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ABSTRACT 
A theory of infall of material into clusters of galaxies is developed and applied to the Coma cluster. 

It is suggested that the infall phenomenon is responsible for the growth of cluster galaxies. The genera- 
tion of a hot intracluster medium is discussed and its relation to the observed absence of normal spirals 
in rich clusters investigated. The inference made earlier by Gott and Gunn that the observed X-ray 
luminosity of Coma puts severe constraints on the deceleration parameter #o is further elucidated. 
We discuss the relation of these phenomena to the morphology of clusters, and find that some observed 
regularities in their observed properties can be explained. 

I. INTRODUCTION 

In this paper we develop the point of view investigated by many workers—-most 
recently Peebles and Yu (1970), Silk (1968), and Field (1972), among others—that 
galaxies and clusters of galaxies develop from small density perturbations in the primeval 
medium which have survived until the time that the plasma recombines. Peebles (1970) 
has recently performed numerical computations for a model Coma cluster, and has ob- 
tained reasonable fits to the observations. We here make use of some of his results and 
consider some interesting aspects of cluster evolution after the initial collapse and “fast” 
relaxation. 

In particular we treat the behavior of matter outside the main body of the perturba- 
tion that makes the initial cluster, which is bound to the cluster and eventually collapses 
into the cluster proper. 

After treating the dynamics of the infalling matter, we turn to some astrophysical 
implications for clusters like Coma. We have already shown (Gott and Gunn 1971) that 
severe constraints can be placed on the gas density in intergalactic space with these 
results; we are here concerned mostly with effects in the cluster itself. Possible connec- 
tions with the origin of supergiant D galaxies and the absence of ordinary spirals in 
regular clusters are discussed. 

Recombination occurs reasonably quickly at an epoch corresponding to redshift 
1 + %i) ~ 1000, or electron and radiation temperatures ^3000° K (Peebles 1968). Let 
us suppose that there exists at this epoch a spherical region of radius which has 
uniform density slightly higher than the (uniform) density of the surrounding region. 
(One can almost as easily treat arbitrary spherical perturbations, but the results are 
qualitatively the same and this example is particularly transparent.) 

The expansion is assumed still uniform at this epoch (we comment on this assumption 
later), so that the velocity v is given by 

* = # ¿r , (1) 

* Supported in part by the National Science Foundation [GP-28027, GP-27304]. 
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2 JAMES E. GUNN AND J. RICHARD GOTT III Vol. 176 

where Hi is the Hubble parameter appropriate to the epoch Zi. Let pc¿ be the critical 
density at this epoch : 

Pci = 3H*/8wG . (2) 

For densities less than the critical density, the expansion is unbounded; the total energy 
at the critical density is just zero, and for densities in excess of pc¿, the material will 
expand to a maximum radius and collapse again. Let pei be the external density, which 
we assume to be representative of the universe, and let pCi + p+ be the density in the 
perturbation. (Note that the first assumption requires that such clusters as we are con- 
sidering be a negligible contribution to the total mass.) Then in terms of the present 
Hubble parameter H0, the present deceleration parameter qQj and the epoch Zi, one can 
easily show that 

_ . 2(1 + Zi)qo  /ox 
Pei Pei (1 _ 2io) + 2ço(1 + Zí) V) 

and 
Hi2 = tfo2[2<Zo(l + ZiY + (1 - 2^0)(1 + Zi)2] 

for Friedmann models with vanishing pressure and cosmological constant. (See, for 
example, Sandage 1961.) Now q0 is proportional to the density: 

3Ho2qo = 4:7rGpo, (4) 

where the subscript zero always refers to the present. Oort (1958) has shown that the 
density in galaxies accounts for enough mass to make qQ > 0.02. Since Zi ~ 103, we may 
approximate the relations (3) with an accuracy of at least about a percent by 

_ 1 — 2qo 
Pci Pei - Pei 2?o(1 + Zi) , H* = 2qoH0*(i + Zi)3 . (5) 

In the following we shall continue to neglect terms of order (1 + js*)"1 in comparison to 
unity or 2qo; this is done primarily to simplify the presentation, and incurs no error 
larger than about a percent in any calculation. Note that pCi — pei is itself much smaller 
than pd in absolute value. 

