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The Description of Foucault’s
Pendulum

W.B.Somerville

(University of London Observatory)

‘Thus we may see,” quoth he, ‘how the world wags.’*

SUMMARY

It is explained how the workings of Foucault’s pendulum can be under-
stood without recourse to a mathematical treatment. Computer-drawn
pictures show the path of the bob over the ground, including the enter-
taining case where it swings across the equator. Incidental comments are
made on the treatment given in some of the astronomical textbooks.

I. INTRODUCTION

Foucault’s pendulum experiment provides a clear and convincing
demonstration of the rotation of the Earth. Howeyver, it is convincing
only if it is performed competently and with care; and it is clear only
if the spectator has some understanding of how it is that the rotation
of the Earth can affect the swing of a pendulum.

The observed result is that the plane of swing of a pendulum changes
with time. In the Northern Hemisphere, the plane of swing moves in
the same sense as the hands of a clock which is face up on the ground;
in the Southern Hemisphere it moves in the opposite sense. The rate
of rotation of the plane of swing is independent of the period of the
pendulum and is such that the plane goes round once, through 360°,
in a timet

T = 24 hr/sin ¢
where ¢ is the latitude. That is, the plane of swing would go round
in that time if the pendulum could keep swinging for so long. At the
pole, T = 24 hr. At the equator, T is infinite: that means that the
plane of swing does not change at all.

*Shakespeare (1623).

tActually, T = (23 56m-03)/sin §, for it is the sidereal day rather than the
mean solar day which is involved. The difference is scarcely significant.
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No. 1 DESCRIPTION OF FOUCAULT’S PENDULUM 41

For practical reasons, certain conditions must be satisfied if the
experiment is to succeed. The suspension must allow the pendulum
to swing freely, without torque, in any plane. The bob must be heavy
and the string long, to reduce the effects of air resistance and of random
currents. The pendulum must be released from rest smoothly, to ensure
that it does indeed swing in a plane. Plate I shows the Foucault
pendulum at the Science Museum, South Kensington. The mass is
30Ib and the length 79 ft. It is released by burning the thread which
restrains it. The period of oscillation of the pendulum is about 10s;
the plane of swing moves through 360° in 306 hr, or rather through
11° 45 in I hr.

The movement of the plane of swing is a consequence of the Coriolis
force produced by the rotation of the Earth. The Coriolis force, which
is analogous to the centrifugal force, is a fictitious force introduced to
describe motion relative to a rotating frame of reference (a rotating
set of coordinate axes). Any moving object, viewed from a frame of
reference fixed in the rotating Earth, appears to be acted on by this
additional, non-physical force. The direction of the Coriolis force is
at right angles to the direction of motion and also at right angles to the
axis of the Earth’s rotation. It depends only on the velocity of the
motion and is independent of location; in particular, for motion near
the surface of the Earth, it is independent of latitude. However, as
with the Foucault pendulum, we are frequently concerned only with
that part of the motion which is parallel to the ground. For horizontal
motion, the horizontal component of the Coriolis force depends on
the latitude; it is zero at the equator and a maximum at the poles.
It is independent of the compass bearing of the motion.

The horizontal component of the Coriolis force is in the Northern
Hemisphere usually to the right of the direction of motion and in the
Southern Hemisphere to the left. This asymmetry comes from the
relation of the two hemispheres to the axis of rotation. The Earth
rotates in a right-handed (clockwise) sense about the south-north axis.
The South Pole goes into the ground and the North Pole comes out of it.

Because of the Coriolis force, the bob of a pendulum in the Northern
Hemisphere moves a little to the right in each swing. Over a period of
time, the plane of swing is observed to have rotated, in the clockwise
direction.

