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ABSTRACT 
The possible importance of locally anisotropic equations of state for relativistic spheres is 

discussed by generalizing the equations of hydrostatic equilibrium to include these effects. The 
resulting change in maximum equilibrium mass M and surface redshift z is found analytically 
in the case of incompressibility (/> = const.) and a highly idealized expression for the anisotropy. 
Bondi’s analysis of isotropic spheres is generalized to include anisotropy, and the maximum 
surface redshift is investigated without reference to specific equations of state. A numerical 
model [with p(r) = |/>(r) and a special form of anisotropyl is then solved. In general, it is found 
that specific models lead to increases in z typically of the same order of magnitude as the 
fractional anisotropy. 
Subject headings: equation of state — hydrodynamics — quasi-stellar sources or objects — 

relativity 

I. INTRODUCTION 

The past decade witnessed a formidable attack on 
three major problems in relativistic astrophysics— 
the properties of superdense matter; the details of 
gravitational collapse (Thorne 1971; Ruffini and 
Wheeler 1969); and the nature of quasars (ZePdovich 
and Novikov 1972). Nevertheless, a number of funda- 
mental problems associated with these subjects re- 
main unsolved. In particular, one would like to know 
whether realistic evolutionary models lead to black 
holes, and whether quasars are local or must be cos- 
mologically explained. Recent observations indicate 
that this latter question is far from resolved (Gunn 
1971). If we venture to assume that strong gravita- 
tional fields and quasars may in some cases be closely 
related, then we come face to face with the difficult 
problem of the equation of state for superdense 
matter. The latter determines the maximum mass that 
can escape collapse to a black hole, as well as the 
maximum redshift from the object’s surface. To date 
investigations of the physics of superdense matter 
have been limited to systems which are locally 
isotropic. The complexity of strong interactions—parti- 
cularly in the areas of superfluidity and supercon- 
ductivity—suggests that superdense matter may be 
anisotropic, at least in certain density ranges. The 
existence of local anisotropy has not yet been theoretic- 
ally investigated. This is in part due to the complexity 
of the problem. It is therefore of considerable interest 
to determine the extent to which local anisotropy, if it 
exists, can alter the structure of massive objects. 

As a preliminary step in this direction we consider 
spherically symmetric static distributions of matter 

* Supported in part by National Science Foundation grant 
GP-34639X. 

which are assumed to be locally anisotropic. The 
equations of hydrostatic equilibrium for such systems 
are derived and investigated. We first consider an 
incompressible model with a highly idealized form of 
anisotropy which allows the structure equations to be 
integrated analytically. The resulting maximum mass 
and surface redshift (hereinafter abbreviated as SRS) 
are compared with the corresponding isotropic model. 
In order to eliminate model-dependent effects, we 
then study the questions of the maximum SRS by 
generalizing Bondi’s analysis of isotropic spheres in 
general relativity (Bondi 1964) to include anisotropic 
stresses. 

Throughout our discussion we use Einstein’s 
theory of gravitation with cosmological constant 
A = 0, and relativistic units c = 1, G = 1. The 
metric is of signature —2; Greek indices range from 
0 to 3. 

II. ANISOTROPIC EQUATIONS OF STATE 

That superdense matter is locally isotropic is an 
implicit assumption common to astrophysical studies 
of massive objects. This is a reasonable first approxi- 
mation for matter whose dominant properties depend 
on chemical forces (Coulomb interactions, etc.). For 
most systems that depend on fully relativistic theories 
of gravitation, it is the strong interactions which 
dominate local physics. It is well known that these 
interactions are nearly as complex as general principles 
permit, being strongly velocity-, spin-, and parity- 
dependent. Consequently one may not conclude from 
a priori considerations alone whether or not strongly 
interacting matter is locally isotropic. Two basic 
questions arise in this regard: (1) Is strongly interact- 
ing matter described by a locally anisotropic equation 
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of state; and (2) if so, how large is the anisotropy? 
The answer to both questions requires detailed calcu- 
lations in both the nonrelativistic (p < 1015gcm"3) 
and the relativistic (p > 1015 gem"3) density regimes. 

At the present time there is reason to believe that 
anisotropy may occur in the p < 1015 gem-3 range. 
It is believed (Ruderman 1972) that the p-state contri- 
butions to neutron-neutron interactions may lead to 
a superfluid state with an anisotropic gap (the estate 
yields an isotropic gap). Although such effects may be 
small, detailed calculations have yet to be performed 
in either density range. 

Another possible source of local anisotropy would 
be a solid core. Recent calculations (Canuto 1973) 
indicate that a solid state may indeed occur for cold 
matter in the density range above 4 x 1014-3 x 1015 

gem"3. However, the exact nature of such a state is as 
yet unclear. 

