarithmic derivative (dldu)(\n Ç). The remaining param- 
eters at large s are specified as three algebraic equations between ^4, II, 2, and Ç at the boundary. These are the 
expressions appropriate to the desired solution «8 = 4/3 in the large s limit. We are solving three second-order 
equations and one first-order equation, so we have seven free parameters to specify plus one additional parameter 
to scale the overall solutions, since there are no inhomogeneous source terms in equations (89). Four of these 
degrees of freedom are taken up at the small s boundary, and the remaining four are specified at the large s 
boundary. 

The expected solutions for Ç, A, II, and 2 vary by large factors between the small ¿ and large s limits. To improve 
the accuracy of the numerical solutions we solve the equations in terms of the functions s2^), s2A(s), sU(s)9 and 
^2^). The variation of these functions over the range of s is considerably less than the original functions. 

The various integral terms appearing in equation (89) imply that the matrix describing the difference equations 
is not sparse, and in general the equations must be solved by matrix inversion techniques. The number of com- 
putational steps required to solve n simultaneous equations on m grid points is proportional to (nm)2, if the 
defining matrix is nonsparse. In the absence of the integral terms, the defining matrix is block tridiagonal, and 
can be readily solved by factoring the matrix into a product of two bidiagonal matrices (see, e.g., Acton 1970). 
The total number of computations and steps required for solution of a block tridiagonal system is proportional 
to n2m, a factor of some 200 reduction in computing time in our situation. 

Equation (9le) contains an integral term, which we convert into a local term by defining a new function J(s), 

s2A(s)J(s)^Y^t + = /a £ dzzéA(z) + J dzzA(z). (104) 

In the asymptotic solution at large s, A(s) oc s~{3 + n) and J(s) = 1. In the nonlinear region J(s) is greater than 1. 
The term is important, however, only in the linear region, and so a good approximation is to set/(s) = 1. We also 
convert ^(s) and ^(s) into local operators as described above, and we set ^3

uv(s) = 0. The full function J(s) 
can be readily found, given A(s), so it is possible to iterate the solutions until equation (104) is explicitly solved. 
Some solutions were generated where J(s) was iterated via equation (104), and will be discussed below. 

The nonlinear terms in equations (89) are handled by Newton-Raphson linearization. Terms containing K are 
significant in the transition zone, and equation (89a), which defines K, is intrinsically nonlocal. The iteration of K 
necessarily lags behind the other functions. Given the ith iteration of Ç—call it %—we compute K' via equation 
(89a), and use (K* + i5ri_1)/2 as the estimator of K for the next iteration of Ç and the other functions. Because K 
lags, our convergence rate for the iterations is far below the usual convergence of Newton-Raphson linearization. 
Nevertheless, the computing time required to reach convergence to 1% accuracy is relatively short. If we ignore 
the fifth and sixth terms of equation (89d), which are negligible except when Ç ^ 1, we reach convergence to 1% 
accuracy in usually less than 30 iterations, starting with a reasonable guess for the zeroth level iteration. Including 
these two terms greatly increases the number of iterations required for convergence. We find, however, that the 
solution including these two terms does not vary significantly from the solution ignoring these terms, and in order 
to reduce computing costs, most of the solutions discussed below were computed ignoring these two terms. 

In the first step of the computation we obtain trial solutions based on Q = \. The result always satisfies the 
boundary conditions but usually the solution exhibits a discontinuity at the small s boundary, and the logarithmic 
derivative of Ç at Ç » 1 does not reach a constant value or else reaches a value different from the wanted y—that 
is, the stability condition is not satisfied. Generally, however, by slowly varying Q we generate a series of solutions, 
and we can find a value for which Ç, II, and 2 have the wanted asymptotic behavior. 

XIII. NUMERICAL RESULTS 

a) Choice of the Power Spectrum Index n 

We have solved the equation for various values of the free parameter n, the spectral index of the initial density 
perturbation (eq. [5]). Convergence of the rms single particle velocity dispersion (eq. [89a]) requires — 1 < n < 1. 
The observational data suggest « ^ 0 (Peebles 1974). Since the particular numerical method adopted here fails 
if « = 0 (because f goes to zero at ^ oo faster than a power law when n = 0), the results presented here are 
based onn = — 0.1 (y = 1.776). We find that results for « = 0.1 and n = -0.1 are very similar over the range of 
interesting values of s, and, since there is no physical discontinuity at « = 0, we expect that the results presented 
here are an adequate approximation to the case « = 0. 
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444 DAVIS AND PEEBLES 

