
19
7 

5A
pJ

. 
. .

20
0 

. .
24

5T
 

The Astrophysical Journal, 200:245-262, 1975 September 1 
© 1975. The American Astronomical Society. All rights reserved. Printed in U.S.A. 

THE GENERATION OF GRAVITATIONAL WAVES. I. WEAK-FIELD SOURCES* 

Kip S. Thorne and Sándor J. Kovács 
California Institute of Technology 

Received 1974 December 9 

ABSTRACT 
This paper derives (§§ II-IV) and summarizes (§ VI) a new “plug-in-and-grind” formalism 

(i.e., an algorithm) for calculating the gravitational waves emitted by any system with weak 
internal gravitational fields. If the internal fields have negligible influence on the system’s motions, 
then the new formalism reduces to standard “linearized theory.” Whether or not gravity affects 
the motions, if the motions are slow and internal stresses are weak, then the new formalism re- 
duces to the standard “quadrupole-moment formalism” (§ V). In the general case the new 
formalism expresses the radiation in terms of a retarded Green’s function for slightly curved 
spacetime, and then breaks the Green’s function integral into five easily understood pieces: 
direct radiation, produced directly by the motions of the source; whump radiation, produced by 
the “gravitational stresses” of the source; transition radiation, produced by a time-changing 
time delay (“Shapiro effect”) in the propagation of the nonradiative, 1/r field of the source; 
focusing radiation, produced when one portion of the source focuses, in a time-dependent way, 
the nonradiative field of another portion of the source; and tail radiation, produced by “back- 
scatter” of the nonradiative field in regions of focusing. 
Subject headings: gravitation — relativity 

I. INTRODUCTION 

d) Introduction to This Series of Papers 

Thanks to the pioneering work of Joseph Weber (1960, 1969), “gravitational-wave astronomy” may be a reality 
by 1980. Although Weber’s “events” may turn out to be nongravitational in origin, second-generation detectors 
of the Weber “resonant-bar” type, with amplitude sensitivities roughly 100-fold better than today’s bars, are now 
under construction (Braginsky 1974; Fairbank and Hamilton, as described in Boughn et ah 1974); and third- 
generation detectors are being discussed. The third generation should be able to detect and study the gravitational- 
wave bursts generated several times per year by supernovae in the Virgo cluster of galaxies. Detectors with other 
designs may succeed in detecting waves from pulsars (see, e.g., Braginsky and Nazarenko 1971) and from near- 
encounters of stars in dense star clusters (gravitational bremsstrahlung; see, e.g., Zel’dovich and Fonarev 1974). 
And, of course, totally unexpected sources may be detected. (For reviews of the prospects for gravitational-wave 
astronomy see Misner 1974; Rees 1974; and Press and Thorne 1972.) 

In preparation for the era of gravitational-wave astronomy, our Caltech research group has embarked on a 
new project: We seek (1) to elucidate the realms of validity of the standard wave-generation formulae; (2) to devise 
new techniques for calculating gravitational-wave generation with new realms of validity; and (3) to calculate the 
waves generated by particular models of astrophysical systems. Throughout this project we shall confine ourselves 
to general relativity theory. 

Most past calculations of gravitational-wave generation use one of three formalisms: (1) “linearized theory” 
or its quantum-theory analog; (2) the “quadrupole-moment formalism”; (3) “first-order perturbations of station- 
ary, fully relativistic spacetimes.” 

“Linearized theory” is the formalism obtained by linearizing general relativity about flat spacetime (see, e.g., 
chapters 18 and 35 of Misner, Thorne, and Wheeler 1973—cited henceforth as MTW). It is also the unique linear 
spin-two field theory of gravitation in flat spacetime—and as such it has a simple quantum-theory formulation. 
(For references and overview see, in MTW, § 7.1, box 7.1, and part 5 of box 17.2). Linearized theory is typically 
used to calculate wave generation when the source’s self-gravity has negligible influence on its motions (e.g., waves 
from spinning rods and from electromagnetic fields in a cavity). In this paper we shall devise a new wave-generation 
formalism valid for any system with small but nonnegligible self-gravity; and in Paper III (Kovács and Thorne 
1975) we shall use that formalism to calculate the gravitational bremsstrahlung produced when two stars fly past 
each other with large impact parameter, but with arbitrary relative masses and velocities. 

The “quadrupole-moment formalism” (in which the wave amplitude is proportional to the second time deriva- 
tive of the source’s mass quadrupole moment) dates back to Einstein (1918), and has been canonized by Landau 

* Supported in part by the National Aeronautics and Space Administration [NGR 05-002-256] and the National Science Founda- 
tion [MPS75-01398]. 
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246 THORNE AND KOVÁCS Vol. 200 

and Lifshitz (1951). The derivations of this formalism which we find in the literature are valid only for systems with 
slow internal motions and weak (but nonnegligible) internal gravitational fields (see, e.g., the post5/2-Newtonian 
derivation by Chandrasekhar and Esposito 1970, the matched-asymptotic-expansion derivation by Burke 1971, 
and the de Donder gauge derivation by Landau and Lifshitz 1951 as made more explicit in chapter 36 of MTW). 
However, a detailed analysis given in Paper II (Thorne 1975) shows that only the slow-motion assumption is 
needed: the quadrupole-moment formalism is valid for any slow-motion system, regardless of its internal field 
strengths. Paper II also extends that formalism to include the radiation produced by all of the source’s other mo- 
ments (both “mass” moments and “current” moments); and it derives formulae in terms of the moments for the 
near-zone fields, the radiation field, the radiation reaction, and the energy, momentum, and angular momentum 
carried off by the waves. In a forthcoming paper Thorne and 2ytkow (1976) will use the extended formalism of 
Paper II to calculate the “current-quadrupole” gravitational waves produced by torsional oscillations of neutron 
stars. 

“First-order perturbations of stationary, fully relativistic spacetimes” is a technique that has been used ex- 
tensively in recent years to analyze waves from “fast-motion” oscillations of black holes and neutron stars, and 
from particles moving in the Schwarzschild and Kerr gravitational fields. (For reviews, see Press 1974, Ruffini 
1973, and § 36.5 of MTW; see also the recent paper by Chung 1973.) It is not yet clear whether our project will 
delve into this technique. 

b) Overview of This Paper 
In this paper we confine attention to systems with weak internal gravitational fields. Section II rewrites the 

exact Einstein field equations in a non-covariant form (“de Donder form”) that is amenable to weak-field approxi- 
mations. Section III gives a systematic account of approximate, weak-field formalisms based on the exact de Donder 
form of the field equations—including the accuracy of the various formalisms and their relationships to each other. 
Section TVa applies the analysis of § III to astrophysical systems, and concludes that, when analyzing their struc- 
ture and evolution, one must typically calculate the stress-energy tensor and gravitational field 1AMV with 
accuracies: 

I (error in 2r^)/2r00| ^ €2 , | (error in Ji^)lJi00\ ^ € , 

€ = (typical value of JP0 inside source) ~ (mass of source)/(size of source) . 

Section TV a also concludes that the external gravitational field 2^
v must typically be calculated to accuracy 

I (error in aA^)^001 ^ *2 

if one desires reasonable accuracy in the radiative part of that field. 
_Section IVè presents a “postlinear” formalism for calculating a system’s structure and evolution (2T

,/iV and 
■Ji^) to the desired accuracy; and § IVc derives a formula for the higher-accuracy external field (2/^

v), which con- 
tains the radiation. Section V shows how the resulting formalism, when applied to slow-motion systems, reduces 
to the standard “quadrupole-moment formalism.” 