Effects of the Coriolis force are seen in other ways. Wind is a flow
of air from a region of high barometric pressure to one of low pressure
and it is observed that winds do not flow straight across the isobars.
Around a centre of pressure, the winds spiral out or in. The prevailing
winds in the Northern Hemisphere are from the north-east or the
south-west, rather than from north or south. Other effects are that a
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river (in the Northern Hemisphere) erodes the right bank faster than
the left and that an object dropped from a height tends to fall slightly
to the east; the latter effect, arising from a vertical motion, is a maximum
at the equator and zero at the pole. When a rocket is sent over a large
distance, it is necessary to allow for the Coriolis force lest it be sadly
misplaced.

It is popularly supposed that the sense of the vortex which develops
when bath water runs out through the plug-hole is determined by the
Coriolis force. However, in a definitive experiment Shapiro (1962; see
also Andrade 1963) demonstrated that stray currents in the water
generally have a dominant effect. To produce with consistency the
predicted behaviour, an anti-clockwise spiral in the Northern Hemi-
sphere, it is necessary to have an axially-symmetrical bath tub, to
leave the water undisturbed for about 24 hr (which may appear a
trifle unhygienic) and to remove the plug with caution. This effect is
analogous to a cyclone, for the vortex is generated by the sideways
deviation of the water flowing horizontally towards a centre of low
pressure, or sink.

The theory of the Coriolis force is well understood and the application
to Foucault’s pendulum is trivial. It is so trivial that most books on
dynamics do not discuss this application at all, or else they set it as
an elementary problem. Where it is discussed, consideration usually
is limited to an outline of the mathematics, leaving out the physics of
the situation. Books which give a reasonable mathematical account
include those by Ames & Murnaghan (1929), Becker (1954) and
Ramsey (1951). It is not always easy to find the discussion: some
books, including Ramsey’s, do not have an index. For the dedicated,
an outline of the theory is given in the Appendix to this paper.

Books on descriptive astronomy generally mention the motion of
Foucault’s pendulum as a proof of the rotation of the Earth and
generally do not attempt to explain how the rotation of the Earth does
produce the motion. This paper has arisen from an attempt to under-
stand in simple, non-mathematical terms what it is that happens when
the pendulum swings.

It should perhaps be mentioned that the ‘proof’ of the rotation of
the Earth does not rest on Foucault’s experiment. The merit of the
experiment is that it demonstrates the rotation using an effect which is
clearly visible. The rotation can be demonstrated in other ways. The
simplest is to consider the daily motion of the stars. We know now
that the stars are not all the same distance from us, held fixed in an
invisible, rigid crystal spherical shell. They are individual bodies, at
very different distances, and each has its peculiar motion. It is incon-
ceivable that so many individual bodies could be whirling round us so
rapidly, in perfect synchronization.
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No. 1 DESCRIPTION OF FOUCAULT’S PENDULUM 43
2. HOW THE PENDULUM MOVES

Consider a large pendulum with its point of support on the Earth’s
axis, vertically above the North Pole. The pendulum swings in a plane,
across the pole. There is no sideways force on the bob and it continues
to swing in the same plane in space, as the Earth rotates underneath.
Viewed from above, the ground rotates anticlockwise under the
pendulum. Viewed from the rotating Earth, the plane of swing of
the pendulum rotates clockwise: the pendulum moves a little to the
right in each swing. After 24 hr, the Earth has returned to its original
position and so the plane of swing appears to have rotated round
through 360°.

Consider a pendulum at the equator, swinging in the plane of the
equator. There is no sideways force on the bob and so it continues to
swing in the plane of the equator. The pomt of support is carried
round by the Earth’s rotation but it remains in the same plane. Viewed
from the rotating Earth, the plane of swing does not change.