Although the above examples suggest strongly that 
some anisotropy may be present, it seems unlikely 
that the effect would be large. However, in view of the 
uncertainties and theoretical difficulties involved in 
treating anisotropic superdense matter in detail, we 
shall emphasize in the remainder of this work the 
maximum possible effects which it would be expected 
to have for spherically symmetric distributions of 
matter. The results which we obtain assume maximum 
anisotropy and therefore set upper limits. A more 
detailed analysis must involve specific model calcu- 
lations in the representative density range which are 
based on microscopic interactions. 

equations 

Gr
r = *77 O $7rpr = e~Á(v Ir + 1/r2) - 1/r2 , (2.4) 

Ge
d = G/ = *7/ 

O S7TPl = e-^v" - iXV + iO'T + V - A')/2r], 

(2.5) 

= kT^oSttp = e~x(\,lr — 1/r2) + 1/r2, (2.6) 

where a prime denotes differentiation with respect to r. 
We note that the only difference between the above 
equations and those describing isotropic spherically 
symmetric matter is that pr ^ Pl. Examination of 
equations (2.4)-(2.6) shows that we have three 
structure equations in five unknowns (v, A, p, pr, and 
Pl). Consequently it is necessary to specify in addition 
two equations of state, such as pr = pr(p) and /?± = 
pL(p)} In case pL = pr it is evident that the set (2.4)- 
(2.6) reproduces the equations for isotropic spherically 
symmetric matter (Tolman 1934). 

We now proceed to construct the equations of 
hydrostatic equilibrium2 (equations of motion). The 
procedure is essentially the same as for an isotropic 
fluid. Using equations (2.4) and (2.5), or, equivalently, 
the conservation equations = 0, we obtain the 
radial equation for/?r: 

= -(/> + /?r) £ + - (/>± - Pr) • (2.7) 

Equations (2.4) and (2.6) are then used to show that 

III. ANISOTROPIC SPHERES 

We now consider a static equilibrium distribution of 
matter which is spherically symmetric, but whose 
stress tensor is in general locally anisotropic. Spherical 
symmetry implies that (in canonical coordinates) the 
stress-energy tensor 77 is diagonal: 77 = diag 
0>; -Pr> -Po> -Pep) and, moreover, pe = which we 
will denote by Pl. Without further specifications 
about the relations between pr, Pl, and />, this form is 
completely general. The quantities pr, pL can contain 
contributions from fluid pressures as well as other 
stresses. But for convenience, in the following we will 
always call pr the radial “pressure” and Pl the tan- 
gential “pressure” (no confusion with ordinary 
hydrostatic pressure should result). The space-time 
geometry and matter distribution are determined by 
the Einstein equations 

Gf = kT/, (2.1) 

where * = Stt. In Schwarzschild coordinates the 
metric can be written as 

i,/ - w(r) + jELÎEi 
2 r(r - 2m) ’ 

where 

m(r) = T Airr2pdr 

(2.8) 

(2.9) 

is the mass inside a sphere of radius r as seen by a 
distant observer. Finally integration of (2.6) gives 

e"A = 1 - 2m/r. (2.10) 

It will be noted that there is no equation governing the 
gradient of the tangential pressure pL. This, however, 
is to be expected since these equations (subject to 
suitable boundary conditions to be discussed below) 
determine the radial variation in pr and p. The 
equation of state Pl = pxip) automatically gives 
p±(r). The equation of hydrostatic equilibrium for an 
anisotropic spherically symmetric fluid is therefore 
given by equations (2.7)-(2.8) plus the equations of 
state. The mass definition (2.9) is identical to the 
corresponding expression for an isotropic fluid. 

ds2 = evdt2 — eKdr2 — r2dd2 — r2 sin2 Qd<p2 (2.2) 

with 77 given by 

77 = diag (/), Pn -pL, -pù . (2.3) 

The Einstein equations (2.1) then yield the set of 

In general pr and pL will depend on additional variables 
(such as entropy, magnetic fields, etc.), in which case further 
equations determining these will be needed. For collisionless 
systems (e.g., star clusters), p, pT, pL are determined by the 
kinetic distribution function which depends on gßV itself. 

2 An alternate method involving variational principles can 
be used which is more conducive to discussions of stability. 
However, we shall not pursue this aspect of the problem here. 
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The second term in equation (2.7) is the only one 
in the structure equations which explicitly contains 
the tangential pressure. All other terms contain only 
P and pr. Furthermore, in the Newtonian limit 
equation (2.7) reduces to the expression 

+ (2.11) 

The anisotropy term is thus of Newtonian origin,3 at 
least in the special case of spherical symmetry. 