TABLE 1 
Parameters and Results of Model Solutions 

Model No. ^ ^ All Terms ÇMax Çbend Q <vr
2>Kvt

2> 
(1) (2) (3) (4) (5) (6) (7) (8) 

1   Aa Aa No 0.66 0.10 0.72 0.89 
2   Aa Da No 0.47 0.25 0.58 1.15 
3   Aa Da Yes 0.42 0.25 0.62 1.0 
4   Ab Da No 0.064 ... 1.28 0.69 
5   Ab Db No 0.038 ... 0.97 1.20 
6   Ac Da No 0.70 0.25 0.40 1.58 
7   Ac Dc No 1.18 0.14 0.48 1.12 

b) Comparisons of Results for Different Methods of Approximation 

An essential first test is to determine the sensitivity of the central results, the value of Q and the shape of £, to 
the methods of approximating ^ and /. It is also desirable to test the moment truncation procedure by 
modifying equation (89d) so as to introduce skewness into the relative velocity distribution. 

A large number of models and variations were considered; results of representative cases will be discussed here. 
Distinguishing features of each model are given in Table 1 and Figures 1-4. Column (5) of the table gives £Max 
for each model, defined as the value of Ç for which d In ^¡du = — 2 (the value of £ at the peak of s2Z). Column (6) 
gives Çbend for each model, defined as the value of Ç where the curve crosses the s-7 asymptote. In a two-power- 
law approximation to our results, ÇBend would be the approximate point of intersection. The value of Q which 
yields the correct boundary conditions is given in column (7) of Table 1. A measure of the isotropy of the velocity 
dispersion at smàll s is (vr

2yf{vt
2}. This is given in column (8). Plotted in Figures 1-3 are the functions •s^Cs'), 

s2A(s), and for models 1-3. For these figures, sil and s'L have been divided by 10 to bring them into 
the same range as the other functions. Figure 4 compares s2Z,(s) for all the models. The dotted line is the small 
s asymptote, s2-1*77. 

The models are distinguished primarily by the assumed forms of ^ and «/4. In Table 1, columns (2) and (3) 
describe whether “algebraic” coupling “A” (i.e., eqs. [93] or [95]) or “differential” coupling “D” (i.e., eq. [94]) 
is used for the models of ^ and </4. Additional models were formed by multiplying ^ and ^4 by an additional 
factor F, which has the following definitions in the models labeled a, b, and c in Table 1 : 

F = 1 model a 

= 1 + s/sq model b (¿o = 1) 

= (1 + sjsQ)~
1 model c (105) 

The sixth term and that part of the fifth term of equation (89d) contributed by the xaxßxY[x3 component of the 
third velocity moment (see eq. [57]) have been eliminated in all models except number 3. As explained above, 
these terms are important only in the transition zone. Elimination of the terms effectively introduces a skewness 
in the velocity distribution that is relatively large, {(v — v)3}Kv3) ^ 1, at Ç ^ 1, but it has only a small effect on 
the solutions because the divergence of this contribution, which is all that enters equation (89d), is small. 

All attempts to model by equation (91) failed, in the sense that no value of Q yields the wanted behavior 
at the boundaries. Apparently, in this model, we need another eigenvalue, as well as Q. This model probably 
fails because, according to equation (91), ^ has a sign change at d In %/d In s = — 1.5 and, as seen in Figures 1-4, 
s2^ usually shows a “bump” in the transition region where the logarithmic derivative of Ç is greater than —1.5. 
Thus two sign changes occur in ^ in a relatively short interval, and this unphysical behavior yields a solution 
having peculiar characteristics. 

Models 4-7 are variations on model 2 where ^ and have been multiplied by the function F, which is unity 
at small s and which varies either as s or as s-1 at large s. F is parametrized by a cutoff ¿o, and models 4-7 all 
have s0 = 1, so that ^ and ^4 are changed a factor of 2 at f £; 3 (see Figs. 1-4). Models 4 and 5 increase the 
strength of ^ and ^4 and so extend the nonlinear solution, while models 6 and 7 cut off these nonlinear terms 
faster. There is no physical justification for F; it is introduced simply to demonstrate the degree of sensitivity of 
the models to the method of treating the three-point correlation function in the transition region. As shown in 
Table 1 and Figure 4, these fairly drastic variations of ^ and ^4 in the transition zone significantly influence the 
solution but do not change its basic character—a rather abrupt transition between the two asymptotic solutions. 

