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Stability of the Sun-Earth-Moon system 
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The models of the restricted and general problems of three bodies are used to determime 
the stability of the Sun-Earth-Moon system by means of surfaces of zero velocity. Hill’s 
result is verified by the model of the restricted problem as long as the ratio 
mE/ms >2.52x 10“6. The model of the general problem, on the other hand, con- 
tradicts this result and we show that the eccentricity of the Earth’s orbit renders the 
system unstable by opening the surface of zero velocity. It may be concluded, therefore, 
that the Moon may escape from the Earth and may become a planet or, in reverse, 
that the planetary origin and the capture of the Moon by the Earth becomes a strong 
dynamic possibility. 

INTRODUCTION 

THE existence of zero-velocity surfaces in 
the general problem of three bodies was shown by 

Golubev (1968). Similar results were obtained by Smale 
(1970), Saari (1975), Marchai (1975), Bozis (1976), and 
Zare (1976), who all studied various aspects of the to- 
pology of the manifold of motion. In a series of papers 
we applied the above results to investigate possible re- 
gions of motion of classical triple stellar configurations 
(Szebehely and Zare 1977), to study the long-time be- 
havior of the solar system (Szebehely and McKenzie 
1977) and to show the use of bifurcation theory in the 
stability of the Sun-Jupiter-Saturn system. The present 
paper treats the behavior of the Sun-Earth-Moon sys- 
tem by means of models using zero-velocity surfaces. 

The idea to apply zero-velocity surfaces to investigate 
the stability of the lunar system was originated by Hill 
(1878), who showed that the Moon’s orbit is inside a 
zero-velocity oval, which in turn is inside the limiting 
critical figure-eight curve of zero velocity. In this way, 
using Hill’s simplified model or the model of the re- 
stricted problem of three bodies one may show that 
neither can the Moon leave the Earth, nor can it be 
captured. The model of the restricted problem neglects 
the eccentricity of the Earth’s orbit and the effect of the 
Moon’s mass. For this reason it is desirable to refine the 
dynamic model used so that the above two effects may 
be included in the theory. This is made possible by the 
use of the model of the general problem of three bodies 
as suggested to us by R. Vicente (1975). In the following 
the relation between zero-velocity curves and stability 
is first shortly reviewed, then a quantitative measure of 
stability is introduced, and finally some numerical results 
are given regarding the title problem. 

I. DEFINITION OF STABILITY 

Stability is defined in this paper along the lines pro- 
posed by Hill (1878). If the orbit is enclosed by a zero- 

velocity surface, the corresponding body may not pene- 
trate this surface and the motion can not change its basic 
characteristics. As long as the type of motion is un- 
changed we call it stable. For instance, in the restricted 
problem of three bodies when the orbit of the body with 
zero mass is inside a zero-velocity oval drawn around one 
of the primaries, i.e., when its Jacobian constant Cac is 
larger than the critical value of the Jacobian constant Ccr 

(corresponding to the libration point located between the 
primaries, L2), we speak about stability. The body with 
zero mass may collide with one of the primaries but it 
may not leave the inside of its zero-velocity curve when 
Cac — Ccr. If this inequality is reversed the zero-velocity 
curve corresponding to the body with zero mass opens 
up at ¿2 and the body may switch its motion from around 
one primary to the other and the character and type of 
the motion may change. In this paper we associate the 
loss of stability with such basic change of motion in the 
general as well as in the restricted problem. The corre- 
sponding measures of stability, therefore, are 

Cac ~ Cc 
Ccr 

S = Sc 
(i) 

for the restricted and for the general problem, respec- 
tively. Here C is the Jacobian constant in the restricted 
problem and s = —(c2H)/G2m5) is the stability pa- 
rameter in the general problem. The Jacobian constant 
is defined as C = 2fi — v2, where 

« = ^[(i-At)n2 + ^22]+lzii + -’ (2) 

ß is the mass parameter given in terms of the primary 
masses by ¡jl = mjjimx + W2),andra2 ^ mi. Here ri and 
r2 are the distances between the primaries and the third 
(“infinitesimal”) body, whose velocity in the synodic 
coordinate system is v. For the general problem c and H 
represent the total angular momentum and the (nega- 
tive) total energy of the system, G is the gravitational 
constant, and m is the average mass. For the computa- 
tion of the critical and actual values of C and s we refer 
the reader to our previous publications (Szebehely 1967; 
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Szebehely and Zare 1977; Szebehely and McKenzie 
1977). 

The relation of our definition of stability to bifurcation 
theory is well known. At the critical or bifurcation value 
(of C or s) the character of the motion may change and 
therefore, stability is defined by S > 0. 