In the following we will restrict ourselves to discussion of perturbations of the chosen 
form; it is perhaps well at this point to discuss the effect of this choice. As mentioned 
above, our simple rectangular form gives qualitatively the same results as any positive 
spherical perturbation. The outcome can be changed radically only if outside the proto- 
cluster proper there is a shell with a large negative value of p — pd,' and unless this quan- 
tity is large in absolute value compared to p+, even here there is no substantial change. 
It is only in the case that each cluster is surrounded by a shell of very low density that 
the treatment we shall give is invalid; and since the picture we are using assumes random 
fluctuations, the situation seems a priori very unlikely. 

II. DYNAMICS 

If we let the radius of any shell of matter whose radius at the fiducial time U is r* be 

r{ri, t) = rMri, t) , (6) 

we easily find that a(r¿, t) satisfies 

SwG 
3a Piixd + 

SttG 
~Y 

(pci pi) y (7) 

where we assume only that matter is conserved and the pressure vanishes. It should be 
noted that equation (7) is correct relativistically, but that its relativistic correctness is 
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No. 1, 1972 INFALL OF MATTER INTO CLUSTERS 3 

of no concern here, and we can think entirely in terms of Newtonian mechanics. The 
quantity is the average density inside at U; analytically, 

Pi := Pei “1“ (Pci “f" P+ Pei)Ri*/fi^ y fi ^ Ri y 

= Pci + P+ , ^ Ri • (8) 

These relations hold so long as the radii are small compared to the radius of curvature of 
the constant cosmic-time hypersurface; this condition is well satisfied for clusters of 
galaxies. Equation (7) can be written 

(!)’-<+9- 
where 

ß = Pi/Pci, y = (10) 
Pci 

and has as solution the standard Friedmann relations 

a = 

where 

2~ [C*( 1711/20) — 1] > ^ = [^(|7|1/20) - \y\^d] + Hit+, (11) 

de = 
Hidt 
a 

k=-iti/t, 

5,(0)- +! ( sinh By k = — 1 , (12) 

and appropriate limits can be taken for the singular case 7 = 0. It is clear that the cor- 
rection /+ in equation (11) is small; much smaller, in fact, than since it represents a 
departure in the backward-extrapolated behavior of the perturbation relative to the 
background. Since even U is negligible compared to the overall timescale, we will hence- 
forth neglect t+. (See, however, § V.) If one sets a — \ in equation (11) (/ = /*), and 
makes use of the fact that 7 is small to expand the trigonometric functions, it is found 
that 

27 ^ ^ 2/v 37 > 4 = = 2- (13) 

to within terms of order y2. We return to a discussion of these matters in § V in connec- 
tion with the correctness of the initial conditions. 

We now notice an interesting point, which forms the basis of the first part of this 
paper. If the perturbation is bound (i.e., 7 < 0, density inside greater than the critical 
density), it will, of course, eventually collapse to form a bound system. But the mean 
density outside the perturbation is greater than critical for some finite distance also 
(cf. eq. [8]), and the material here is bound to the cluster and will eventually fall in unless 
prevented from doing so by subsequent physical processes. (If <70 > è, the universe is 
“bound,” of course, and in this case the material in question will fall into the cluster 
before the final catastrophe. We will find here, as is invariably so, that no marked dif- 
ference in behavior through the present epoch occurs as one increases g0 past ^.) 

Let us thus confine our attention to those shells for which 7 < 0, ¿ = +1. For this 
material, the time of ultimate collapse clearly corresponds to 1711/20 = 27t, or 

/ = = npiPci112  
ic Hi 1713^2 Hi(pi- Pel)*12 

TTpe .3/2 

Hi(pi - Pciyi2 (14) 
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4 JAMES E. GUNN AND J. RICHARD GOTT III Vol. 176 

to lowest order in the perturbation. The time tc is clearly a function of and we can 
find the derivative dtc/dfi straightforwardly, combining equations (8) and (14). But 
the mass in a shell at r* is 

dM = ^Trp(rl)ri
2dri « ^irpciTiHri, 

so the infall rate at any epoch later than the collapse time Tc for the body of the 
perturbation is 