We recommend that, before tackling the rest of this paper, the reader peruse § VI. That section summarizes 
our postlinear formalism and our formula for the external (radiation) field. 

The “guts” of this paper, in terms of complex calculations, reside in the Green’s function manipulations of 
§ TVc. Our particular way of handling the Green’s functions is motivated in Appendix A, and has been influenced 
by the following papers: DeWitt and Brehme (1960) (exact Green’s functions for scalar and vector wave equations 
in curved spacetime); Robaschik (1963) (exact Green’s function for tensor wave equation in curved spacetime); 
John (1973a, b), Bird (1974), and especially Peters (1966) (Green’s functions in weakly curved spacetime). Although 
these papers had much influence on us, our specific manipulations are so different that we have found it impossible 
to trace the details of that influence in our writeup. 

II. EXACT GENERAL RELATIVITY, REWRITTEN IN “ WEAK-FIELD LANGUAGE” 
We begin by writing the exact, nonlinear Einstein field equations in an arbitrary coordinate system in the form 

(§ 20.3 of MTW; § 100 of Landau and Lifshitz 1962) 

Hr-Zaß = l6n(-g)(T^ + ttU) (1) 

where “L-L” means “Landau-Lifshitz,” and where 

H£aJl = g«vg“* - gavg^ ; (2a) 

g«v = (-gyi2g^, (-s) =-detll&J =-det||g«v|| ; (2b) 

tñe-L = [ló^-g)]-1^^“,« - 

- (£“A£'«v9ÄV,p3B'>,A + + g1,ug
V0Sa\^ß,0 (2c) 

+ KW" - g^g^XZgvßgcz - gpagvz)9v\?3paJ • (2) 
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No. 2, 1975 GENERATION OF GRAVITATIONAL WAVES 247 

The equations of motion for the material stress-energy tensor 7T/iV follow directly from the field equations (1) and 
can be written in the equivalent forms 

Taß.tß = 0 , = 0 . (3) 

[Here and throughout this series of papers we use the notation and sign conventions of MTW ; in particular c = 
G = 1; £«/? and gaß are the components of the metric; commas and d’s denote partial derivatives, — daY — 
dY/dx01; semicolons denote covariant derivatives with respect to the metric ga0; and our signature is ( h + +).] 

Now, and henceforth in this paper, we impose three restrictions on our analysis: (1) We confine attention to 
systems with “weak internal gravity”—i.e., to systems throughout which one can introduce nearly Lorentz co- 
ordinates. (2) We confine ourselves to “isolated systems”—i.e., to systems that are surrounded by a region (“local 
wave zone”), much larger than a characteristic wavelength of the emitted waves, in which all waves are outgoing 
and in which external masses have negligible influence on the gravitational field. (3) We restrict our analysis to 
the interior of the source and its local wave zone, and throughout these regions we use nearly Lorentz, asymptoti- 
cally flat coordinates, specialized to satisfy the de Donder gauge condition. 

Mathematically, these restrictions state that the “gravitational field” 

huv = — gMV + 7fv 

has the properties 
|/^v| « 1 everywhere , 

\h^\ ~ l/r as r-> oo , where r = (x2 + y2 + z2)1'2 , 

Ä/iV is devoid of incoming waves at r -> oo , 

Ä-V = 0 (de Donder condition) . 

With these restrictions, the exact Einstein field equations (1) take on the form 

□s^
v = -lÓTK-g)1'2^ + - (-g)"1/2^a,^,a. 

Here is the wave operator for scalar fields in the curved spacetime described by the metric gaß : 

(4) 

(5a) 

(5b) 

(5c) 

(5d) 

(6) 

□s ^ {-gY1,2U{-g)ll2g^ß\. (7) 

[Appendix A, which is best read after one has finished reading the rest of the paper, explains why we write the 
field equations in terms of [l rather than in terms of some other wave operator such as □/ = v)aßdadß (the flat- 
space wave operator) or Q (the curved-space wave operator for tensor fields).] 

Equations (2b)-(7) are the exact, nonlinear equations of general relativity for any isolated, weak-field system— 
but they are written in a very special coordinate system rather than in generally co variant form. 

Because \hliV\ « 1, we can express each quantity in our formalism, except Tßy, as a power series in AMV. When 
writing down such a power series, it is convenient to raise and lower indices of huv with the Minkowski metric 
^ ^ = diag(-l, 1, 1, 1): 

V = , haB = , h = ha
a, etc. (8a) 

It is also convenient to define a “trace-reversed” gravitational field A“” by 

A“1’ = hßV - ihr]11'’, (8b) 

and to raise and lower its indices, like those of A“1’, with the Minkowski metric. Note that equation (8b) implies 

A s A«“ = - A , A«” = huv - ¿Arfv. (8c) 

To derive the explicit power series expansions for g“v, g*”, guv, etc., one can proceed as follows. Equation (4) is 
the desired expansion for g“v. It contains only two terms: 

g«v = Vuv _ . (9a) 

The expansion for the metric determinant (—g) is obtained by inserting expression (9a) into the second of equations 
(2b): 

(_g) = -det ||g“1 = —det|b«v - ^v| = I - Æ + M(A)2 - haßhaB] + 0[(ñ)3]. (9b) 

The contra variant components of the metric are then obtained by inserting (9a, b) into the first of equations 
(2b): 

gKV = (-g)~1,Vv = - (hßV - ihr,^) - iAA«v + £>?“V[(A)2 + 2haßhaß] + O [(A)3] ; (9c) 
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and the covariant components are obtained as the matrix inverse of these contravariant components : 

guv = Vuv + Kv - - ihh^ + ir)uv(h2 - 2haßhaß) + 0[(h)3]. (9d) 

The connection coefficients which appear in the usual expression TßV.v = 0 for the equations of motion, are 
obtained by inserting expansions (9c, d) into the standard formula 

= ^(gya.ß + gyß,a - gaß.y) = %{h\,ß + - haß^) - ^\htß + - rj^h^) + 0[(h)2] . 
(9e) 

Similarly, the scalar-wave operator ns is obtained by inserting expansions (9b, c) into equation (7), and using the 
de Donder gauge condition (5d) to simplify : 

□s = ^A-(Äa*-^^ (9f) 

and the components of the Landau-Lifshitz pseudotensor are obtained by inserting expansions (9a,b, c, d) and the 
de Donder condition (5d) into equation (2c) : 

t£tL = (l67r)-i{^VAfr\0h™'V + 

+ - vaVu)Vv,pV « - Vo'Vvz)Kv\Jp°J + 0[{hf]. (9g) 

Henceforth in this paper we shall regard gMV, {—g\ gßV, guv, F^^^s? and /¿-l as shorthand notation for the 
infinite power series expansions, whose first few terms are shown in equations (9). Given these expansions, the full 
content of general relativity is embodied in the equations of motion for the matter 

r^v
>v =-r^vr

av - rv
avr^ (loa) 

and the Einstein field equations 

□S6
MV = + í£Ll) - (-g)-112^,^,« . (10b) 

Henceforth we shall not impose the gauge conditions hßV
tV = 0; rather, we shall regard them as consequences of 

the equations of motion (10a) and the field equations (10b). 

III. APPROXIMATION FORMALISMS FOR WEAK-FIELD SYSTEMS1 

The formulation of general relativity embodied in equations (9) and (10) is an excellent starting point for deriva- 
tions of weak-field approximation formalisms. To get a formalism of desired accuracy, one can simply truncate 
each infinite series appearing in equations (9) and (10) at the appropriate point. 