A solution to equations (2.7)-(2.10) is possible only 
when boundary conditions have been imposed. As in 
the case of isotropy we require that the interior of any 
matter distribution be free of singularities, which 
imposes the condition m(r)-^0 as r->0. Assuming 
that pr is finite at r — 0, we have v ->0 as r ^ 0. 
Therefore the gradient dpr/dr will be finite at r = 0 
only if (p± — pr) vanishes at least as rapidly as r 
when r -> 0. We shall, in fact, require that 

lim E±—£z = o. (2.12) 
r->0 r 

Finally the radius of a stellar model will be deter- 
mined by the condition4 pr(R) = 0 [note that we do 
not necessarily require thatp^R) vanish; however, we 
will assume that pr(r), pJj) > 0 for all r < R]. An 
exterior vacuum Schwarzschild metric is always 
matchable to our interior solution across r = R as 
long as pr(R) = 0, even though p(R) and p±(R) may 
be discontinuous. 

IV. INCOMPRESSIBLE MATTER 

The qualitative effects of anisotropy may be seen 
by considering the idealized case of an incompressible 
fluid for which the energy density is independent of 
coordinates: p(r) = p0. It will be recalled that this is 
the only case in which the isotropic structure equations 
are explicitly integrable. As a second equation of state, 
we will assume that 

Pl- P = Cf(p, r)(p + p)rn . (3.1) 

In equation (3.1) and hereinafter we omit the subscript 
r on the radial pressure. The constant C measures the 
relative strength of the anisotropy and may have 
either sign, while the constant n > \. The anisotropy 
may vary with position in the star, and may depend 
nonlinearly on the radial pressure. These effects are 
contained in/(/?, r). For « > 1, equation (3.1) satisfies 
the boundary condition (2.12). In general, the func- 
tional form of equation (3.1) will be determined by the 
exact nature of the interactions between particles. If 
the curvature of space-time is comparable to the 

3 This suggests that the “regenerative” pressure effect 
familiar in the isotropic case will not directly involve the 
tangential pressure pL. 

4 As in isotropic models, the inclusion of an “atmosphere” 
will result in complications without affecting the generality of 
our conclusions as to maximum mass or redshift. If an atmos- 
phere is included, we should require p(r) = p(r) = Pph the 
“photospheric” pressure, where r = R. 

electron Compton wavelength (matter densities p ^ 
1049 g cm-3), or if it varies significantly over distances 
characterizing collective effects, then relativity may 
contribute top1 — p as well (Bowers and Zimmerman 
1973). 

In this section we are primarily interested in the 
type of effects which can result from anisotropy, and in 
their importance. We will therefore make two simpli- 
fying assumptions. First we require that the aniso- 
tropy vanish at the origin quadratically (n = 2). 
Next we assume that at least part of the anisotropy 
is gravitationally induced, and that it is nonlinear in 
the pressure. A simple form which exhibits these 
effects is 

^■') = T^Wr- <3-2> 

It must be emphasized that this hypothetical model is 
chosen primarily because it allows us to explicitly 
integrate the structure equations rather than for any 
particular physical reasons. It will be noted that pL 
does not vanish at the surface (/? = 0). However, as 
will be seen in § V, the results obtained here are 
qualitatively independent of the form of equation 
(3.1). 

Substituting equations (3.1)-(3.2) into (2.7) and 
using (2.8), we obtain, after a slight rearrangement of 
terms, 

where we have used the relation m(r) = 47Tp0r
3l3 

which follows from the assumed coordinate inde- 
pendence of p0 and (2.9). Integrating, we obtain the 
radial pressure 

P = Po 
■ (1 - 2m¡r)Q - (1 - 2M¡R)Q " 
3(1 - 2M¡R)Q - (1 - 2m/r)QJ ’ 

(3.4) 

where the total mass M = m(R), R is the radius of the 
system, and Ô = i — 3C/47T. The central pressure is 
given by 

1 - (1 - 2M/R)Q 

Pc - Po3(1 _ 2M/jR)g - 1 ■ (3.5) 

C = 0 gives the expected result for an isotropic fluid. 
An equilibrium configuration exists for all values of 
M/R such that pc is finite. The critical model results 
for that value of M¡R such that pc becomes infinite. 
From equation (3.5) this occurs when the denominator 
vanishes, or when 