All solutions shown have been solved with J(s) = 1 (eq. [104]), which is accurate within 10% where this term 
is important. Upon iterating J(s), we find that Ç^) changes slightly, as does Q, but II and 2 depart from power 
law behavior at the large s boundary. We have not studied this problem in detail, because our model for J(s) is 
significantly wrong only in the transition zone, where <#3

aß, (eq. [89e]), which we have completely ignored, is of 
comparable strength, and our models for and ^4 are uncertain. 
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Fig. 1.—Results of the integration for model 1 (see Table 1). The independent variable is the scaled length 5 (eq. [88]), A measures 
the mean relative peculiar velocity of particle pairs at fixed separation (eq. [42]), and II and 2 measure the dispersion of the relative 
velocity (eq. [51]). 

Fig. 2.—Results of the integration for model 2 
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S 
Fig. 3.—Results for model 3, which is the same as model 2 except that all terms are included in eq. (89d) 

Fig. 4.—The spread of results for the two-point correlation function Ç for different treatments of the transition region. The 
numbers correspond to the models listed in Table 1. The dotted line is the power law § oc 5-1-77. 
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c) Evaluation of the Velocity Moments 

The velocity moments plotted in Figures 1-3 are converted to physical units by adjusting the length scale so 
that Ç at small s matches the observed function, £ = (re//*)1-77, rc ^ 5 h'1 Mpc, where the latter number is uncertain 
by perhaps a factor of 1.5. This gives the conversion factor ^ between s and physical lengths measured at the 
present epoch, 

r = a0x = ¡xs . (106) 

Then by equations (52), (53), (80), and (88), 

<*;> = vAs¡{\ + l), <0 = v*K, Wy = v2(2 + 2K¡3)1(1 + %) , 

<^2) = v2(IL + 2K¡3)1(1 + Ç). 

The conversion factor is 

v = 3^HI2, 

(107) 

(108) 

where H is Hubble’s constant. The value of v is independent of H because rc and hence ft scales as i/-1. 
Figure 5 shows the velocity moments converted to kilometers per second and based on the solution in Figure 3. 

The horizontal line is the single-particle rms peculiar velocity in one dimension, «^i2>/3)1/2 ^ 625(rc/5 /r1 Mpc) 
km s-1. It will be noted that the velocity scale v varies as rc, so it is uncertain by a factor of about 1.5, and that 
all the solutions here assume D ^ 1. The scale is independent of h because rc scales as /z-1. 

XIV. DISCUSSION 

a) The Shape of £ and the Value of Q 

The central goal of the calculation has been to compute the shape of the two-point correlation function f and 
the value of the parameter Q in the three-point function under the standard gravitational instability picture. This 
is a difficult problem, so an essential first check is the consistency of results from different methods of attack and, 
in one method, consistency under changes of details of the approximation. In the present method the main assump- 
tions have been (1) that we can neglect the third central moment of the distribution of relative peculiar velocities 

Fig. 5.—Velocity moments. These results are based on model 3 in Table 1. The horizontal line is the rms peculiar velocity in one 
dimension for randomly chosen particles, — <^2i> is the mean difference of peculiar velocities for pairs chosen at random, and 
<(y2i)ii2) and <(f2i)i2) are the mean square values of the components of the relative peculiar velocity r2i along the line joining 
the particles and along a line at right angles to this. These curves scale with the parameter rc (eq. [41) as indicated in labels along 
the axes. The vertical axis is independent of h\ the horizontal axis scales as /z-1. 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
7 

7 A
p J

 S
. 

. .
34

. 
.4

25
D

 

448 DAVIS AND PEEBLES Vol. 34 

of particle pairs at any separation x, and (2) that the three-point correlation function can be modeled in terms of 
the two-point function by equations (4) and (62). 

The first assumption is the lowest order approximation that can describe galaxy clustering. Although we know 
that some degree of skewness must be present in the two-point distribution function, it seems unlikely that our 
results, especially the shape of £, are strongly affected by this approximation. In the context of spherical clusters 
described using a Vlasov equation, van Albada (1960, 1961) has shown that initial irregularities can develop into 
stable clusters in the absence of kinetic energy flux in the single-particle velocity distribution, and that the essential 
characteristics of the velocity distribution do not change when skewness is included. Our results have a qualitatively 
similar behavior. 

Comparison of model 2, which has skewness because it neglects several terms in equation (89d), and model 3, 
which is identical except that it has no skewness, discloses no major differences. This point could be further tested 
by results from other methods such as A-body models (e.g., Peebles and Groth 1976; Aarseth and Icke 1976). 
Because the first relative velocity moment is a function of the separation of the particles, there will be skewness 
in the relative velocity distribution if pairs of all separations are included together. 