We shall describe the accuracy of a formalism in terms of its “errors” (i.e., the deviations of its solutions from 
exact solutions of the exact equations [9] and [10]). In discussing errors, we shall use the small dimensionless 
parameter 

e = (characteristic size of hßV inside the system). (11) 

If the system is a dynamically changing lump of matter with mass M and linear size L (e.g., a pulsating star or an 
exploding atomic bomb), then 

€~MIL. 

If the system is several lumps with masses m and sizes /, separated by distances è » / (e.g., a binary star system or 
two stars flying past each other), then 

€ ~ mlb if one is interested only in the relative motions of the lumps, 

€ ~ mfi if one is also interested in the internal structure and 
dynamics of the lumps. 

We shall characterize every weak-field approximation formalism by two integers nT and nh. These “order 
indices” tell us the magnitude of the errors made by the formalism:2 

¡(errors in TßV)IT00\ ~ €nr (12a) 

¡(errors in Awv)/A00| ~ en/i. (12b) 
1 This section is closely related to the Havas-Goldberg (1962) analysis of approximation formalisms for equations of motion of 

point masses. 
2 Note that all of the \TUV\ are ^T00, and consequently all of the \huv\ are ^h00. This fact dictates the form of equations (12). 
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For example, a formalism of order (%, = (1,1) makes fractional errors of order e in both the stress-energy 
tensor and the gravitational field, while a formalism of order (2, 1) makes fractional errors c2 in and e in h^. 

Errors in /^v, when fed into the equations of motion (10a), produce errors in rMV; and similarly, errors in TßV, 
when fed into the field equations (10b), produce errors in h^. This feeding process places constraints on the order 
indices (nT, %) of any self-consistent approximation formalism. The constraints are revealed explicitly by an order- 
of-magnitude analysis of equations (10a, b): 

Consider a weak-field system with characteristic field strength e and characteristic length-time scale /. Below 
each term of equations (10a, b), write the order of magnitude of that term: 

= - r^avr
av - (i3a) 

(r00//) (e/zxr00) (€//)(r00) 

□s^
v = -167r(-g)1/2r^ - 167r(-g)1/2i£LL - (-g)-1/2^a,^,a . (13b) 

(c//2) r00 (e
2//2) (€2//2) 

Equation (13a) shows that fractional errors enh in produce fractional errors en>t + 1 in TßV\ i.e., enr > €nh +x; i.e., 

nT < nh + 1 . (14a) 

Equation (13b)—together with the order^of-magnitude field equation T00 ~ e//2—shows that fractional errors 
enT in TßV produce fractional errors €ut in hßV; i.e., enh > enr; i.e., 

nh < nT . (14b) 

Equations (14a, b) can be restated as the following constraints on the order indices of any self-consistent 
approximation formalism : 

nh = nT — \ ov nh = nT. (15) 

In other words, the order (%, %) of any approximation formalism must be either (n, n — 1) or («, n) for some integer 
n. 

Suppose that a specific system has been analyzed using an approximation formalism of order («, n — \). Denote 
by nT

ßV(xa) and (n_1)/zMV(xa) the explicit expressions obtained in that analysis for the system’s stress-energy tensor 
and gravitational field. From these expressions it is straightforward to generate an “improved” gravitational field 
nh

ßV(xa) with fractional errors en. The key to_ doing this is the structure of the field equations (10b): In these field 
equations, fractional errors of order en_1 in hßV produce fractional errors of order €n in both \Z\S and the expression 

- i67r(-g)m(Tuv + tr-0 - . 

Hence, x) satisfies the differential equation 

(n,n-l)DSn^
V = (*,„-!)[-+ ¿l-l) ~ gY <ßh^ J . (16) 

Here the prefix (n, n — 1) means that a quantity is to be calculated, with fractional error e", using nT
^■', and (n-l)^V. 

This inhomogeneous, linear wave equation for nhßV can be solved using the retarded scalar Green’s function for 
curved spacetime (DeWitt and Brehme 1960): 

(the retarded scalar Green’s function for the curved spacetime with the metric (n_i)gMV 

of the {n, w—l) approximation—a Green’s function with fractional errors €n 

The result is 

n.n-l)[167r(-g)(r^ + t£lf) + hß\ßh^ , (18) 

This paragraph can be summarized as follows: Any approximation formalism of order (72,72 — 1), when augmented 
by equation (18) for nh

ßV, becomes an approximation formalism of order (72,72). 
Special relativity and linearized theory provide a simple example of the above remarks: Special relativity is the 

approximation formalism of order (1, 0) which one obtained by the extreme truncation process of setting hßV = 0 
in equations (9) and (10): 

ohßV = 0 , o^L = 0 , o^v = , iTß\v = 0 . (19a) 
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The retarded scalar Green’s function for a space with metric 0guv = 17^ is 

oG(0>',&) = (4Tr)-'8ietttVpa(x
p - xp')(xa - x17')]- (19b) 

(Here Sret is zero if lies in the causal past of and it is the Dirac delta function otherwise.) Hence, equation 
(18)—by which one must augment special relativity in order to obtain a formalism of order (1, 1)—has the form 

T^'ßrediVoAx0 - Xn(xa ~ X' <7')]J4X' = 4 J - I* - S'|, d3x'. (20) 

The resulting (1, 1) formalism (eqs. [19] augmented by eq. [20]) is the “linearized theory of gravity” (see, e.g., 
§ 7.1, box 7.1, and chapter 18 of MTW). 

Newtonian theory and the “quadrupole-moment formalism for wave generation” are another example. New- 
tonian theory is the weak-field formalism of order (2, 1) which one obtains by not only truncating each series that 
appears in equations (9) and (10), but by also imposing the slow-motion and small-stress assumptions 

V2 == |r0^/r00|2 ^ e, |rtf/roo| ^ €j (21) 

(size of system)/(characteristic time scale of changes) ^ e112 . 

Equation (18), by which one augments Newtonian theory in order to obtain a formalism of order (2, 2), has the 
form, when evaluated in the radiation zone 

2hi^(t, x) = (2/r)/iy
r(i — r) = (gravitational radiation field) . (22) 

Here is the reduced quadrupole moment of the source, and TT denotes “transverse-traceless” part. This is the 
standard wave-generation formula of the quadrupole-moment formalism; see chapter 36 of MTW. 

IV. WAVE GENERATION BY A WEAK-FIELD SYSTEM 

a) Motivation 

Weak-field systems are of two types: those with negligible self-gravitational forces (rotating laboratory rods, 
microwave cavities, etc.), and those whose internal motions are significantly influenced by self-gravity (pulsating 
stars, binary star systems, etc.). 

For a system with negligible self-gravity, special relativity gives a fairly accurate description of the internal 
motions; and, consequently, linearized theory [the (1, 1) formalism obtained by attaching eq. (18) or (20) onto 
special relativity] gives a fairly accurate description of gravitational-wave generation. 