It is harder to picture what happens at intermediate latitudes. One
way to overcome the problem of understanding the motion of the
pendulum is to ignore the motion of the pendulum and concentrate
on the motion of the ground. The best account is in the classic
Astronomy by Russell, Dugan & Stewart (1945). It cannot be put
more clearly than in their words:

‘The northern edge of the floor of a room in the northern
hemisphere is nearer the axis of the earth than is its southern
edge, and therefore is carried more slowly eastward by the earth’s
rotation. Hence the floor must skew around continually, like a
postage stamp gummed upon a whirling globe, anywhere except
at the globe’s equator. The pendulum is constrained by the force
of gravity to follow the changes in the direction of the vertical,
but is otherwise free. Its plane of vibration, therefore, will appear
to deviate in the opposite direction from the real skewing motion
of the ground, and at the same rate. In the northern hemisphere
it apparently moves in the same direction as the hands of a watch;
in the southern hemisphere, in the opposite direction.’

This is splendid but incomplete. It does not say anything of how the
pendulum itself moves. It is not easy to visualize how the pendulum
behaves as it swings over this little, rotating plot.

A similar discussion can be given, recognizing that the rotation of
the Earth can be represented by a vector @ of magnitude w = 360°/day
and direction along the S-N axis (defined by the right-hand rule), and
resolving it into horizontal and vertical components at P, w cos ¢ and
wsin ¢. The local ground effectively rotates about the local vertical.
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A good account of things in these terms is given in the Larousse
encyclopedia (Rudaux & de Vaucouleurs 1959). However, this
approach again considers the ground and ignores the pendulum.

An interesting contribution to clarity has recently been made by
Sher (1969). He derives the skewing rate of the ground from spherical
astronomy in terms of the rate of change of azimuth for a star on the
horizon. Then—and this is the important part—he argues that if the
bob were moving in a fixed direction in space, this direction would
follow a star across the sky; but the bob is in fact constrained to move
in the horizontal plane, so the motion is the same as the component
of motion along the horizon—the change in azimuth—of a star which
is at that moment on the horizon.

The description which I have evolved has the advantage of being
pictorial.

Consider the diagrams, Figs 1 and 2. The pendulum, at the point P
at latitude ¢, is carried by the rotation of the Earth to the point P’
O is the centre of the Earth, C is the centre of the small circle of which
PP’ is an arc and N is the North Pole. The tangents to the surface
along the northerly meridians at P and P’ both meet the axis at K.

Fi1G. 1. The rotating Earth. The pendulum is carried from P to P’.
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K

8B

Y+38

FiG. 2. The line of swing of the pendulum, This is a plane diagram; do not
try to see a three-dimensional effect.

The effect arises from the difference between the small angles da
and 68. If the time interval between P and P’ is sufficiently small,
then*

88 = PP'//KP, &a = PP/CP.

But also sin ¢ = CP/KP,
because OPK is a right angle, and so
88 = 8o .sin ¢.

Now consider the pendulum. For sufficiently small 68 and for small
angles of swing, we may regard the bob as moving in the plane PP'K,
when it is at P and when it is at P’. If the pendulum is swinging one
instant at P in the direction at an angle y to the north, a few instants
later at P’ it is swinging in the direction at (y+688) to the north, for
there is no sideways force on the bob (viewed from a non-rotating
frame, outside the Earth). So, while the Earth rotates through da from
P to P, the plane of swing of the pendulum is seen to move relative

*The exact relation is sin (§8/2) = PP’/2KP.
PP’ is the straight line between the points, not the arc.
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to the meridian through 6. This angle is independent of the compass
bearing y of the swing.

Adding up for one rotation of the Earth all the elements 88, we see
that in 24 hr the Earth rotates through a total angle a = 360° and the
plane of swing of the pendulum appears to rotate through a total angle

B = 360°.sin ¢.
It follows that the plane of swing appears to rotate through 360° in
T =24 hr/sin .

This discussion applies to the extreme cases, as well as to intermediate
latitudes. For a pendulum at the pole, the points P, P’ and K all
coincide with N. In the limit as this happens, 88 = da; so the period
of the plane of swing is T = 24 hr. For a pendulum at the equator,
K is at an infinite distance and the lines PK, P’K and NK are parallel.
8B is zero, whatever the value of 8a, so the plane of swing of the
pendulum does not change. The discussion applies also to a pendulum
in the Southern Hemisphere, if the point N is re-named S and the
Earth is thought of as rotating from P’ to P.