(15) 

and we can find the cluster mass as a function of time by integrating equation (15). Let 
us perform this calculation for the model case. If we set pi — pCi = p+ for the region 
ri < Ri, we obtain 

and, combining equations (16), (14), and (8), we find, for 

(h\m ~ p-±-   
\TcJ (,Pei Pci) + (Ri/r%)

Z{pd + P-f- pei) 
(17) 

Equation (17) is correct so long as p+ and pei — pd are small compared to pc¿. We 
will see subsequently that this approximation is excellent for all clusters of current in- 
terest. Now the mass interior to f = fi/Ri is given by 

M « ±TRizPcitz, (18) 

or, solving expression (17) for f3 and setting tc = /, 

mía i. j? a PsíÍEsí ~ Bii + e±Mls^l MW ~ 3^. p+ + (pc. _ Pe{)(t/Tcyi* (19) 

Thus we obtain 

M(t) = M(TC) + ^irRip+pc 
{t/Tc)

w - 1 
p+ + (Pei - Pei)(t/TC)M 

= M(TC)[\ + 
(t/Tcyi* -1 -i 

p+ p+ + {pci- pd)(¿/rc)
2/3J ’ 

(20) 

where M(TC) is the mass at Tc, i.e., the mass of the density perturbation proper, the 
mass contained within R{. Let M(TC) = Mi, the initial cluster mass. 

Our next task is evidently to find the parameter p+ in terms of observable character- 
istics of the cluster. This can be done only if we assume that the original energy of the 
cluster is conserved ; we will do this, and return to its justification later. 

If the cluster now is more than about 1.5 collapse times old, numerical calculations 
indicate that it will closely satisfy the virial theorem (Peebles 1970; Henon 1964). Thus 
the total energy 

£ « - Wi(v2) « -GMi2/2R0, (21) 

where {v2) is derivable from radial-velocity data. It should be noted that in the times 
available, two-body relaxation has hardly begun, so (v2) should not be a function of the 
masses of the galaxies. Rg is the gravitational radius, the mass-weighted harmonic mean 
of the distance between any two mass points in the cluster, and may be obtained from 
counts (Schwarzschild 1954) if the distance is known. 
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No. 1, 1972 INFALL OF MATTER INTO CLUSTERS 5 

Computing the total energy at U is a straightforward exercise (cf. § III) and yields 

E/Mi= = -GMi/2Rg (22) 
Pci 

for the initial perturbation itself. If we make use of relations (2) and (18), we find 

Hi2Ri* 
Mi = 

and, using equation (5) to calculate 
2G 

P+ = 5 / GMj \ 
Pci 6 \qoHo2RgZJ 

1/3 

1 + 

(23) 

(24) 

Note that this ratio is, to within factors of order unity, the cube root of the ratio of the 
present mean density of the cluster to the density at If we take parameters appro- 
priate to the Coma cluster (Peebles 1970) oí M = 2 X 1015 MQ, Rg = 2.8 Mpc, and use 
H = 75 km s-1 Mpc-1, or H~l = 1.3 X 1010 years, we obtain (it can be easily shown that 
if the mass is the virial mass, then the result is independent of H0) 

p^/Pci = 4.0 X 10-3(2ç,o)-1/35Diî1/39îi (25) 

where 1 + has been taken to be 1000 (it will become apparent that the results, except 
for extrapolated initial conditions like p+ and Ri, are independent of so long as it is 
large), and SDÎ and $tg are the mass and radius of the cluster in units of the adopted values 
for Coma, 4 X 1048 g and 9 X 1024 cm. 

The collapse time can be likewise calculated (cf. eq. [16]), and yields 

Tc = TT 
(i)'w=-**^(ir 

and, as expected, depends not at all on initial conditions and cosmology. 
All of this is correct, of course, only so long as the mass which has fallen in since the 

initial collapse is small; we shall find that in general this is not the case. We shall find it 
most convenient to take as independent parameter the collapse time Tc and fit the ob- 
served properties of the cluster. It is clear that the effect of the infall, again in the ab- 
sence of significant dissipation, is to make the cluster more loosely bound, thus giving 
an erroneously long characteristic collapse time if ignored. 