It must be noted that at bifurcation a different be- 
havior does not necessarily occur, but it may occur. 
Furthermore, limiting ranges of motion may be defined 
with inequalities of various sharpnesses obtained by 
different estimates. For instance Sundman’s inequality 
forms the basis of the estimates used in this paper to es- 
tablish the limiting ranges of motion. There exist, how- 
ever, different forms of this inequality with different 
sharpnesses and their use may furnish different stability 
criteria. This formulation of the problem was proposed 
by Broucke (1976). 

Finally, we add that if S is a large positive number the 
actual system is far removed from its critical condition 
and we call the system “more stable” than when S is a 
smaller positive number. In this latter case uncertainties 
in our knowledge regarding the physical description of 
the system or effects not included in our theory may re- 
sult in S < 0, corresponding to an open zero-velocity 
surface and to instability, or rather to the possibility of 
instability, when the Moon may leave the Earth or it may 
be captured. A highly unstable system has a large neg- 
ative value for S indicating that the system is far re- 
moved from stability. (Note that sCr‘Ccr ^ 0 as long as 
at least two of the three participating masses are not 
zero.) 

II. NUMERICAL RESULTS 

A. The Model of the Restricted Problem 

Hill’s (1878) result and statement regarding the sta- 
bility of the lunar orbit is well known. If the model of the 
restricted problem is used as an improvement over (what 
is known today as) Hill’s problem we still have stability. 
The Jacobian constant of the Moon is Câc = 3.0012 while 
the critical value is Ccr = 3.0009. The measure of sta- 
bility is 5* = 10“4 > 0, therefore, the system is stable. It 
must be recalled, however, that this model neglects the 
eccentricity of the Earth’s orbit and the effect of the 
Moon’s mass. 

It is of interest to study the effect of the mass pa- 
rameter on the stability of the system. The usual defi- 
nition of the mass parameter is 

WE + miu fi = (3) 
ras + mE + mM 

If the Earth’s and Moon’s masses are changed by a 
factor 7 = mvJ= mu/^M (where me, mu are the 
original and m'u the new masses) we have for the 
new value of the mass parameter 

M/ = 7(^e + mM) ^ 
ms + tOe + mu) 

The actual and critical values of the Jacobian constant 
and therefore the measure of stability depend now on ¡if 

(or on 7). The results of such calculations are that as long 
as 7 > 0.83 the system preserves its stability. This means 
that if the present value of the mass parameter 11 = 
3.0404 X 10~6 is reduced to less than ^ = 2.52 X 10-6 

the system becomes unstable. The physical interpretation 
of this result may be that as the Sun’s mass is increased 
and the Earth’s mass is decreased the Earth is not of- 
fering a sufficiently high potential to restrain the motion 
of the Moon. 

The above computations assumed that the Moon’s 
orbit and its mean motion did not change while the 
masses were varied. If we allow for such changes the 
critical value of 7 becomes 0.4, that is as long as the mass 
parameter is larger than 1.22 X 10-6 the system is sta- 
ble. 

B. The Model of the General Problem of Three Bodies 

For the purposes of computing the actual and critical 
values of the stability parameter, the following astro- 
nomical constants are used: 

mM/mE - 0.0123; 
ms/me = 332946.0; 
Qe/^ 389.1845; 

eu =: 0.0549; 
eE = 0.01675. 

Here aE, eE, üm, and are the semimajor axes and 
eccentricities of the Earth’s and Moon’s orbits. 

The Keplerian total energy of the system is 

H = Gmems T + mM A [ me aE 

2aE L mE\ ms cim 

The angular momentum (assuming coplanar motion) 
is 

c = GmeMs 
Vug 

(6) 

where M = ms + me + my\. 
Denoting the quantities in the brackets in Eqs. (5) and 

(6) by 4> and we have 

_ _ He2 _ _ 35 /me\ (f)\p2 

m5G2 2 \ms/ tf6 

where 

(7) 

- 1 -LmE-L. er = 1 H h 
Ms 

Mu 
Ms 

Note that the dimensionless factors 0, 0, and a contain 
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only mass ratios, the ratios of the semimajor axes, and 
the eccentricities. 

The critical value of 5 depends only on the masses and 
may be computed by solving a fifth-order algebraic 
equation as shown for instance by Szebehely and Zare 
(1977). The measure of stability using the above astro- 
nomical constants becomes S = —2.75 X 10“4. Since it 
is negative, the zero-velocity surfaces are open and the 
Moon may escape the Earth or it may be captured by 
it. 

The effects of the masses, semimajor axes, and ec- 
centricities on the stability may be studied and the fol- 
lowing results may be of some possible cosmological 
interest. 