3. WHAT THE TEXTBOOKS SAY

I have not attempted to make a general survey of all the books on
astronomy or dynamics written since the time of Foucault (1851).
Instead, I have examined a number of books which are currently
available in libraries or in bookshops and accessible to our contemporary
students. It is possible that I have missed some splendid accounts of
the experiment, complete, accurate and clear, although experience with
the books I have examined does not encourage that thought. However,
I meet criticism with the defence that any account which I have not
seen must be in a book which is not readily available.

It will be obvious that there are very many books which do not
mention Foucault’s pendulum at all, and not all of these are books
on astronomy. Elementary astronomical textbooks sometimes mention
the result, without any discussion. At a slightly more advanced level,
the simple case of a pendulum at the North Pole is considered. On the
other hand, detailed accounts of research about the Earth such as
Jeffreys’ book (1970) or Kuiper’s (1954) are not interested in elementary
demonstrations of the planet’s motions. We are therefore concerned
with introductory textbooks which have pretensions to a reasonable
standard of science.

The most disquieting result of this survey is not that many books
give accounts which are confusing and obscure, which is something
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that we must put up with, but that many say things which are mis-
leading and actually wrong. This is serious, for they are attempting
to explain in words a complicated phenomenon to someone who
probably is very unsure about it. The commonest error is the remark
that the pendulum continues to swing in the same plane in space,
which in fact is true only in the polar case and for an equatorial
pendulum swinging in the plane of the equator. For examples of
this, with a variety of tenses, we have ‘The earth [at Paris] had turned
under the pendulum, which maintained a fixed direction in space’
(Payne-Gaposchkin 1954), ‘The pendulum . . . will maintain its plane
of vibration in the direction in which it was originally started’ (Mehlin
1959) and ‘The direction of the plane of motion must remain the same
in space’ (Spencer Jones 1961). The notion of the direction of a plane
is new to me. I wonder what it means. In a few descriptive words
added to his mathematical treatment, Ramsey (1951) also uses it: “The
plane of oscillation of the pendulum remains fixed in direction in space’.

This mis-statement probably comes from a simple misunderstanding.
It is true that there is no sideways force and that the only forces acting
on the bob of the pendulum are gravity and the tension in the string.
But the direction of gravity changes. This makes the plane in space
of the swing change also. Only at the pole does the direction of the
vertical remain fixed in space and there the plane of swing does remain
the same.

Another difficulty arises with the account given by Struve, Lynds &
Pillans (1959). They describe the motion correctly and very clearly,
for the two extreme cases, but then they attempt to calculate the effect
at a particular intermediate latitude. Their mathematical derivation is
so simple as to be nearly incomprehensible; on close scrutiny, it turns
out to be formally correct but sadly misleading. Consider a pendulum
swinging in the plane of the meridian and suppose that the eastward
velocity of the bob is the same as that of the ground under the point
of support*. At the northern end of the swing, the eastward velocity
of the bob is larger than that of the ground there, at the southern end
it is smaller. The plane of swing therefore rotates, clockwise over the
ground, and the rate of rotation can be derived by elementary geometry.
This discussion is correct, but it must surely leave many readers with
the impression that the rate of rotation depends on the compass
bearing of the swing. If the bob goes less far to the north, surely the
effect must be smaller? If the pendulum swings from east to west,
surely the effect must be zero? In fact, as we have seen, the effect is
independent of the compass bearing 7.

*Jt may not be, for it depends on how the pendulum was launched. This is not
important: it is differences in the eastward velocity which matter.
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Payne-Gaposchkin’s book contains in a footnote the remark that
‘The detailed theory of the Foucault pendulum should take account
of the curvature of the earth’s orbit, which changes the orientation
of a parallel of longitude by about one degree a day.” I suspect that
this is intended simply to refer to the difference between the sidereal
day and the mean solar day. However, it is worded in a way that can
set the mind spinning, with thoughts of a second Coriolis force from
the angular velocity about the Sun. This force varies with time of day
as well as depending on latitude. Its maximum contribution is
15°/365 = 0°-04 per hour to the rotation of the plane of swing. It is
therefore quite negligible.