(2M/R)crit= 1 -(i)2/1-*, (3.6) 

where £ = 3C/2. 
Since physically reasonable models must have 

(MJR)crit > 0, we therefore require £ < 1 or C < f. 
From equation (3.3) this automatically guarantees 
that dp/dr will never become positive. The ratio 
(2M/R)crit is plotted as function of f in figure 1. In the 
limit of weak anisotropy |C| « 1, equation (3.6) is 
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Fig. 1.—The ratio of the gravitational (Schwarzschild) 
radius 2M to stellar radius i? for a spherically symmetric 
distribution of anisotropic matter with constant energy 
density p = p0. The anisotropy is described by equations 
(3.1)-(3.2). For $ > 1 the tangential pressure ps. exceeds the 
radial pressure p; for £ < 1, pL < p. The isotropic case 
corresponds to £ = 0. The assumed anisotropy can increase 
the maximum equilibrium mass by as much as 19% (f = 1). 

surface (SRS), given by 

z = (1 - 2M¡R)-112 - 1 . (3.11) 

The SRS for critical configurations is, from equation 
(3.6), 

*crit = 31'1-* - 1 . (3.12) 

For £ = 0 we recover the well-known isotropic result 
*crit := 2. The introduction of anisotropy (with 
C > 0) removes the upper limit, since as £ -> 1 the 
critical stellar surface can be arbitrarily close to the 
horizon, and zcrit arbitrarily large. Thus, at least 
within the context of incompressible models, aniso- 
tropy is capable of explaining quasar redshifts larger 
than 2. For example, the quasar 4C 25.5 has an 
observed z = 2.358. To account for this value with 
equation (3.12) we need only C = 0.063. 

Although the above results suggest that anisotropy 
may play a role in relativistic stellar structure and the 
theory of quasars, this model is too hypothetical to 
allow us to draw firm conclusions. We therefore turn 
to a different kind of analysis which is independent 
of the form of the anisotropy or equation of state. 

approximately 

(2M/tf)crlt ~ f[l + 0(ni. (3.7) 

In the opposite limit (strong anisotropy) £ = 1, and 
we reach the Schwarzschild limit: 

(2M/R)crit = 1 . (3.8) 

Equation (3.7) gives the expected result for ^ = 0 
(isotropic fluid) that R = 9rg/S, where rg = 2M is the 
gravitational radius. 

For a given p0 and C the critical mass is 

Mcrit = (¿¡)1/2[1 - (i)2"1'«]3'2. (3.9) 

Equation (3.9) and figure 1 show that the critical mass 
is less than the isotropic value when C < 0. When 
C > 0, the critical mass exceeds the isotropic limit. 
Specifically, for a given value of p0, the ratio of the 
anisotropic critical mass Ma to the critical isotropic 
mass Mi (£ = 0) can approach arbitrarily close to 

Ma(f = l)/Mi ^ 1.19 , (3.10) 

where Ma(£ = 1) corresponds to a configuration 
uniformly filling up to its own Schwarzschild radius. 
This represents a maximum of ^19 percent increase 
in the stable mass. The results of relativistic model 
calculations for slowly rotating fully relativistic 
isotropic stars indicate that the increase in maximum 
equilibrium mass is likely to be less than 20 percent 
(Thorne 1971; Hartle and Thorne 1968). The maxi- 
mum mass shift due to anisotropy (at least in this 
idealized model) is therefore seen to be comparable 
to the rotational correction, provided that we allow 
arbitrarily large anisotropy. 

In addition to altering the maximum stellar mass, 
anisotropy will in general affect the redshift z at the 

V. BONDI ANALYSIS FOR ANISOTROPIC MATTER 
An elegant method has been employed by Bondi 

(1964) to obtain a model-independent upper limit for 
the SRS of a locally isotropic distribution of matter 
within the framework of general relativity. This method 
may be readily generalized to the case of locally 
anisotropic matter. We discuss the maximum SRS 
in terms of this approach, and integrate numerically 
the structure equations for an isothermal model with 
p = %p and some special form of pL. 

a) Bondi Analysis for Anisotropic Matter 
To examine the constraints which are imposed on 

the maximum SRS by the equations of hydrostatic 
equilibrium, we now, following Bondi, make the 
following change in variables: 

u = m(r)lr , (4.1) 

v = 47rr2p , (4.2) 

X = (Pl- p)Ip , (4.3) 

where x, the fractional anisotropy, is in general a 
function of w, v, and r. Equations (2.7)-(2.9) then 
reduce to the form 

dr_ _ (1 — 2u)(dv/du — a) 
r du H(u, v, x) 

, _ (dvjdu — ß) 
4nr2p = K v , ,, . 