For most weak-field astrophysical systems, self-gravitational forces are important. In this case, when analyzing 
a system’s internal motions, one must use a formalism of order (2, 1); and when calculating the waves those 
motions generate, one must augment the (2, 1) formalism by equation (18), thereby raising its order to (2, 2).3 

If the system has slow internal motions and weak internal stresses, Newtonian theory [order (2, 1)] will suffice for 
analyzing its motions, and the quadrupole-moment formalism [order (2, 2)] will suffice for wave generation. 
However, for analyzing fast-motion systems (e.g., two stars flying past each other with high velocity and deflecting 
each other slightly—the relativistic bremsstrahlung problem), one needs unrestricted (2, 1) and (2, 2) formalisms. 
The objective of the next two sections is to derive such formalisms. 

b) The Postlinear Formalism 

A weak-field formalism of order (2, 1), unrestricted by any constraints on velocities or stresses, can be obtained 
by truncating equations (9) and (10) at the appropriate order: 

ig*v = 5 (23a) 

(—1£) = 1 — = 1 + Ji \ (23b) 

lgw = rjW - (where ihuv = frv _ ? (23c) 

lEnv ~ Vuv "b l^iv 5 (23d) 

= KlAV/* + - A/f*) > (23e) 

ids = (vaß - ihaß)dadß 9 (23f) 
3 In very special cases second-order gravitational forces may be as important, for the system’s motions, as first-order forces. An 

example is a radially pulsating, weak-field star with adiabatic index very near 4/3 (Chandrasekhar 1964); see also the discussion 
accompanying equations (61) below. When analyzing such systems, one needs formalisms of order (3, 2) and (3, 3). 
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l^L-L = (1677) iÄAv,e xh
p\v + r¡ÁUTf\haX'V 1h

ßß'i) - 0fA7?„v 

+ ady^V0“ - - VpaVn)ihv\A ih
pa,ß} , 

rßv     T^ß rrav pv Tßce ,v Ia av 2a Ia orv 2a j 

= - 1677 2^
v. 

l^.A + 1^' 

(23g) 

(24a) 

(24b) 

We shall refer to the formalism described by these equations as the “postlinear formalism.” To analyze a system 
using the postlinear formalism, one must first specify the functional dependence of the stress-energy tensor 2T

/iV 

on the system’s nongravitational variables (e.g., density, pressure, velocities, electromagnetic field tensor, ...) 
and on the gravitational field and one must then solve equations (24a, b) simultaneously for the system’s 
motions (2r^

v accurate up to fractional errors ~e2) and for the gravitational field accurate up to fractional 
errors ~€). Paper III will carry out such a calculation for the motion of two stars of arbitrary relative masses and 
velocities, which fly past each other with large impact parameter. 

c) The Postlinear Wave-Generation Formalism 

Having calculated a system’s internal structure and motions using the postlinear formalism, one can then cal- 
culate the gravitational waves the system emits, 2/^

v, by evaluating expression (18). In evaluating (18) one needs an 
explicit expression for the retarded Green’s function associated with the metric = rjßV + In 
the next subsection (§ IVc[i]) we derive xG^', ¿P) ; then in § IVc(ii) we place constraints on our system which simplify 
xGi^', ¿P); and finally in § IVc(iii) we use iG^', ^) to evaluate the wave field 2/zMV. 

i) The Green's Function iG(éP', ¿P) 
We shall obtain iG(^', ^) by taking the weak-field limit of the exact Green’s function G(^f, ¿P) for a space 

described by an exact metric guv. The exact Green’s function is formally rather simple, so long as the congruence 
of geodesics that emanate from the source point 0*' does not get focused so strongly along the future light cone of 

that geodesics cross. Henceforth we shall assume “no crossing of geodesics on the light cone.” Later (eqs. 
[48], [48'], [48"] below) we shall examine the constraints placed on the radiating system by this “no-crossing” 
assumption. 

DeWitt and Brehme (1960) have derived the exact Green’s function G(^', ^) for the case of no crossing. Their 
Green’s function consists of a “direct part” and a “tail” 

G(^', ^) = Gdirect + Gtail. (25) 

The direct part is nonzero only if lies on the future light cone of [denoted j+(&')]. By virtue of the “no- 
crossing” assumption, when is near there is a unique geodesic from to ^ with a unique squared 
length 

Q(^', ^) = (“World function,” see Synge (I960)) 

= i(—1 f°r timelike geodesic, +1 for spacelike geodesic)(proper distance along geodesic)2 

= o- in notation of DeWitt and Brehme (1960). (26) 

Because J+{gPf) is characterized by D = 0, Gdirect must have the form 

Çdirect^ ^ = ^)]1/2Sret[Q(^', ^)] , (27) 

where 8ret is the Dirac delta function on and near and is zero on and near the past light cone [J~(&')]. 
The quantity A(^', ^) is an amplitude factor which would be unity in flat spacetime, but in curved spacetime is 
given by 

= - detll^Q/dx^H 
(28) 

We shall use an expression for the tail different from, but equivalent to, that given by DeWitt and Brehme. To 
derive our expression we insert equations (25) and (27) into the wave equation 

□SG(^', ^) = -[g(&)g(0>f)]-llé8(x° - x0')^1 - x1')^2 - x2f)8(x3 - x3') 

^-[g^g^-u^ix - xf) . (29) 

The result is 

□sG
tail = -(47t)-1{(DsA1/2)3(D) + [2V*A1/2 + (□sQ)A1/2]S'(D) + (VO)2A^2S"(D)}, (30a) 
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where 8' and S" are the first and second derivatives of the Dirac delta function for & on and near and 
are zero for & on and near /“(^'); V is the 4-dimensional gradient operator; and V* is the covariant derivative 
along the 4-vector 

K = VO . (30b) 

[Here and below we suppress the subscript “ret” on 8(Q).] We then manipulate expression (30a) using the relations 

Q8"(^) = -28'(Û) , (VQ)2 = 2Q , DSQ - 4 = - A-^A . (30c) 

(The first of these is a standard identity for Dirac delta functions; the second and third are eqs. [1.11] and [1.63] 
of DeWitt and Brehme 1960.) The result is 

DsGtaii = -(47r)-\QAi/2)8(n) . (31) 

We then use relations (30c) and the relation A(^, ^) = 1 to rewrite this in the form 

□s[G
tail - (47t)-*(1 - A^2)8(0)] = +(47r)-\V* In A)8'(D) . (32) 

Equation (31) tells us that Gta,il jumps from zero outside the light cone to a finite value inside the cone, without 
having any singularities on the cone. Equation (32) allows us to write (restoring the subscript “ret”) 

GtaU(^^) = o if^'£/-(^) (33a) 

= -(47t)-1 J [In . 

(33b) 

Here /_(^) means “the interior of the past light cone of ^”; and condition (33a) suppresses the unwanted light- 
cone part of (33b) [i.e., suppresses (47r)“1(l — A1/2)8(Q)]. 

Equation (33) is the form of the tail which we shall use. This form was suggested to us by the work of Peters 
(1966). 

We now specialize the above equations for the retarded Green’s function to the case of a weak gravitational 
field igwv = rjuv + i/^v, beginning with equation (26) for the world function. Let A be an affine parameter along the 
geodesic linking to 

^(A) = geodesic with coordinates £a(A) ; ^(0) = , ^(1) = ^ , 0 < A < 1 . (34) 

The equation (26) can be rewritten in the form (cf. Synge 1960, p. 47) 

D(^', ^) = Í $guM
ßldX)(deidX)d\ . (35) 

The right-hand side is actually an action principle for the geodesic equation (cf. MTW, box 13.3). Therefore, if we 
evaluate the integral along the “straight line” 

o^(A): £a(A) = Xa' + A(xa - xa') (36) 

(see Fig. 1), which differs by a fractional amount of 0(e) from the true geodesic ^(A), we will make fractional errors 
in Ü, of 0(e2). Such errors are acceptable in i(j(^', ^), since its fractional errors are also 0(e2); cf. equation (17). 
The result of integrating expression (35) along the slightly wrong curve o^(A) is 

where 
^(0', 0>) = 0Q(^', ^) + y(^', ^) 5 (37) 

oQ(^', ^) = ^XaX^aß , (38a) 

y(0>\ &) = %XaXt Í JlaßdX , (38b) 

Xa = Xa - xa'. (38c) 

Equation (37) is the desired expression for the world function. Turn next to the amplitude factor A(^', ^). 
Either by direct calculation from eqs. (28), (23b), (37), (38), and (B12), or by invoking equation (95) on page 63 of 
Synge (1960), one arrives at the expression 

iA^', 0>) = - det 
IiSisT/2 = -0 - %ih- iiA') det = 1 + 2a(^', ^) . (39) 
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t t 

Fig. 1.—The points used in evaluating the postlinear Green’s function 0*) and in calculating the postlinear 
gravitational-wave field 2^

v(^). Part {a) shows the parametrized straight-line curves o^XA) and o# (X) linking 0,0\ and 0"\ part {tí) 
shows the 4-vectors X11, Xu"; and X11 linking them. 