Despite these criticisms, I consider this still to be one of the best
introductory textbooks. A second edition has recently appeared
(Payne-Gaposchkin & Haramundanis 1970). The only relevant changes
of substance are in the discussion of other effects of the Coriolis force,
including ‘The Coriolis force. .. causes...the vertical deviation of
falling bodies from east to west’, which seems to have it the wrong
way round, and ‘It may also cause the deflection of short-range
projectiles fired in northerly or southerly directions, but its effect on
high altitude projectiles is reversed because of the variation of the
projectile’s distance from the centre of the earth’, which is not very
clear. The allusion probably is to the interesting effect of the instan-
taneous elevation of the motion on the horizontal component of the
force. For simplicity, consider motion in the meridian plane, at
latitude ¢ north. For motion parallel to the Earth’s axis, at elevation
¢ from the north horizon, the Coriolis force is zero and there is no
deflection. For smaller northerly elevations, the Coriolis force is to
the east. For larger northerly elevations, including motion vertically
upwards, and for all southerly elevations, the Coriolis force is to the
west. Thus, for northerly elevations between ¢ and 9o°, the horizontal
velocity is to the north and the deviation is to the west—to the left,
reversing the usual rule. This does not depend on the altitude of the
motion but only on the elevation, which, in any case, is continuously
changing. The effect on the total trajectory can be rather complicated.

In what can hardly be called a current textbook, Young (1889) gives
an interesting description of the motion at intermediate latitudes, which
is both clear and correct (but, I think, inferior to the account given
here). Consider Fig. 1. In one day, the line PK traces out a conical
surface. If it is cut along a radius PK and spread out flat, this surface
forms a sector of a circle, with central angle 8 = 360° sin ¢. Gravity
is always perpendicular to this surface and in it there is no sideways
force on the bob. In one day, the pendulum goes round the arc defined
by the sector. In this surface, the swing remains in the same direction
but the direction of the north meridian changes by .
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I have seen a similar account in a modern American book, which I
found in the second-hand department of H.K.Lewis’ shop. Alas!
Not only did I churlishly fail to buy the book, foolishly I did not
even note the author’s name. I have never seen the book since.
Despite a careful search of the astronomical libraries and bookshops
of London, I have not found it. I take consolation from the thought
that this must surely mean it is not common in this country.*

4. THE PATH OF THE SWING

In our discussion of the motion of the pendulum, we have considered
it as moving in a plane but deviating slightly to the side so that the
plane appears to rotate with time. That is correct, but a little imprecise.
It is interesting to look more closely at the path which the bob follows
over the ground.

Mathematically, the motion projected onto the ground can be
described as a rotating ellipse. The equations can be solved exactly
and it is easy to draw a graph of the track. Itis even easier if a computer
is available which has graphical output. Indeed, this part of the work
was started as a way of using the graph plotter newly fitted to the
IBM 1130 computer at the Observatory in Mill Hill. As might have
been predicted, the computer work became the major part of the
study, wagging the rest.

Fig. 3 shows the path of the bob over the ground. The ‘Ratio’ is
the quantity R defined in the Appendix; it is such that the number of
complete double swings, to-and-fro, in the period 24 hr/sin ¢ is (1 + R?)*.
The value R = 20 has been chosen for pictorial convenience. For an
actual pendulum, the value is much larger—for the Science Museum
pendulum, it is almost gooo—and the sideways motion in one swing
is correspondingly much less. R need not be an integer.