(av/du — os) 

The functions «, ß, and H are defined by 

H = 2v(l - 2n)(l + *)-(« + v)2, 

« = — (w + v)l(l — 2«), 

(4.4) 

(4.5) 

(4.6) 

(4.7) 

v (5 — 2u — v) 2vx 
u (1 — 2m) m 

(4.8) 
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Since r is defined implicitly in terms of u and v via 
equation (4.4), in the following we will always treat 
X = x[u, v, r(u, v)] as a function of u and v only. 
Note that a is independent of x, and that equations 
(4.4)-(4.8) reduce to Bondi’s expressions for x = 0 
(isotropy). The expressions above may be used to 
divide the (w, ¿?)-plane into several regions of interest 
(fig. 2). The construction of each curve has been 
discussed by Bondi for the special case x = 0 (Bondi 
1964). The introduction of anisotropy results only in 
quantitative shifts of these curves. We outline below 
the results which we have obtained. 

In analyzing equations (4.4)-(4.8), the following 
assumptions will be made : 

i) The quantities p, pL, and p are finite at the origin, 
and nonnegative every where ; 

ii) The region 2m/r > 1 (inside the horizon) will 
not be considered, since no static equilibrium con- 
figuration can exist inside its own horizon. 

iii) The model radius R is given by the solution of 
P{R) = 0. 

The curves A = constant are the integral curves of 
dvjdu = a and correspond to mass shells of infinite 
density (eqs. [4.4]-[4.5]). Their position in the (w, v)- 
plane is unaffected by anisotropy. The curves //(«, v, x) = 
0 divide a given model into a core (H > 0), and 
an envelope (H < 0). The position of this curve is 
determined by the amount and nature of the aniso- 
tropy. For x > 0 (/?j_ > p) it is shifted away from the 
i;-axis and intersects curves dv¡du = a corresponding 
to larger values of the constant A. For x < 0, the 
opposite trend results (see fig. 2). Note that the 
boundary condition x = 0 at w = i? = 0 guarantees 
that FT = 0 always passes through the origin, inde- 
pendent of the form of x. Every equilibrium con- 
figuration will for a given equation of state and x be 
represented by a particular structure curve in the 
(w, ¿;)-plane. The general properties of such a curve 
are: (1) v = 0 when u = 0, and dvjdu = 3pcjpc at the 
origin; (2) the curve lies in the quadrant w > 0, 
r > 0; (3) the surface condition p = 0 requires that 
the curve return to t; = 0 except for infinite-radius 
models (the further constraint p = 0 at the surface 
requires that the curve meet the w-axis tangentially) ; 
(4) the structure curve moves toward nondecreasing 
values of A in the core (H > 0), crosses H= 0 
tangentially to an A = constant curve, and in the 
envelope (H < 0) moves toward nonincreasing values 
of A; (5) the structure curve is constrained to move 
between the two curves dvjdu = a (infinite density) 
and dvjdu = ß (zero density). 

The requirements (1), (2), and (5) arise from assump- 
tion (i), while requirement (3) is a statement of the 
surface boundary condition p(R) = 0. The require- 
ment (4) is a consequence of our choosing the param- 
eter r to increase outwardly (dr > 0). Figure 2 shows 
two possible structure curves for realistic systems with 
the surface boundary conditions p = p = 0 and 
/? = 0 but /) / 0. 

As in the isotropic case, the maximum value of us 
at the surface is obtained for a model whose structure 
curves rises as rapidly as possible in the core and 

Fig. 2.—Bondi diagram of the («, i;)-plane. The curve 
H — 0 separates the core {H > 0) and envelope (H < 0) 
regions. The position of the curve depends on the fractional 
anisotropy shifting toward (away from) the r-axis as \x\ 
increases, where x < 0 (x > 0). The curves A = constant 
(independent of x) correspond to thin mass shells of infinite 
density, and approach the vertical asymptote « = i as 
A co. For a given equation of state and x, the structure of 
a finite radius “star” is given by a curve in the («, r)-plane 
which begins at w = i> = 0 and ends on the «-axis, crossing 
H — 0 tangent to one of the A = constant curves. Two 
representative structure curves for realistic matter are shown 
{heavy lines) which correspond to the surface boundary 
conditions {a) p{R) = 0; {b) p{R) = p{R) = 0. Notice that 
these curves fall much more rapidly than the thin mass-shell 
curves A = constant. 

descends as gradually as possible in the envelope. 
This corresponds to a model with nonzero pressure 
but zero energy-density in the core, and a thin 
infinite-density shell for an envelope. The resulting 
curve in the (w, p)-plane moves from the origin to the 
intersection of 7/ = 0 and some dvjdu = a curve A2, 
and then descends along A2 until the w-axis is reached. 
In the case x = 0 the maximum value of us thus 
obtained is ~ 0.485 (o A = 9 o z ~ A.11) (Bondi 
1964). Examination of figure 2 shows that anisotropy 
with x > 0 (x < 0) results in an increase (decrease) in 
the maximum SRS. 