Changing the masses of the Moon and of the Earth (as 
before) by a factor of 7 results in stability of the system 
when 7 > 25.74. This is not surprising since as 7 in- 
creases the system approaches the configuration similar 
to a classical triple stellar system. The “inner binary” 
consists of the Earth and the Moon while the “outer star” 
is the Sun. When 7 = 50 000 the measure of stability 
becomes 0.8, which is a good average value for a triple 
stars having an inner binary of rriE = 0.15ms and mu = 

0.0123mE and an outer star of ms- 
The decrease of the ratio um/^e also results in sta- 

bility. Introducing the parameter <5 (similarly to 7) as the 
ratio of the changed semimajor axis of the lunar orbit to 
its original value by ö = aM/ciM, we find that stability is 
associated with <5 < 0.0488. In other words, if the 
Earth-Moon distance were reduced to at least 18 758 
km the system would become stable. Tidal effects and 
the effects of gravitational harmonics not included in our 
theory will reduce the significance of this rather expected 
result. 

The effect of the eccentricity of the orbit of the Earth 
is pronounced on the measure of stability of the system; 
in fact the reason for the discrepancy between the stable 
behavior found in the restricted problem and the insta- 
bility established using the model of the general problem 
may be contributed to the eccentricity of the Earth’s 
orbit. If the masses and semimajor axes of the Earth and 
of the Moon as well as the eccentricity of the lunar orbit 
are kept at their actual values and the Earth’s orbital 
eccentricity ¿e is changed we find stability as long as ^e 
< 0.0023, but instability above this value. The expla- 
nation is that the critical value of the stability parameter 
as mentioned before is independent of the eccentricities. 
The actual value of s, on the other hand, depends on 
and cm through c or through \¡/ as shown by Eq. (6). The 
functional form is 

i = 1.0123 + 3.4 X 10-6 Vl - 4t) (8) 
or 

1//2 ^ 1.02475(1 -c|). 

Consequently, 5ac(^E) = ^ac(0)(l — c|), where ^(0) 
is the stability parameter of the system with the Earth 
on circular orbit. The critical value of the stability pa- 
rameter is scr = 3.414925 X 10"15 and using the astro- 
nomical constants given before Sa^O) = 3.4149609 X 
10"15. Therefore, as long as ce ^ {1 — [^crAac(O)]}1^2 

= 0.0023 the measure of stability is positive and the 
motion is stable. 

We conclude the treatment of the title problem by 
comparing some values found previously regarding the 
measure of stability (S) with the values given in this 
paper. The value of S found for the Sun-Earth-Moon 
system, —2.75 X 10~4, does not represent a large insta- 
bility when compared to known stable systems such as 
triple stellar systems for which S is between 0.1 (X Tau) 
and 4.3 (Algol). The simplified model of the solar system 
(Sun-Jupiter-Saturn) corresponds toS = 3.6 X 10"2, 
consequently, it is “less stable” than triple stellar systems 
but definitely “more stable” than the “slightly unstable” 
Sun-Earth-Moon system. 

The partial supports of the Bureau of Engineering 
Research, University of Texas at Austin, and of the 
Scientific Affairs Division of NATO are gratefully ac- 
knowledged. Conferences with our associates at the 
Center for Celestial Mechanics at the University of 
Texas especially with Dr. R. Broucke, Dr. R. Duncombe, 
Dr. W. Jefferys, and Dr. P. Nacozy were of considerable 
help in clarifying some of the aspects of this research. 
Discussions and extensive correspondence with Dr. C. 
Marchai were most beneficial. 

REFERENCES 

Bozis, G. (1976). Astrophys. Space Sei. 43, 355. 
Broucke, R. (1976). Private communication. 
Golubev, V. G. ( 1968). Doklady Akad. Nauk SSSR 180, 308 (trans- 

lated Sov. Phys. 13, 373). 
Hill, G. W. (1878). Am. J. Math. 1, 5, 129, 245. 
Marchai, C. (1975). “Qualitative Methods and Results in Celestial 

Mechanics,” ONERA Rep. No. 1975-77. Also in Long-time Pre- 
dictions in Dynamics (Reidel, Holland). 

Marchai, C, arid Saari, D. (1975). Celest. Mech. 12, 115. 
Smale, S. (1970). Invent. Math. 11, 45. 
Szebehely, V. (1967). Theory of Orbits (Academic, New York). 
Szebehely, V., and McKenzie, R. (1977). Astron. J. 82, 79. 
Szebehely, V., and Zare, K. (1977). Astron. Astrophys. To be pub- 

lished. 
Vicente, R. (1975). Private communication. 
Zare, K. (1976). Doctoral dissertation, Univ. Texas. 

V. Szebehely and R. McKenzie: Department of Aerospace Engineering, University of Texas, Austin, Texas 
78712 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 


	Record in ADS