Here 

a{0>\ Í A(1 - X)dX , (40a) 

where is the Ricci tensor, accurate to first order in : 

iRaß = -Í lhaßJ . (40b) 
In equation (39) we have simplified notation by using a prime to denote quantities evaluated at i.e., 1/z' = 
xh^') while xh = xK^)- Henceforth we shall reserve primes for this purpose—except that S' and 8" are still deriva- 
tives of Dirac delta functions. 

Turn next to the “source term” (In A)>a/,0’a" for the tail (eq. [33]). The tail itself is of 0(e) compared to the direct 
part of the Green’s function ; therefore we can permit fractional errors of 0(e) in the tail—which means we can use 
the zero-order value of D’a" in the source of the tail : 

[0Q(^', ^")]*a" = ~ *a/ = Xa". (41) 

By combining this with equation (39) and by using equation (B7) of Appendix B, we bring the source of the tail 
into the form 

[In xà(0>', 0>'')],Ao&(&', &")]'“" = ß(&\ , (42) 
where 

ß(0>',0>")= X“"Xe" ¡ xRaßMX (43a) 
V" 

and <&" is the “straight line” from to (see Fig. 1) 

¿¡<* = Xa' + XXa". (43b) 

Turn, finally, to the propagator 0(0*", 0*) and the volume element (—g")md^x" which appear in equation (33) 
for the tail. Because the tail is of 0(e) compared to the direct part of the Green’s function, we can ignore all curved 
space corrections in the amplitude of the propagator (but not its phase), and in the volume element: 

0(0", 0>)(-g")ll2d*x" = (47r)-18ret[1Q(^", 0>y]d*x" in expression (33b) for xGt&il. (44) 

All of the pieces for the first-order Green’s function are now at hand. By combining them (eqs. [25], [27], [33], 
[39], [42], and [44]) we obtain the following result: 

xG(0>', 0) = + iGtail : 

iGdirect = + 0)], 

= 0 

= — (4^) “2 J ß(&', 0)]dV 

if 

(45a) 

(45b) 

(45c) 
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Here [and similarly iO^', and ^)] is given by equations (37) and (38), cc(^', &) (the “focus- 
ing function”) is defined by expressions (40), and ß(^', &") (the “tail generator”) is defined by expressions (43). 

ii) Constraints Designed to Simplify the Green's Function 

Expression (45) for the Green’s function is valid only if geodesics emanating from fail to cross on and near 
Crossing would be caused by gravitational focusing; and at any crossing point, the exact amplitude factor 

A(^', ^) would diverge. Thus, the criterion for no crossing is finiteness of A along 
Consider our first-order expression (39), (40) for iA. Evaluate it in the mean rest-frame of the source, with 

coordinates centered on so that 

Xa = rna , n° = 1 , n = (unit spatial vector pointing from to ^) , 

r = (spatial distance from to ^) , (46) 

A = r/r = (fractional distance from to ^) ; 

and invoke the first-order field equation = (xTaß — ^qaß XT). The result is 

^(¿T, ^) = 1 + 2« , <* = i f {nan^T^)r{\ - rlr)dr . (47) 
Jo 

This expression for xA can never diverge if the source is bounded, because once the integration point r gets outside 
the source, xT^ vanishes and x A stops increasing. However, if the focusing function a approaches unity inside the 
source, then second-order and higher effects will come into play. As one moves out into the vacuum beyond the 
source, those second-order effects will be essentially those of the “focusing” or “Raychaudhuri” equation; they 
will produce a divergence. Thus, the constraint 

CONSTRAINT: a(^', ^)«l for all and ^ (48) 

is necessary for the validity of the first-order analysis, and simultaneously protects us from “geodesic crossing.” 
For a system that is roughly homogeneous with mass M and linear size L, equation (47) gives 

a ~ {MIL) - € « 1 ; (48') 

so there is no problem in satisfying the constraint (48). However, for a highly inhomogeneous system (lumps of 
mass m and size /, separated by distances b » /), and for rays originating in one lump and passing through another, 
equation (47) gives 

a - b(mll3)l - (è//)(m//). 

In this case the constraint (48) is significant: it says that to avoid too much ray focusing, the lumps must not be 
too far apart: 

(6//) « (//m) - WillRoXMolm) . (48") 

The Green’s function (45) would be much easier to use if, throughout it, we could replace the first-order world 
function xQ by its zero-order approximation Let us examine iQ (eqs. [37] and [38]) in the rest 
frame of our source, for points on or near J+{^'): 

xQ(^', ^) = i(^° + X)[-X° + X + 2y(^', 0>)l(X° + X)] X X(-Xo + X + Ats) , (49a) 

where 
X = \X\ = (distance from source to field point) , (49b) 

Ats = y{^\ 0*)IX = (“Shapiro time delay”) . (49c) 

For field points ^ far outside the source, the dominant contribution to the Shapiro time delay is the asymptotic 
“1/r ” field of the source. It produces a huge delay of 

A = 2Mln (Z/L) = (Shapiro time delay due to asymptotic field of source), 

M = (mass of source) , (50) 

L = (characteristic size of source) . 

This delay is time independent and is independent of where inside the source is located (aside from a negligible 
piece of size ~2A/L/Z); therefore its only effect on the radiation is to delay the arrival time at a given radius. 
Henceforth, for ease of calculation, we shall remove this constant delay from the argument of our Green’s function. 
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We can always reinsert it at the end of the calculation if we wish. With this constant delay removed, we can rewrite 
xO as 

xQ(^', x X[-X° + X+ (Ats - AW] ^ + AX^U,] 

for 0*' inside the source and 0* far outside it, (51) 
where 

Uß = PJM = 4-velocity of source; X^U» = - X. (52) 

The remaining “internally produced” delay between and Ats - A, is of the same order of magnitude as 
the total delay between two internal points and ^//: 

(Afs — A)g»g> ~ (Aís — N)g¡,.g¡ ^ (Aís)^ 
I across source 

xh^dr r*j M for homogeneous source 

~ m In Q)\ï) for lumpy source . 
(53) 

Henceforth we shall assume that this internal time delay is small compared with the characteristic time scale on 
which the source changes—i.e., small compared with the characteristic reduced wavelength Ä of the radiation 
emitted, 

CONSTRAINT: (Ais)lnternal ~ m In (è//) « A . (54) 

[Example : If Ä is 100 times larger than the Schwarzschild radius, 2m, of a lump, then b\l can be as large as exp (10) ~ 
2 x 104 without causing problems. Another example: If A ^ (which is the case for bremsstrahlung), and if / » m 
(which is required for fields to be weak), then the condition b ^ l (separation of lumps bigger than size of lumps) 
guarantees that constraint (54) is satisfied.] 