Since the maximum SRS is achieved by moving 
along A = constant curves in the envelope which are 
independent of anisotropy, we shall concentrate on 
the core region in the remainder of our discussion. 

b) Maximum Redshift for x ^ 0 

For the isotropic case x = 0, the limiting SRS is 
*max° = 4.77 (o wmax° = 0.485), whereas for any 
physically realizable types of matter a much smaller 
value is in general expected. We now wish to consider 
limitations on zmax which are independent of the 
exact form of the equation of state or the anisotropy 
[subject only to assumption (i) above]. In order to 
maximize z, the structure curve must reach a curve 
dvjdu = a with the largest possible constant A when 
crossing 7/ = 0. The coordinates (w0? ^o) of the point 
of intersection of 7/ = 0 with an ,4 = constant curve 
is given by the solution of the equations 

2v(\ — 2u)(\ + x) = (w + v)2 (4.9) 
and 

p = [,4(1 - 2w)]1/2 - 1 + w . (4.10) 
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Thus a given value of A is attained at 77 = 0 only if 
the fractional anisotropy takes a value at (w0, ^o) 
equal to 

x(u0, Vo) 
(A + 3-4u0-4)[A(l-2u0)]112 

2{M(1 - 2wo)]1/2 - 1 + w0} 

Any model that reaches this value of A must encounter 
a maximum anisotropy x > x(u0, v0). For A » 1, 
equation (4.11) tells us that x(u0, v0) ~ A112. An 
immediate consequence is that z = go (o T = oo) is 
attainable only for models with infinite anisotropy: 
us —> -j only if x -> co, independent of the equation of 
state or form of anisotropy. 

Conversely, suppose from local considerations we 
can set an upper limit to the allowed values of x—say, 
x < x0. Then the maximum A attainable for models 
with the allowed values of x is, from equation (4.11), 

^max1/2<(2 + Xo)(l-2w0)1/2 

+ [(^o2 + 6x0 +1) —2w0(xo + l)(^o + 4)]1/2 . 
(4.12) 

AmSLX takes on its largest value (for fixed x0) when 
Wo = 0, in which case 

lim ^max1'2 < 2 + x0 + (1 + 6x0 + x0
2)1/2 ; 

Mo = 0 
(4.13) 

in this case the curve in the core rises vertically along 
the tf-axis until it reaches 77 = 0. This is the aniso- 
tropic generalization of Bondi’s thin-mass-shell 
model, a limiting case. The resulting SRS for some 
representative values of x0 are given in table 1. It 
must be emphasized, however, that for more realistic 
models, the increase in SRS for a given x0 is signi- 
ficantly lower than these limits, as will be demon- 
strated in the numerical example. 

c) Simple Models of Anisotropy 

We have shown above that the maximum ^4-value 
(and therefore the maximum SRS) attained by a 
specific mddel is essentially determined by the shape 
of the curve 77 = 0. It is therefore of some interest to 
illustrate the 77 = 0 curves for some simple models 
of the anisotropy. Two representative models that 

TABLE 1 
Maximum A, us, and Surface Redshift z for Various 

Values of the Fractional Anisotropy x 

(A max )1'2 «max Zmax 

0 (isotropic). 
0.1  
0.5  

3 
3.37 
4.56 

0.485 
0.488 
0.494 
0.500 

4.77 
5.73 
8.01 

Note.—The model corresponds to “massless” pressure in 
the core, and a thin shell envelope with infinite density. Only 
for infinite anisotropy (x = oo) is the horizon reached (z 
infinite). 

satisfy the boundary condition x = 0atw = p = 0 
are 

Case I: 
x(u,v) = %av, (4.14) 

Case II: 
. . I av + bu iA . -x 

x(u’v) = 2(T^2uj’ (415) 

where a, b > 0 are constants. Case II closely re- 
sembles (3.1)-(3.2) except that now /7± = (1 + x)p 
vanishes at the surface (p = 0) automatically. 

Case 7.—The 77 = 0 curves for w = 0, 0.1, 0.5, 1.0, 
and w » 1 are shown in figure 3. The intersection of 
77 = 0 and the p-axis is given by v = 2/(1 — w), for 
a < 1. Therefore, arbitrarily large values of ^4 
(o z -> oo) are in principle attainable if a = l 
through massless core models (at the expense of 
encountering infinite anisotropy, of course). For 
w > 1, however, 77 = 0 does woiintersect the positive 
i;-axis at all, and all models must have a massive core. 