The centre of the diagram is vertically below the point of support.
The pendulum is pulled to one side and released from rest, at the top
of the diagram. As the bob falls towards the centre, it deviates to the
right and does not pass under the point of support. The first swing,
from rest to rest, is shown in Fig. 3 (a); the X’s mark equal intervals
of time. Each swing is like the previous one and the pendulum moves
to the right each time. In Fig. 3(b), after 20 double swings, the
pendulum is almost back where it started. When (14 R?)* is integer,
it returns exactly to the starting point.

*The book referred to here is Astronomy by A.Krause (Oliver & Boyd 1961,
p. 61). It is not of American, but of German origin, which may have been what
confused me.
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i RATIO = 20-00

Fig. 3 (@) and (b) shows the motion of the bob over the ground,
as viewed from the rotating Earth. Fig. 3 (c) shows, for a pendulum
at the pole, the motion in a plane fixed in space—the motion which
remains the same while the Earth rotates underneath. The inclined
axes show how far the Earth has turned, in the time for the one swing
shown; this is the same swing which is viewed from the rotating Earth
in Fig. 3 (a). The path in space is half an ellipse. The pendulum was
released from rest at a point on the rotating Earth: it was moving
with the Earth and has an angular momentum about the point of
support.
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RATIO = 20-00

Fic. 3 (b)

It is possible to imagine the pendulum launched in some other way.
If, for example, it were started by a horizontal impulse from a position
under the point of support—easy to imagine but not easy to achieve—
it would have zero angular momentum about the point of support.
The result is shown in Fig. 4. The bob starts moving down the page
and deviates to the right. At the extremity of its swing, it is moving
with a velocity which exactly balances the Earth’s rotation: its angular
momentum remains zero. After half the period (Fig. 4), it is back
under the point of support. For the same R, the plane of swing rotates
at the same rate as in the other case, but the detailed path is different.
For the polar case, the motion in a plane fixed in space now really is
a straight line.
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RATIO = 20-00

FI1G. 3 (¢)

FIG. 3 (), (b) and (c). The swing of a pendulum released in the usual way.
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?r
RATIO = 20-00

1
FI1G. 4. The swing of a pendulum started with an impuise.

Fig. 5 shows some of the other patterns which are produced, for
various numbers of swings with different R from the two initial situ-
ations. The larger R is, the smaller is the sideways motion in one swing.
As R — oo the swing becomes a straight line. For a pendulum released
in the conventional manner, the distance of closest approach to the
centre is

d = a/(1+R2)}
where a is the semi-amplitude along the ground. For the Science
Museum pendulum, ¢ = 3 ft and d ~ o-1 mm which is small but could
perhaps be detected optically. At R = o, the pendulum stays fixed,
held rigidly at its starting point.

4.1 The equatorial pendulum

For a pendulum swinging along the equator, the Coriolis force is
zero and the swing remains along the equator. If a pendulum at the
equator is swinging in some other direction, on each swing it ventures a
little north and south, where the Coriolis force is not quite zero, It
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RATIO

4.89

+
+

Fic. 5 (b)

© Royal Astronomical Society * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1972QJRAS..13...40S

S..1377.740S!

rro72

No. 1 DESCRIPTION OF FOUCAULT’S PENDULUM 55
t

¥

RATIO = 100-00

{.

Fic. 5 (c)

4
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therefore moves not quite in a straight line; in practice, the effect is
undetectable. With the point of support on the equator, there is no
rotation of the plane of swing and after one double swing the pendulum
returns to its starting point.

Mathematically, this is a harder problem than the theory of a
pendulum at high latitudes. The strength of the Coriolis force depends
on the distance from the equator: for small distances, it can be. taken
as proportional to the north-south coordinate Y. At high latitudes,
the force is essentially independent of position in the X-Y plane agd
it is easy to solve the equations of motion analytically. In the equatopal
case, they have had to be solved numerically. Attempts at solution
revealed deficiencies, first in my numerical methods and then in IBM’s
compiler program. When these were overcome, after months of effort,
it seemed grimly appropriate that the path traced out had the shape
of a tear drop.