The constraint (54) allows us to expand our delta functions in powers of the internal time delay. Discarding 
terms that are quadratic and higher-order in (Ais)internal/A, we obtain for the Green’s function (45) 

xG(^', ^) = xGdirect + xGta11, (55a) 
iGdirect(^ ^ = (47r)-i{Sret(iZ“XSa/í) + ^)Sret(¿Z“Z^) + &) + AX“Uu]8UiXaXßVaß)} I 

(55b) 

= - (4^)-2 J ^ &")8'ret(iX“"Xt'Va0)8iet(iX“Xßrlae)dV if € /-(^) . (55c) 

In these equations 
Xa == xa - Xa', Xa = xa - xa", Xa" EE - xa/ ; (56) 

see Figure 1. 
Equations (55) are our final form for the scalar Green’s function in a space with linearized metric xg^ = + 

xAtfv. This Green’s function has fractional errors 

[(errors in xtyhG] ~ Maximum of (e2, ae, [(Ais)lnternal/Ä]e} in general, 
~ €2 for most sources ; (57) 

and it has been stripped of its asymptotic time delay (eq. [50]). 

hi) The Gravitational- Wave Field 2h
uv 

By inserting expressions (55) for iG(^', ^) into equation (18) we obtain the following expression for the gravita- 
tional field far outside a weak-field source : 

2^
v = 2hÿ/ + 2h«/ + 2hl& + 2h§ + 2h¡íl ; (58a) 

= 4 J Sret (iZ“Z^aÄ)2r«X^')[l - , (58b) 

2^v = 4 J «(#', &)8tJ11X“Xer)aß)2T»\&’)dix', (58c) 

2^tr = 4 J [y(^\ 0>) + hXaUa\8'U\XaX‘>T]aB)2T“X0>')dix', (58d) 

2Â«v = 4 J KJhXaXS«ß)[ittU + (IÓtt)-1^ (58e) 

2^1 = (- IM í Í ß(0>', ^n\e^X«''Xnnn^XaXnß)2Tllvn')dix''dix'. (58f) 
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Here 0*' and are source points with coordinates x*' and xa" (cf. Fig. 1); the field point 0 has coordinates xa; 
2r

ííV
5 and are the stress-energy tensor, the pseudotensor, and the gravitational field obtained by a post- 

linear analysis (eqs. [23] and [24]); 8ret is the Dirac delta function on the future light cone of the source and zero 
on the past light cone; S'ret is the derivative of Sret with respect to its argument; Xa, Xa, and Xa" are 

Xa = xa - Xa', Xa = X* - Xa", Xa" = Xa" - xa/ ; (59a) 

a, ß, and y are defined by integrals of the first-order Ricci tensor and of the metric perturbation along the 
straight line between two points 

a{0\ 0) = iXaX* Í1 + AX*)A(1 - A)¿A, (59b) 
Jo 

ß{0\ 0") = X^X*" f1 + XX^dX , (59c) 
Jo 

y(0\ 0) = iXaX^ i' Mx»' + XX»)dX ; (59d) 
Jo 

— A.XaUa is that portion of y which is produced by the asymptotic, 1/r, external field of the source 

— AXaUa = A(—XaC/a) = (Shapiro time delay produced outside source) 

x (distance from source point to field point) (59e) 

(see § IVc[ii] above); and 0' e l~(0) means that the integration (58f) is performed over field points 0' that lie 
inside but not on the past light cone of 

Each piece of the distant gravitational field 2/^
v has its own physical origin and significance : 

The first piece 2A£V is the “direct field.” It is produced by the stress-energy 2J
r/iv and propagates as though space- 

time were flat. It includes the zero-order, nonradiative, “ 1/r ” field of the source, and also that portion of the radia- 
tion produced “directly” by the source’s motions. If the internal gravity of the source has negligible influence on 
the source’s structure and evolution, then all other parts of 2h

ßV will be negligible compared with the direct field 
(“linearized theory”;^f. eq. [20] and the associated discussion). 

The second piece 2A&V is the “focusing field.” It is the amount by which the direct field is augmented due to 
focusing as it passes through regions of nonzero Ricci curvature (nonzero stress-energy). 

The third piece 2/z#r is the “transition field” (first discovered in the equations of general relativity by Chitre, 
Price, and Sandberg 1973, 1975; analog of “electromagnetic transition radiation,” Ginzburg and Frank 1946). 
It is the amount by whjch the direct field changes due to Shapiro-type time delays within the time-varying source. 

The fourth piece 2h$ is the “whump field.” It is the field generated by “gravitational stresses” + 
(167r)-1xAw% ihver

tP. We have given it the name “whump” because in our minds we have a heuristic image of 
gravitational stresses linking various pieces of the source, and going “whump” (i.e., quickly rising in strength and 
then quickly falling) as the pieces of source move past each other. 

The final piece 2fe is the “tail field.” It is generated by the direct field in those regions where focusing has 
deformed the geometry of the direct wave fronts. 

Although it is useful, heuristically and in calculations, to split 2A4iV into these five pieces, one should not attribute 
too much physical significance to each individual piece. For example, no individual piece satisfies the Einstein 
field equations or the de Donder gauge condition. However, the five individual pieces combine in such a way that 
their sum does satisfy the field equations and gauge condition; see Appendix C. 

V. SLOW-MOTION LIMIT OF THE WAVE-GENERATION FORMULAE 

Consider a weak-field system which has slow internal motions and weak internal stresses. Characterize it by the 
following parameters : 

L = (size of system) 

A = (characteristic time-scale of system) = (reduced wavelength of radiation) 

M = (mass of system) (60) 

v = (|T0y|/r00)max = (maximum internal velocity) 

S2 = (|Tiy|/r00)max = maximum of (stress)/(density) . 
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Chapter 36 of MTW derives the quadrupole-moment formalism for gravitational wave generation under the 
following assumptions (eqs. [36.18] of MTW) 

L/A « 1 which implies v « 1 ; (61a) 

M¡L « L/A , S2 « L/A . (61b) 

Constraint (61a) is the standard slow-motion assumption—the only assumption truly necessary for validity of the 
quadrupole-moment formalism (see Paper II). Constraints (61b) say that the motion must not be too slow if a 
weak-field calculation is to yield the quadrupole-moment formalism. In terms of the characteristic frequency 
to = 1/A this “not too slow” assumption says 

co2 » (M/L)(M/L3) , a>2 » S2(S/L)2 . (61b') 

A violation of these assumptions occurs, in dynamical systems, only when the gravitational and stress forces 
counterbalance each other so precisely that second-order gravity, 2ä

mv, can affect the motion significantly (cf. 
Chandrasekhar 1964). In this case an analysis based on the postlinear approximation cannot possibly give a correct 
description of the radiation. 

It is instructive to see how the postlinear radiation formulae (58) of this paper yield the quadrupole-moment 
formalism, when applied to a system satisfying constraints (61). 

We begin by combining the direct and whump fields (58b, e) and then breaking them up again, differently: 

2^DV + 2^W == 2^DW1 + 2^DW2 l (62a) 

2^vwis4jsret(iZ“Z^)[(-1g)(2r«’’ + 1f£lLL)]at^V, (62b) 

2^ínV2 = ( * l^77) j ,a ih"7,p]at . (62c) 

We then evaluate expression (62b) in the rest frame of the source 

= (63) 

and by carrying out the analysis of4 MTW § 36.10, we bring the spatial transverse-traceless part of this field into 
the form 

*)FT = (64) 

Here fjk is the “reduced quadrupole moment” of the source, and is its transverse-traceless part. This is the 
standard quadrupole-moment formula for the radiation field. 