Case 77.—The 77 = 0 curves for this two-parameter 
family are shown in figure 4 for w = 0, 0.5, and 1.0 
and for ô = 0, 1, 2, 3. In this case the parameter a 
shifts the 77 = 0 curves vertically (up for increasing a), 
while b shifts the curve horizontally (increasing w with 
increasing b). The intersection of 77 = 0 and the v- 
axis is again given by v = 2/(1 — a). For w = 1, the 
77 = 0 curves approach vertical asymptotes defined 
by w = 2/(6 — b). By assumption (ii) above, we limit 
discussion to models lying within w < To ensure 

Fig. 3.—The H = 0 curves separating core and envelope 
regions for the fractional anisotropy (4.14) and a = 0, 0.1, 0.5, 
1.0, and a » 1. The last two cases do not intersect « = 0 for 
i? > 0. 
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Fig. 4.—The curve H = 0 which separates core and enve- 
lope regions for the fractional anisotropy (eq. [4.15]). The 
parameter /> = 0, 1, 2, and 3 in each figure. The curves in (c) 
approach the dashed lines u = const, asymptotically. The 
curve a = 1, 6 = 3 does not satisfy condition (ii) in § V. For 
a = l all curves can lead to model with arbitrarily large 
surface redshift. 

this, it is convenient to restrict the parameters a and 
b to : a < 1 and b < 2. It is again obvious from 
equation (4.15) that any model reaching w = ^ must 
have oo. 

Fig. 5.—Structure curves for two equilibrium stellar models 
of § V: (£7) a core with p — ip, fractional anisotropy (4.15), 
and a thin-mass-shell envelope given by (4.11) with A = 1.492 ; 
(b) the same but with x — 0. The isotropic curve lies below the 
anisotropic curve for all values of u. The curve H0 = 
H(u, r, 0) = 0 and H — H(u, v, x) = 0 are also shown. The 
points P and B mark the separation of anisotropic and iso- 
tropic models into core and envelope. The structure curves 
follow A = const, curves (thin mass shells) from the points 
P and B to the 77-axis. 

The results of integrating equations (4.4) and (4.5) 
as described above are shown in figure 5. We also plot 
the corresponding x = 0 model for comparison 
(Bondi 1964). The curve (x ^ 0) intersects 77 = 0 at 
(Wo, p0) = (0.2463, 0.1163), which corresponds to A ~ 
1.492. Employing a thin-mass-shell envelope with 
this value of A leads to us ^ 0.365 and a SRS 

¿aniso = (1 - 2tO-1'2 - 1 

d) A Numerical Example 

We now present the results of the numerical inte- 
gration of equations (4.4)-(4.5) for the equation of 
state p = jp with the anisotropy as discussed in 
Case II above. We consider the case a = l and b — 0. 
To facilitate comparison with the corresponding 
isotropic Bondi models, we integrate only to the 
boundary of the core (7/ = 0), then match it with a 
thin-mass-shell (A = const.) envelope (Bondi’s model 
A3). Other more realistic envelope models could of 
course be used. But since we are primarily interested 
in the increase in maximum SRS, this case suffices to 
illustrate the point. Also since the p = jp curve lies 
rather low in the (w, p)-plane (fig. 5) in the isotropic 
case, we expect that the maximum x encountered in 
our model will not be outrageously large (as will be 
verified by numerical integration). 

^ 0.923 . (4.16) 

In the isotropic limit (x = 0) Bondi has shown that 
us ^ 0.352, which gives 

ziso- 0.838. (4.17) 

À comparison of expressions (4.16) and (4.17) shows 
that the SRS is increased by ~ 10 percent. The frac- 
tional anisotropy necessary to produce this is x ^ 0.114 
at the point (u0,v0). The incorporation of a more 
nearly realistic envelope will lead to à lower ws, just 
as in the isotropic model. In any case, we see in this 
model that the fractional increase in SRS and the 
fractional anisotropy are comparable. This indicates 
that in realistic situations, the increase in SRS will 
probably be of the same magnitude as the amount of 
anisotropy incorporated, independent of the details of 
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the model. (Compare the thin-mass-shell model 
limits of table 1.) 

VI. STABILITY 

The previous sections have resulted in upper limits 
on the static properties of massive objects which 
include local anisotropy. The stability of such objects 
is also of importance. Although we shall not solve this 
problem here, several comments are in order. First 
we should distinguish two aspects of the problem: 
(1) stability with respect to macroscopic motions of 
the system; (2) microscopic stability. 