It is tempting to suppose that the Coriolis force on the bob is
proportional to the latitude, to the right in the Northern Hemisphfare
and to the left in the Southern. That is what happens for anything
moving always horizontally, such as a river; the horizontal is a curved
surface, the geoid. But the bob of a pendulum does not move
horizontally. It swings in an arc, curved in the opposite sense to the

FiG. 6 (a)
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FiG. 6 (a). At latitude ¢, if 8 < ¢, the components of velocity perpendicular
to the axis are in the same direction, for the pendulum and for horizontal
motion. 6 (b). At the equator, the components of velocity perpendicular to
the axis are always in opposite directions.

surface of the Earth. At high latitudes this does not matter, if the
angle of swing is small; the effect of a large elevation on the motion
has been mentioned in Section 3. At the equator, the elevation com-
pletely determines the motion, no matter how small the angle of
swing.

The situation is illustrated in Fig. 6, where for simplicity we consider
motion along the meridian. At a high latitude ¢, it is a reasonable
approximation to consider the horizontal motion of the bob as being
in a plane, so long as the angle of swing § is smaller than ¢, which in
practice it is. It is the component of velocity perpendicular to the axis
which produces the Coriolis force and this is in the same sense, away
from the axis or towards the axis, for the bob, for motion in a plane
and for motion in the curved horizontal surface. The error introduced
by this approximation is of second order. If 8 > ¢, at one point in
the swing the bob is moving parallel to the Earth’s axis and there the
Coriolis force is zero. In part of the swing the component of velocity
perpendicular to the axis is in the opposite sense to that for horizontal
motion; the horizontal part of the Coriolis force is to the left. If the
bob were swung right round overhead in a circle at constant velocity,
the eastward and westward forces would cancel out. The net Coriolis
force on a Big Wheel is zero; a couple is present, however.

At the equator, ¢ =0, and so 8 > ¢ for all 5. No matter how
small 3 is, the velocity perpendicular to the axis is opposite to that
for a horizontal motion. The Coriolis force is, therefore, always to
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the left in the Northern Hemisphere and to the right in the Southern,
and its strength does not depend on the latitude ¢ north or south but
on the angle 8 of the pendulum.

Results of calculations for the equatorial pendulum are shown in
Fig. 7. The X-axis represents the equator; in previous diagrams, the
orientation of the axes was irrelevant. The sideways Coriolis force is
proportional to the Y distance, to the left in the Northern Hemisphere.
The ‘Ratio’ has a different significance here; it is defined in the
Appendix. To show the motion more clearly, in Fig. 7 (a) and (b)
the X scale has been expanded by a factor 10.

In Fig. 7 (a), the pendulum is released from rest due north of the
point of support, which is on the equator. It deviates to the left of its
path in the Northern Hemisphere. As it crosses the equator, moving
horizontally, the Coriolis force is zero; it is moving in an ellipse as an
ordinary simple pendulum. In the Southern Hemisphere, the Coriolis
force is to the right and adds on to the tendency to elliptical motion.
The pendulum swings round to the west and back to its starting point.

¥

EQUATORIAL CASE -
RATIO = 20-00

X 10

© Royal Astronomical Society * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1972QJRAS..13...40S

S..1377.740S!

rro72

No. 1 DESCRIPTION OF FOUCAULT’S PENDULUM 59

T

EQUATORIAL CASE -
X 10 RATIO = 20-00

Fi1G. 7 (a) and (b). The swing of an equatorial pendulum.

Fig. 7 (b) shows the pendulum started with an impulse from the
centre. It moves due south and deviates to the right of its path. It
passes always under the point of support. It deviates to the left of its
path in the Northern Hemisphere and is moving again due south with
the impulsive velocity when it returns to its starting point.
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Appendix

After the usual manner of such things, we may consider our theoretical
pendulum to be a point mass suspended by a string which is light and
inextensible, without any friction at the support or any air resistance.
Motion relative to a frame of reference rotating with uniform angular
velocity @ is described by the equation (see, for example, Goldstein
1950)

mf = F —2m@ X —m® X (® Xr) . (1)
Here, r is defined relative to the rotating axes—axes fixed in the Earth.