We have, from equations (15), (16), and (20), the ratio of total to initial mass, giv- 
en TV 

M{t) 
Mi 

= 1 + 
(t/Tcyi* - i 

1 + (1 - 2?o)(tfo¿/27r?o)2/3 ‘ 
(27) 

At this point we introduce some quantities which will greatly simplify the appearance 
of subsequent analysis. Let 

p+ /2t?0 \
w,t W1 

Me — _ ~ \IJ T ) ^ > 
Pci Pei c/ 

(Te\™ /2irqo\213, M(t) 
= = vhöo) (1 _ 2qo) ’ m{t} 

-1. 

Thus equation (27) becomes 

m(i) = He 
(t/Tc)w - 1 

He + (t/Tc)W ’ 

(28) 

(29) 
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6 JAMES E. GUNN AND J. RICHARD GOTT III Vol. 176 

and for the case of go < i, in which the universe has an infinite nonsingular future, it 
is seen that is the limiting value for the ratio of added to original mass as /—><». It 
is likewise not difficult to show that /¿o is the corresponding ratio of added mass to 
present mass as / —> . 

Some useful points should be noted. The fractional infall rate at present is 

1 dM I _ 1 dm I _ 2 ¿tp , . 
M I o \ tn dt\ $ 3to 1 -|- /¿o 

Since fxo is independent of TCJ we obtain the result that the infall rate at present (and 
hence at any time) depends only upon the accumulated mass up until that time. The 
result is a simple consequence of the fact that the behavior of a shell with given initial 
conditions depends only upon the contained mass. 

The infall rate for the Coma cluster with the assumed parameters for the present mass 
and gravitational radius as a function of g0 is given in figure 1. For g0 in the neighborhood 
of I, the rate is of order 105 M0 per year, or about a cluster mass per Hubble time. The 
fate of this material will be discussed extensively in § VI. We return now to the question 
of energetics and comparisons with observations. 

III. THE ENERGETICS OF THE TOTAL ACCUMULATED MASS 

Let us now calculate the total energy of the matter in the cluster as a function of 
time, including the material which has fallen in since the initial collapse. Consider a 
shell of initial radius > Ri. The initial kinetic energy of this shell is 

dX = lirrfpeiHfdri, 

and the gravitational potential energy referred to the center is 

= — i^Grffn (ri) peidri ; (31) 

so, using equation (2), we obtain 

dig = ÆE + <$B = 2irri
4fl?r 1 - E^]peidri L pd J 

= -lirHiWpeidn(Pei ~ Pci + — + p+ ~ — • (32) 
\ Pci Pci Ÿ i / 

The total energy is obtained by integrating equation (32) from Ri to the desired initial 
shell radius and adding the contribution from equation (22) for the initial cluster mass. 

Fig. 1.—The present mass infall rate as a function of g0 for the adopted Coma cluster parameters 
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No. 1,1972 INFALL OF MATTER INTO CLUSTERS 7 

Recalling that the density is everywhere very nearly equal to pCi initially, so that 
(4/3)7rr¿3pc¿ ~ M = Mi{\ + w), we can write the result as 

E = -SHiRtMi 
!p+ + Pci Pei 

Pci 

(i + mr^(33) 

10p£ 

We can use the relations for p+, pa — pei, and the definition of pc introduced earlier to 
reduce this to the form 

E_ 

M 
-3 

2/3 
(1 + +-M(¡(1 + »>)”* 

Mc 10 

This result needs some discussion. As calculated, it is the energy of all material which 
has fallen into the cluster (including the initial perturbation itself) since ¿ = 0. If the 
infalling material is mostly gas, it will certainly interact significantly with the gas in the 
cluster (and itself) and, as we shall see in § VI, will distribute itself roughly like the other 
mass in the cluster. If the mass falling in is mostly in the form of galaxies (or stars, or 
rocks, or black holes), it will not interact, and will travel through the cluster unimpeded 
to emerge again. It is clear, however, that it never gets farther from the center than its 
initial maximum radius of expansion. We shall see in the following section that, for Coma, 
this radius is about 6 Mpc for material currently falling in, and slightly less (about 4 
Mpc) for the material most distant which has fallen in in the past. Thus, while it remains 
close to the cluster, it is not concentrated to the center, and may be missed in calculating 
the energy from observations. Whether the material is galaxies or gas, the dissipation 
processes are, as we shall see, very slow compared to the Hubble time, so the assump- 
tion of energy conservation is a good one. 