For the second assumption we must consider several points. In the “main equation” for f, equation (50c), we 
need the spatial three-point function f. Observations of £ for galaxies are quite detailed at £ » 1 but extend to a 
maximum separation of 3°, corresponding to ~10/z_1 Mpc, in the Shane-Wirtanen catalog. Thus equation (4) 
for £ might be in error in the “transition region” ^ ^ 1, where £ is breaking away from the power law. We have 
a test of sensitivity of the computations to this because we have modeled the integrals over £ and d by expressions 
accurate when £ » 1 but only approximate in the transition region. In effect, we have inserted deviations from 
equation (4) in the transition region, and by using different models we have shown that the results are not very 
sensitive to these deviations. The second point is that we are assuming that the galaxy correlation functions agree 
with the mass correlation functions. There is an important piece of evidence in favor of this: £ is observed to scale 
as £2, in agreement with what is predicted for the mass functions in the gravitational instability picture (Peebles 
1974). The third point is that in the “auxiliary equation” (eq. [50d]) we need a first velocity moment of the three- 
point space and velocity correlation function d. We have estimated this by using the law of conservation of triplets, 
which also involves the first moment. Since the combination is not the same in the conservation equation and 
in equation (50d), there is some ambiguity here, but this may not be too serious because the main equation ought 
to be somewhat insensitive to errors in this auxiliary equation. 

By construction, all solutions for Ç agree at the small s limit. The deviations of the curves in the transition and 
large s regions (Fig. 4) are some measure of the uncertainty of our predictions. There is a factor of ~6 spread in 
the amplitude of Ç in the large s limit. In most models, the power law index does not simply roll from one asymp- 
totic behavior to the other; rather, going from small s to large s the index first drops below y (eq. [7]), then rapidly 
goes above 3, then moves down to the asymptotic value 3 + «. This behavior occurs for all n we have tried 
( —0.9 < « < 0.75). The rise above the power law r~y usually amounts to less than a factor of 2. This feature, if 
real, will be difficult to observe. 

The break point, ÇBend> is found to be in the range 0.1-0.25, in all models except models 4 and 5 where Ç is 
always below the asymptote. In these two models a two-power-law approximation would have a break point 
at Ç ^ 0.06. Prospects for observing the break from the power law are discussed by Davis, Groth, and Peebles 
(1977). 

It is encouraging that the computed values of Q are reasonably close to the measured values, Q ^ 0.85 from the 
Zwicky catalog and g ^ 1.24 from the Shane-Wirtanen catalog (Peebles and Groth 1975; Groth and Peebles 
1976). By the arguments of § lib, Q must be greater than ~0.3 to ensure a positive dispersion in the number of 
particles about a randomly chosen particle, but the equations do not guarantee this physical constraint. Given the 
degree of approximation in the models, we might have found Q of order 10, or 0.1. The fact that Q is calculated 
to be of the order of unity is evidence that our modeling of the equations is reasonable. 

Comparison of the calculated Q with observations should be made with caution because Q always appears in 
equation (89) multiplied by My (eq. [92]). Roughly 407o of the integral for My is contributed from the region 
s < 0.01, corresponding to r < 50 /z-1 kpc today, and we might expect nongravitational forces to have reduced 
subclustering on scales this size and smaller. Therefore we have overestimated My and correspondingly under- 
estimated ß by a factor of up to 1.7. 

b) The Velocity Dispersion 

The auxiliary functions 2 and II are less reliably predicted in our calculation. Comparison of Figures 1-3 shows 
that the behavior of II in particular varies rather dramatically from model to model in the transition region. This is 
because II never plays a dominant role in the equations and is able to fluctuate to balance various terms in the 
different models. The computed ratio of II to 2 at small s (Table 1) is quite insensitive to the approximations, 
and is close to unity, that is, close to isotropy. This is an important test of reasonableness in the sense that strong 
asymmetry would have seemed unreasonable. The velocity moments plotted in Figure 5 offer some prospects for 
further observational tests. The computed relative peculiar velocity dispersion <r2i

2) at r ^ 1 /z_1 Mpc agrees 
with the “cosmic virial theorem” derived by Peebles (1976a, b) under the assumption of stability and isotropy 
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(II = 2). An observational test of at least the magnitude of the dispersion along this part of the curve might be 
possible from complete samples of redshifts to m # 15 in selected areas (Peebles 1976a, b). It would be of consider- 
able interest to test for the predicted break in the dispersion curve at r ^ 5 h~1 Mpc. This will be difficult, however, 
for a survey to m ^ 15 may not be a fair sample on scales much larger than 5 A-1 Mpc. 