F contains all the real forces acting on the particle, in this case the
gravitational force and the tension T in the string.

The Coriolis force —2me x ¥ is perpendicular to @ and to i, defined
by the right-hand rule for vector products, and is independent of
location.

The final term in equation (1) is the centrifugal force. The position
vector r of the bob from the centre of the Earth changes by a negligible
amount in the swing of a pendulum, so this term is effectively constant.
In accord with the usual definition of the vertical as the direction of a
plumb-line, we may conveniently absorb the centrifugal force 1nto the
gravitational force to obtain an effective force mg. Then

mf = T+mg—2mm X . (2)

Consider, at latitude ¢, a coordinate frame with x to the east, y to

the north and z vertically upwards, with origin where the z axis meets

the axis of the Earth, a distance Z from the point of support of the
pendulum. The Cartesian components of our vectors being

T =(-Tx/l, -Ty/l, -T(z-2)/), (3

g = (0,0, -g), 4)
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= (0, wcos ¢, wsin ¢), €))
where
= [x*+y*+-(z-2)2} ©)
is the length of the pendulum, we have
mx = —Tx[l—2mw(s cos ¢—y sin §) ¢
mj = —Ty[l—2mwx sin $, ®
mz = —T(z~Z)[l-mg+2mw X cos ¢ . ©)

In the usual approximation for the s1mp1e pendulum that the angle of
swing is small, x and y remain small in comparison to (z—2) ~ —/
and z small in comparison to x and y. Equation (9) then gives

T=mg (10)

and equations (7) and (8)
X = —gx/l+2wysin ¢, (11)
V= —gy/l-2wxsin¢. (12)

These equations are unaltered if the axes are rotated through any
angle 6 about the vertical: so x now need not be to the east.

For a horizontal velocity v = (x2-+5?)%, the magnitude of the Coriolis
force is 2wwv sin ¢, independent of the compass bearing of v. It is
perpendicular to the direction of v, to the right in the Northern
Hemisphere. Our theory applies equally to the Southern Hemisphere,
if ¢ there is given negative values.

Introducing
g\t 1
R= (7) w sin ¢ (13)
and measuring time ¢ in units I/w sin ¢, we have
X—-2y4+R3x =0, (1)
y+2x+R%y =o0. (15)
The general solution is
(x+iy) = (A sin ut+B cos ur) e, (16)
where ,
#=(1+R% (17)

and the complex constants A and B are determined by the initial
conditions. For a pendulum released from rest at (x,y) = (0,a),

x = —(a/p) sin ut cos t+a cos ut sin ¢ 3
vy = (a/p) sin ut sin t+a cos ut cos t (18)
For a pendulum launched impulsively from (o,0),
x= —asinutsint,
y=—asin,utcost} (19)
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Equations (18) represent an ellipse and (19) a straight line, rotating
with period 1/wsin ¢ = 1. In the Southern Hemisphere, where @ is
negative, the path is traced in the reverse direction.

For the equatorial case, we must return to equations (7), (8) and (9),
with ¢ = o, and retain terms to a higher order in small quantltles.
Thus, x, y, X, J, % and J being of first order and (/+z—Z), z and % of

second order (Ames & Murnaghan 1929),

T = mg —2mwX , (20)
and
z = (xx+yp)/l (21)
and the equations of motion are
% = —gxfl-20wyy/l, (22)
j = —gyll+2wyx/l. | (23)
Now defining
R, = (g)}|w (24)
and measuring ¢ in units //w, we have
X+2yy+R*x =0, (25)
jy—2yx+R% =0. (26)

These equations have been solved numerically. Comparing them with
equations (14) and (15), it is seen that there is an additional factor y
in the second term and also that the sign has changed—the Coriolis
force is in the opposite direction.
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