IV. THE SPACE DISTRIBUTION OF THE INFALLING MATERIAL 

In the foregoing we have been primarily concerned with simple time development 
and have not considered the motion in detail. There are several interesting points worthy 
of attention. (1) Where is the “zero-velocity” surface—i.e., where is the shell which is 
just now turning around? (2) Where is the “critical surface” beyond which material is 
not bound to the cluster at all? (3) What is the radial density distribution of the infalling 
stuff? 

The location of the zero-velocity surface is the maximum expansion radius of that 
shell whose collapse time is twice the present age of the universe. One obtains from 
equation (7) by setting da/dt to zero that the maximum expansion radius for any 
shell is 

-Rmax = Wm = r{   . (35) 
Pi Pci 

From equation (14), however, 

Pi Pci 
Pci 

Setting tc = 2/o, we can find p, — pa, and find r,: from equation (8). The result is 

/SGM^V'T 1 + Me T/3 

v Tr2 y Li + 2-2/Vo-l ’ 
(36) 

or, in terms of the present cluster mass, 

R 
/8GWV/3r 1 + im> l1'3 

\ TT2 / L 1 + 2-2'3AJ 
(37) 
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8 JAMES E. GUNN AND J. RICHARD GOTT III 

We can write, in general, that the zero-velocity radius at any epoch t is 

R v=Q 

Vol. 176 

(38) 

The radius of the critical shell (which exists, of course, only for qo < is found by 
calculating the initial radius for which p = pCi, and noting that this shell expands al- 
ways with r oc t2lz. The result is 

(39) 

To find the run of density in the infalling material, we need only use the fact that, 
since the average density decreases outward, infalling shells do not cross (i.e., the collapse 
time is an increasing function of radius), so we need only find the volume a given shell 
occupies as a function of time, From equation (6), we find 

dr = a(r¿, t)dri + ^ 
àa{ru t) 

dfi 
1 + 

d In 
d In rj ’ 

and, since mass is conserved, 

d In aY"1 

d In rj 

(40) 

(41) 

This result is not very useful computationally, however. It is clear from equation 
that we can write 

== #max(ri) Á [//tc (^i) ] , 

(ID 

(42) 

where A(x) is a universal function which increases from 0 to 1 and decreases back to 
zero again as x goes from 0 to 1. But (cf. eqs. [16], [35]) 

am*x = dmcitc/Tc)218, (43) 

where amc is the value of amax for the perturbation proper, and we can write equation 
(17) as 

t - t r ^ T/2 - / r Mo 

" 1 c\-{Ri/fi)z{\ + Mc) - iJ ^[^(l + mo) - 1 

where rj = ri/Rf, and Rf is the initial radius of the shell just now falling in, i.e., for which 
tc = k; 77 is a convenient radial variable to label the shells. Hence 

13/2 
(44) 

d In a 

d In Ti 

d In tc 

d In rj [Ï - B(t/tc)], (45) 

where B(x) — din A(x)/dhix. Making use of relations derived before (cf. eqs. [35], 
[lb], [4], and [5]) connecting the expansion of the shells and the universe with the den- 
sity, we obtain 

/, \   b 3(1 + Mo) - l]3  
M o’ V) P° [2qo/(l - 2?0)]

3{1 + (d In tc/d In ,)[§ - 5^)]} [A (*)]* 
(46) 

with x = k/tc. It is easy to show that p(/0, r?) —> po as 77 oo. 
The radius of this shell is just 

f(kj 77) == rraKxiyi)A{to/tc) j (47) 
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No. 1,1972 INFALL OF MATTER INTO CLUSTERS 9 

and from equation (38) and the definition of rj, we have 

r(to, v) = (?~^y,3
vA (i„/4) . (48) 