The first is just the requirement that the second 
variation in total energy (thermodynamic + “gravi- 
tational”) at constant entropy be positive. This leads 
to an equation which sets a lower limit on the adia- 
batic index for a macroscopically stable system 
(Chiu 1968). A solution of that equation requires a 
knowledge of the anisotropy. Since no realistic 
expressions for pL — p exist, we shall not pursue this 
aspect of the problem further. 

Perhaps a more relevant question is that of micro- 
scopic stability. This is usually implicitly included via 
the equations of state. Specifically one assumes that 
the chemical potential considered as a function of 
density is nondecreasing. It is the onset of microscopic 
instability which leads for example to a phase transi- 
tion from a normal to a superfluid state and, in the 
case of neutron-neutron interactions (§11), to a possible 
anisotropic contribution to the system. It is also 
possible that anisotropic effects may exist only in a 
finite density range. Returning to the example of 
a superfluid neutron phase, one might expect disso- 
ciation of the n-n pairs with increasing density at a 
point where the Fermi energy of the particles exceeds 
the pairing energy. A more detailed discussion of these 
questions requires a specification of the anisotropy. 

VII. CONCLUSIONS 

The equations of hydrostatic equilibrium for a 
locally anisotropic, static, and spherically symmetric 
distribution of matter have been set up and solved for 
two particular cases: (1) an incompressible model 
p(r) =: Pol (2) an isothermal model withp(r) = jp(r). 
In the first example a highly idealized expression for 
the anisotropy was used, which has the advantage of 
leading to simple analytic solutions. The second 
model incorporates a more nearly plausible expression 
for the anisotropy and was evaluated numerically. On 
the basis of these investigations we draw the following 
conclusions for anisotropy in spherically symmetric 
matter : 

1) The stress-energy tensor may be put in the form 

77 = diag (p, -p, -p±, -p±). 

2) If the fractional anisotropy x = (p± — p)lp is 
positive, the maximum equilibrium mass and surface 

redshift exceed their corresponding isotropic (x = 0) 
values; if x < 0, then Mmax and zmax are less than 
their isotropic values. 

3) Although zmax = 4.77 for isotropic matter, 
anisotropy with ^ > 0 permits (in principle) an 
arbitrarily large zmax. 

4) An infinite surface redshift is possible for 
equilibrium anisotropic matter, but only if the 
fractional anisotropy is infinite. 

These results have been shown to be quite general, 
subject only to the conditions that p and p be every- 
where nonnegative, finite at the origin, and ^ — p = 0 
at the origin. 

The physics of relativistic stars and of quasars has 
to date been based on the assumption that matter is 
locally isotropic. Our study indicates that anisotropy— 
if present in the density range expected for relativistic 
stars (densities up to at least 1015 g cm~3)—may have 
a nonnegligible influence on such parameters as the 
maximum equilibrium mass and surface redshift. A 
complete theoretical understanding of neutron stars 
and the mass limits against gravitational collapse to 
black holes, as well as the possible connection between 
quasars and relativistic compact objects, requires a 
knowledge of the possible anisotropic properties of 
dense matter. In particular, we need to determine the 
density ranges for which anisotropy is possible. In 
situations of astrophysical interest we might expect to 
find anisotropy in relativistic systems which are in 
rotation, or which contain strong magnetic fields. In 
these cases, however, space-time will no longer be 
spherically symmetric, and the equations of hydro- 
static equilibrium must be modified. Although the 
spherically symmetric case is less difficult to solve, it 
may be necessary to include anisotropy in rotating 
stellar models for consistency. The reason for this is 
that in fully relativistic slowly rotating models the 
mass is increased by no more than ~20 percent 
(Thorne 1971). However, we have seen (at least in 
terms of the incompressible model) that large aniso- 
tropy could in principle result in a comparable mass 
change with the direction dependent on the sign of x9 
the fractional anisotropy. However, further specula- 
tion on the magnitude of these effects is academic 
until we have a better understanding of anisotropic 
equations of state in dense matter.5 

Finally we point out that at least one of the diffi- 
culties involved in associating quasars with local 
objects—the apparent inability to obtain surface 
redshifts greater than about zmax 2 (for realistic 
systems)—might be eliminated by employing aniso- 
tropic stresses, although in realistic models this seems 
in general to involve inconceivably large anisotropies. 

We would like to thank Dr. J. Campbell for help 
with some of the numerical work. 

5 One plausible physical constraint on the magnitude of the 
anisotropy might be a “tangential causality condition” 
(^s)tang2 = (dpjdp^ < c2, where s is the entropy. 
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