The horizontal line in the figure is the rms peculiar velocity of individual galaxies, about 625(rc/5 A-1 Mpc) km 
s_1 in one dimension, consistent with the estimate of Fall (1975). Observational tests of this number will be difficult 
because it is much harder to pick out the absolute motion of galaxies (relative to the comoving coordinates of the 
background homogeneous cosmological model) than to pick out the relative motions of galaxy pairs. 

The bottom line in Figure 5 gives the mean relative peculiar velocity (y2i) averaged over all pairs at separation r. 
At small r <i?2i> is close to Hr and opposite in sign: consistent with the assumption of stability, the mean rate 
of proper separation is near zero. AtÇ=l,r£;5A-1 Mpc, and <y2i) is about 40% of the Hubble flow, fairly 
close to the estimate found in another way by Peebles and Groth [1976, eq. (33)]. Sargent and Turner (1976) 
have discussed a possible method of measuring <^2i>. Because we cannot tell which of a close galaxy pair is more 
distant, we can only see the effect of <^2i> through the width of the distribution of redshift differences for galaxy 
pairs at chosen angular separation: if (v21y is opposite to r21 it narrows the distribution. The problem is that 
K, II, and 2 broaden the distribution, and it may be difficult to untangle effects. 

c) Virialization and Overshoot of (v21y 

Gott and Rees (1975) have argued that at £ 1 the (y21') curve in Figure 5 ought to rise above the Hubble line 
Hr. This is based on the assumption that the development of a cluster of particles is adequately described by the 
homogeneous sphere model. In this model the points in a protocluster all come to rest at the point of maximum 
expansion at the same time. The cluster must then collapse by a factor of 2 in radius to generate enough internal 
kinetic energy to satisfy the virial theorem. This collapse would make |<y2i>| greater than Hr when r is comparable 
to the typical si¿e of protoclusters that are collapsing. If <^2i> behaved in this way, then, through equation (41), 
it would make the shoulder in f rise from £ £ 0.25 as found here up to £ » 1 (Gott and Rees 1975). The effect of 
collapse on <f21> when £ < 1 is diluted by uncorrelated pairs. However, this collapse effect is questionable because 
it is doubtful that the spherical model is an adequate approximation for this purpose. For the internal motions 
of a protocluster near “maximum expansion,” a better model would be the pancake picture of Zel’dovich (1976 
and earlier references therein). This shows that the protocluster can be collapsing along one axis while it still is 
expanding in other directions and while the mean density as measured by f(r) (that is, the density averaged over a 
spherical shell) still is decreasing. That is, the protocluster can be “previrialized” due to the development of non- 
radial motions while it still is expanding as a whole. 

A second “previrialization” effect is the production of internal kinetic energy through tidal interaction among 
neighboring protoclusters. We know that this effect makes the final kinetic energy of rotation of a cluster at least 
comparable in order of magnitude to the total energy (Peebles \91\b). The internal velocity field produced by this 
tidal interaction tends to have total kinetic energy appreciably greater than the energy associated with the final 
uniform rotation because the tidal interaction does not produce axisymmetric rotation. Thus it appears that there 
can be strong previrialization by kinetic energy production through this process. In the model computations it 
happens that the dispersion functions II and 2 at large s increase fast enough with decreasing ^ that, by the time 
Ç reaches unity, the dispersion is enough to satisfy the virial theorem. It is difficult to know whether this is because 
the computation adequately reflects the previrialization effects mentioned above or because the approximations 
have artificially eliminated the “virialization” effect. The key test will be the comparisons with results from other 
methods of attacking the problem. 

d) The Next Step 

We emphasize that the results presented here are far from complete because we have assumed Ü # 1 (as well as 
A = 0, pressure negligible). The next substantial step will be to extend the detailed computation to cases where Q 
is substantially different from 1 by using the present results as initial values at high redshift. Some estimates of 
the expected effects of lowering D are discussed by Davis, Groth, and Peebles (1977). We hope to report on the 
results of a detailed computation in due course. 

It is a pleasure to acknowledge helpful discussions with M. Geller, M. Krook, M. Lecar, and G. Rybicki. We 
thank M. Fall for a careful reading of the manuscript. This work commenced while P. J. E. P. enjoyed the hospitality 
of the physics department at the University of California, Berkeley, in 1974. 
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