The radial velocity of the shell is then given simply by 

v(to,v) = ^^(/o/O . (49) 

Thus, given the function ^4(x), we can describe the whole flow pattern parametrically 
in 77 for the range 1 < 77 < 00. For g0 < è, of course, there is a last bound shell, but an 
almost identical analysis works for the unbound shells (one can regard the collapse time 
as imaginary in this case, but caution as to signs must be exercised). The results of 
some of these calculations are presented in figures 2 and 3, and a summary in table 1. 
The quantity v/ there is the infall velocity at Rg; Ett is the energy input. This completes 
our discussion of the dynamics, but we digress briefly before considering the implications. 

V. ON THE QUESTION OF INITIAL CONDITIONS 

The choice of a perturbation in density alone, with no perturbation in velocity, is 
arguable—in fact, we shall argue below that it is not strictly correct, but that it really 
doesn’t matter. 

It is clear that the criterion we must apply to the perturbation in order that it be 
“reasonable” is that it remain a small perturbation in some sense, as we approach the 
singularity from above. Let us think first in Newtonian terms, and then argue that 
everything still makes sense in the proper relativistic setting. It is clear here that a nec- 

Fig. 2.—The run of density of the infalling material with radius for several values of qo for the 
adopted Coma cluster parameters. The dashed line is the adopted intracluster gas density. 

Fig. 3.—The radial flow velocity as a function of radius for the extreme values of <70 for the adopted 
Coma cluster parameters. The dashed line is the Hubble expansion velocity; it is seen that the velocity 
perturbation due to the presence of the cluster is essentially independent of <70 except at large radii, 
where the perturbation is small compared to the expansion velocity. 
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10 JAMES E. GUNN AND J. RICHARD GOTT III Vol. 176 

TABLE 1 

Inf all Parameters 

To Tc Mi M,t Vf E,t 
(109 yr) (109 yr) (1016 MQ) (106 MQ yr"1) (103 km s"3) (1046 ergs s"1) 

0.01.... 12.4 4.35 1.75 0.15 1.84 1.6 
0.03.... 11.9 4.05 1.56 0.30 1.82 3.1 
0.1  10.9 3.64 1.29 0.62 1.77 6.1 
0.25.... 9.7 3.44 1.13 1.05 1.70 9.6 
0.5  8.6 3.54 1.11 1.55 1.62 12.9 
1.0   7.4 3.90 1.20 2.27 1.51 16.3 
2.0   6.1 4.42 1.47 3.30 1.33 18.5 

essary criterion is that infinite density occur at the same time for all shells of matter; 
i.e., that r = 0 at some time / = 0 for all shells. It is also clear that this is incompatible 
with equation (7) and the condition that Hi = {rtt/r)i be the same for all shells at the 
initial epoch; shells whose average internal density is highest will have been decelerated 
more than the others, and hence their radii will vanish “soonest” as one approaches 
¿ = 0 (i.e., at larger t). The discrepancy, in fact, has been noted and its magnitude 
evaluated (see eq. [13]). 

Making use of equations (11) and (14), one can easily show that the behavior at small 
t for a given shell for which r = 0 at ¿ = 0 is 

r = (n»/4)(/c/)2/3[l - , (50) 

where k is the energy parameter defined in equation (12) and k = 1271-4“1 for bound 
(k = +1), 6Vœ

z{GM)~l for unbound (k = —1) shells. Here Vœ is the terminal expan- 
sion velocity. From this relation one finds 

H = r,t/r = ! [l - A (^2/3] > q = -rAtr/r,? = §[1 + \k{Kt)™]. (51) 

The average internal density is most easily found by making use of the relation (4) 
at this epoch: 

. 3H2? 
P 47rG _L_ri + - óttWL ^ 20 

(52) 

The question now arises: To what may we compare this density? In the preceding 
we compared it to a “critical” density which we shall here call pc#: 

3H2 

pcH - SttG 

.1 

ótPG 
(53) 

This density, however, is a function of position as well as epoch, since k is different for 
different shells. It is also clear that this “critical” density is not the density of a critical 
shell which has been expanding since ¿ = 0 ; for such a shell, 