An order-of-magnitude analysis shows that all other parts of our expression (58) for 2hjk are negligible. In 
particular, by using the following relations valid for the source’s interior 

i/*00 - M/L , J0* - Mv/L , ~ MS2/L , Tjk - MS2/L3 , - ^/A , 

~ ih^lL, ß ~MIL, (65a) 
as well as the relations 

a - M/L , (y + AX“!/«) ~ rM, (65b) 

we obtain for the ratio of each other part to the “DW1 ” part (eq. [64]): 

|2^DW2/(2^DWl)TT| ~ ^ + Z/a) <<: 1 ’ (66a) 

~ (^)(^) «1, (66b) 

IÄ(Äin ~ |Ä(ÄiH ~ ^ « 1 . (66c) 

4 Note that (—i^)(2T
iiV + i^-L) here plays the same role as T#iV + tßV in MTW. The key properties which they share are (i) 

vanishing coordinate divergence; (ii) same role in retarded integral for 2^
v. 
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VI. SUMMARY OF OUR ‘6PLUG-IN-AND-GRIND” FORMALISM FOR WAVE GENERATION 

Our postlinear formalism for wave generation can be summarized as follows : 
Regime of validity. The formalism is valid for any system satisfying these constraints : (i) The gravitational field 

must be weak every where : 

|/^v| « 1 everywhere , (67a) 

and the source must be isolated (see discussion preceding eq. [4]). (ii) Gravitational and nongravitational forces 
must not balance each other so precisely as to enable second-order gravity to influence the system’s motions 
significantly, (iii) The source must not focus substantially light rays emitted from within itself. Mathematically 
this constraint says 

^)| « 1 for any event inside the source, 

& any event on the future light cone of , (67b) 

where a is defined by equation (59b). For further discussion of this constraint, see the first half of § IVc(ii). (iv) The 
“Shapiro time delay” for light propagation within the source must be small compared with the characteristic time- 
scale Ä for internal motions of the source. Mathematically this constraint says that in the mean rest-frame of the 
source 

(Asternal = &)l\x - x'\ « * . (67c) 

Here x and x' are spatial locations of events & and that lie inside the source, & is on the future light cone of 
and y is defined by equation (59d). For further discussion, see the second half of § IVc[ii]. 

Calculation of the system's motion. For a system satisfying these constraints one calculates the internal structure 
and dynamics by using the postlinear formalism of § IVÔ (eqs. [23] and [24]). 

Calculation of the distant field. To calculate the gravitational field 2h
tiV in the radiation zone, far from the source, 

one takes the result of the postlinear analysis, plugs it into equations (58) and (59), and grinds. 
In Paper III we shall use this formalism to calculate gravitational bremsstrahlung radiation. 

APPENDIX A 

WHY USE THE CURVED-SPACE SCALAR-WAVE OPERATOR? 

In laying the foundations of our analysis (in and near eq. [6]) we write the Einstein field equations in terms of the 
curved-space scalar wave operator [Js. We choose to do this because the obvious alternatives (the flat-space wave 
operator □/ or the curved-space tensor wave operator □*) would ultimately lead to complications or dangers in 
our analysis. 

The flat-space operator □/ treats the field propagation from the outset as though it were on flat-space charac- 
teristics (straight coordinate lines). Because the true characteristics suffer the Shapiro time delay which involves 
a logarithm of distance, the use of would lead to logarithmic divergences in the radiative field at large r. If one 
were sufficiently careful, one could remove those divergences without serious error—but that is a dangerous enter- 
prise. Even if one succeeded, one would be left in the end with the interesting effects of focusing, time delay 
(“transition radiation”), and tail all lumped into the whump part of the field. We prefer to keep them separate. 

Consider next the curved-space tensor wave operator 

Uth^ = h^\ + 2Rffhaß - 2R¿%V)<* (Al) 

(cf. MTW eq. [35^64]). Because the true propagation equation for very weak gravitational waves on a curved 
background is dth^ = 0, it is tempting to formulate our analysis in terms of rather than ns- By using ns we 
push into the “whump” part of 2h

IJ'v an important physical effect: the curvature-induced rotation of polarization. 
In effect, part of our whump field corrects the error in our direct field’s unrotated polarization. Had we used 
rather than [Js, polarization rotation would have shown up in § IVc(iii) as a separate piece of the radiation field. 

The tensor wave operator has a disadvantage which, for our purposes, outweighs the above advantage. Suppose 
that one constructed a tensor Green’s function for □* 

^) = -i(rtv/r + guß'gva')(ggTll*Ux - x') , (A2) 

or for any other wave operator with the form 

□other^v = h™“« + (any “ background ” fieldr^ . (A3) 
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That Green’s function would have a first-order tail iG£an/r(^\ &*) with “sources” involving the Riemann 
tensor (cf. eqs. [43a] and [45c]). Such a tail would originate everywhere on the light cone of whereas the tail 
1G

t&il for our scalar Green’s function originates only on rays that have passed through matter. In practical cal- 
culations involving lumpy sources—see, e.g., Paper III—that tail would be as difficult to calculate as the whump 
part of the field. We prefer our scalar tail because of its greater simplicity. By using \Z\s we dump all serious ealcula- 
tional complexities, for lumpy sources, into the whump part of the field. 

APPENDIX B 

LINE-INTEGRAL IDENTITIES 

The weak-field Green’s function iG^', used in this paper involves three integrals a, ß, y along “straight 
lines.” In this appendix we take the line of integration to be 

o^(A): = xaf + XXa, 0 < A < 1 , Xa = - x“'. (Bl) 

The three line integrals are 

y = f AV¿A , (B2) 
Jo 

a = iX"Xv Í1 ii^ACl - X)dX , (B3) 

ß^X^X^C^X^dX, 
Jo 

where is assumed to satisfy the de Donder condition 

ihßV’ ihßv* ”2 ih,ii == ^ 

and the Ricci tensor is therefore given by 
p _  JL U P l^UV 2 lrlUV,P 5 

(B4) 

(B5) 

(B6) 

and where the index notation used is that of a Lorentz frame in flat spacetime. 
Below we list a number of useful identities linking the line integrals a, ß, y, their derivatives at point and the 

values of xhuv and at â?: 

X°aB = $ß, (B7) 

X»X<raßa = -ß + ^X°X\Rßa , (B8) 

Xpy,D = y + %X°X<Hhpa, (B9) 

XpX°ytPa = XpX\hpa + iXßXaX\hpa,z, (BIO) 

y,pp = -ß+ih. (Bll) 

Similar identities involving derivatives at and mixed derivatives at á8' and á8 can be derived fairly easily. For 
example, 

y,/ = -2a-$1h-%1h', (B12) 

where xh = ^(á2) and xh' = 
The derivations of these identities are quite straightforward. The necessary techniques are illustrated by the 

following derivation of identity (B7) : By differentiating definition (B3) and making use of equations (Bl), we obtain 

a,0 = X« f i^Aa 
Jo 

= X“ f i?Wi)A(l 
Jo 

= X" pKAi 
Jo 

X)dX 

X)d\ 

A)dA 

+ixi‘xv r 
Jo 

+ ix^x* f1 

Jo 

+ f1 

Jo 

(dRJd{°)(di°/8xp)A(l - A)dA 

(RUV,,)(A8%)A(1 - A)dA 

RUV,PA2(1 - A)dA. 
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Here Ruv<a = dRllvld£a is the derivative of Ruv at the integration point r¿ (A). When multiplied by Xp this expression 
gives 

XP<X'P = XPXV f1 - X)dX + ^XliXv Í (R^.pZOA^l - \)d\ 
* Jo Jo 

= XllXv f1 ^VA(1 - X)dX + iX»Xv Í (dRjdX)X2(l - X)dX. 
Jo Jo 

By integrating the last expression by parts we obtain 

X\p = X»XV f ^V[A(1 - A) - i(dldX)(X2 - X*)]dX = ±X»XV Ç R^dX = iß ; QED. 
Jo Jo 

In this case the integration by parts gave no endpoint terms ; but in other cases (eqs. [B8]-[B12]) nonzero endpoint 
terms are obtained. 

In manipulations of our weak-field Green’s function &) and of our second-order gravitational field 
2h

ßV (see, e.g., Appendix C) two other identities are useful: 

ßV = (cxS),/ - a/S , (B13) 

(yS' + aS),/ = ajh + . (B14) 

Here 8 is the flat-space propagator between and & 

S = hU^pX^pa), (B15a) 

which is related to the 4-dimensional Dirac delta function 

by 

84(x — x') = 8(x0 — x°/)8(x1 — — x2')8(x3 — x3') (B15b) 

htP
p = — 47t84(x — x') ; (B15c) 

and 8' is the derivative of the propagator (B15a) with respect to its argument. The absence of primes on indices 
and on A’s in (B13) and (B14) indicates that all derivatives and endpoint terms are taken at none are at The 
identities (B13) and (B14) can be derived with some labor from the identities (B7)-(B11). 

APPENDIX C 

PROOF THAT THE “PLUG-IN-AND-GRIND” FORMULAE FOR 2^
v SATISFY THE FIELD 

EQUATIONS AND GAUGE CONDITION 

Here we briefly sketch the proof that our second-order gravitational field (eqs. J[58]) satisfies the second-order 
Einstein field equation (eqs. [16] with n = 2) and the de Donder gauge condition 2hßV

tV = 0. As part of our proof 
we shall derive expressions for the amount by which each piece of 2h

ßV fails, by itself, to satisfy the field equation 
and gauge condition. 

A preliminary step in our proof is to rewrite the “tail” and “transition” fields (58f) and (58d) in new forms. 
Although expression (58f) for the tail seems optimal for practical radiation calculations, the restriction e 

makes it nasty for formal manipulations. To get rid of this restriction we take expression (B13) for ß8', in 
it we replace by and then we insert it into expression (58f). The result, 

2%L = (IM JJ , (Cl) 

is an expression which gives the same value for 2^tl whether one imposes or omits the restriction e One 
way to see that (Cl) is oblivious to the restriction is this: Take the source equation (31) for the tail 
of the exact curved-space Green’s function; calculate its lowest-order form 

=-(47r)-Ma(^,^)],/8azaY%,) ; 

invert this using a flat-space propagator; use the resulting Gtail to calculate 2A#l; the result will be expression (Cl)— 
and nowhere in the derivation did one need to impose the restriction e 
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Expression (58d) for the transition field involves a “time-delay function” &) from which the logarithmic, 
“external time delay” A( —Xa£/a) has been removed. A straightforward subtraction of the external time delay 
is well suited to practical calculations, but poorly suited to formal manipulations of 2/^

v. In the formal manipula- 
tions of this appendix we shall perform the truncation in a “smoother” manner: We surround the source by a 
(hypothetical) cloud of negative-mass material, with total mass, -M, equal in magnitude to that of the source, 
-t-M. We put the cloud far enough from the source (e.g., at radius if ~ 100L) that it is very diffuse, and thus 
contributes negligibly to the line integrals a and ß; but near enough that the Shapiro time delay 2Mln (if/L) in 
going from source L to cloud if is small compared with the time scale A of the source’s internal motions. The cloud 
automatically removes the external Shapiro time delay; no artificial truncation of y is needed. The second-order 
gravitational field is then given by equations (58) and (Cl) everywhere (inside the source and out), except that we 
must remove the artificial truncation from (58d) : 

Ä = 4 J y(^', r^'rJiXvX^UT^’^x'. (C2) 

Turn now to the proof that our second-order field satisfies the second-order Einstein field equation. We begin 
by applying the first-order wave operator 

iDs = (r}aß - h«*)dadß (C3) 

to each of the five pieces of our second-order field. By applying iDs to the direct field (eq. [58b]) and by using 
equation (B15c) we obtain 

iDs2ASv = - 1677(1 - i- ih)2T
ßV - 4^3^ J Ke^X^zT^'^x'. (C4a) 

By applying xQs to the whump field (eq. 58e) and by using (B15c) we obtain 

lDs2^V = - lÖTT^r-L - ihup
t(T Ji'\p . (C4b) 

By applying to the tail field (eq. [Cl]) and by using (B15c) we obtain 

lDs2fe = -4 J [«(^', . (C4c) 

By applying ids to the focusing field (58c), and by using (B15c) and the relation a(^, ^) = 0 (cf. eq. [B3]) we 
obtain 

iDs2Æ«v = 4 J &)lf8reJ±:X
c‘Xllrlal,)2T

uX0l')dix' + 8 J ^)lJSret(iX
aX%,)r2r^')^x'. 

(C4d) 

By applying xQs to the transition field (C2), and by using (B14), (B15c), and a(^, 0>) = 0, we obtain 

iQÄ = 41Ä',a3i)3(J J ^XaX^aß)2T^')dix' - 8 J ^)],í,[8retaZ“^a/í)]''>2r“X^'yV . (C4e) 

By adding up all five pieces (C4a)-(C4e) we obtain 

iDs2^v = - 16t7[(1 - L] - , (C5) 

which is the second-order Einstein field equation (16). 
Turn now to a proof that our field (58) satisfies the de Bonder gauge condition 2^

v,v = 0 except for fractional 
errors of 0(e2). From (58b) and the relation 

8v j Sret(i^XV)/('^yV = f Sret(K“X^ai)3v/(.à3'yV , (C6) 

valid for any function /(^>/), we obtain 

2/&v,v = 4 J 8ret(±XaX%e){2T^')[l - 1h(^)]}ydixl. (C7a) 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
7 

5A
pJ

. 
. .

20
0 

. .
24

5T
 

262 THORNE AND KOVÁCS 

From (58e), (C6), and ih
D,’t<, = 0 we obtain 

2^v.v = 4 J ôret(iX“XV0[ÆL.v + . 

We now add (C7a) and (C7b) and use the postlinear equations of motion (24a) rewritten in the form 

[2rni - ih) + v = 0 

(2^
V + 2^V),v = (4^)-1 J SretiK^V/Mn^'XaV . 

We then use = 0 together with (C6) and a relabeling of indices to obtain 

(cf. eq. [3]) to obtain 

(C7b) 

(2< + 2Är),v = (4w) - ^ J jí^'^x' . 

We then give ^ the new name ^s" and rewrite 1h
uv(^>'') as a retarded integral (the solution to eq. [24b]); the result 

is 

(2/&V + Ä*),v = (IM^v JJ .T^^x'^x" . (C7c) 

By applying dv to expression (Cl), adding it onto (C7c), using identities (B14) and (B15c), and integrating by parts, 
we obtain 

(2/&V + Mv + Ä,v = -48v J Y^'^Wre^X^^T^’^x' 

- 4dv J a(0>', . 

Comparison with expressions (C2) for and (58c) for 2W shows that 

(2^DV 2^W "1" 2^TL "h 2^TR “i" 2^pV),V = ^ 5 

i.e., our total second-order field does satisfy the de Donder gauge condition. 

(C7d) 

(C8) 
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