1 
P Pet 

6irt2G ' 
(54) 

Thus pa is a suitable constant “background” against which to measure the perturbation. 
Then 

. _ _ k(Kty» 
P Pct 40ir¿2G ’ (55) 
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= kid)2'3 

UtPG ' 
(56) 

Thus constant H and constant t are not equivalent, but the only difference in the de- 
scription of the initial conditions is a constant factor of 5/3 in the density contrast, in 
the sense that a density contrast evaluated at a single epoch of 60 percent of that which 
we have considered produces the same subsequent evolution—but the specification of 
initial conditions on an initial hypersurface of constant H is in every way equivalent to the 
specification at constant epoch. The amplitude of the perturbation is nowhere of interest 
to us except insofar as it is reflected in the later behavior, which we have calculated 
correctly. 

The relativistic equations of motion are the same for a proper choice of radial coor- 
dinate, and the same remarks apply to the initial hypersurface. The only real difficulty 
comes because the very early universe was almost certainly radiation-dominated, so our 
equations of motion do not hold for very early epochs. It is possible that a large per- 
turbation in the primeval radiation field could change the character of the subsequent 
motion in the nearly-empty models, for which the epoch of radiation dominance ends a 
relatively short time before recombination. The other factor we have neglected is radi- 
ation viscosity before recombination, but this is a significant effect for the mass range 
we are interested in again only for the nearly-empty models (Peebles and Yu 1970). 

VI. SOME ASTROPHYSICAL IMPLICATIONS 

a) The Growth of Cluster Galaxies prior to t — Tc 

Let us first consider the times previous to Tc, the collapse time for the cluster. It is 
widely believed on the basis of the kind of energy arguments we have made for clusters 
that galaxies formed very early in the expansion of the universe, their collapse time 
corresponding roughly to their present dynamical times, of the order of 108 years. This 
corresponds to perturbations of much larger amplitude than those required to make 
Coma-style clusters (cf. eq. [16]). It should be noted, however, that the environment 
of cluster galaxies during the first few billion years of their existence is very different 
from galaxies of the field; in essence, the cluster galaxies find themselves in a universe 
with a much larger deceleration parameter than those in the field. We cannot expect 
the infall theory developed here to apply quantitatively to galaxy-sized perturbations 
because of radiation-pressure effects on the velocity field in early epochs, but it is in- 
structive to consider some qualitative aspects. If tc is the galaxy collapse time and Tc 

the cluster collapse time, the parameter (eq. [28]) for the galaxy in the background 
of the cluster becomes 

-(Tc/0
2/3, (57) 

and the galaxy mass ifflg grows, for t > tc, like 

= 9Wo[ 
0/4)2/3 - (t/Tcyi3i 

1 - (t/Tc)
2'3 J 

(58) 

as long as the galaxies are still a minor perturbation on the total mass of the cluster. 
®W¿) g°es to infinity, of course, at t = Tc, and this result is clearly unphysical; exhaus- 
tion of material, if nothing else, will limit the growth. This result suggests that cluster 
galaxies grow by spherical accretion until the material in the cluster is essentially ex- 
hausted. It is important to note that the bremsstrahlung cooling time for the gas falling 
into young galaxies is quite short; that time is approximately (Spitzer 1962) 

Tbrems = 9 X KFw.-Tg1'2 yr , (59) 
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where Tg is the temperature in units oí 108 ° K. The gas will be about 106 °-107 ° K if 
its infall velocities are randomized, and ne is unity or greater if the gas at any time makes 
up even a few percent of the mass of the galaxy; thus the cooling time is short compared 
to the dynamical time of the galaxy, and the accreted material can be easily incorpo- 
rated into the interstellar material and thence into star formation in the galaxy. It is 
important to note that energy is not conserved in this process, and there is no reason to 
suppose that the binding energy per unit mass of these accreting galaxies will be ap- 
preciably smaller than that of their cousins in the field. (The field galaxies are also 
accreting, of course, though much more slowly, and there is evidence from the high- 
velocity clouds that our own galaxy may still be doing so; see also Larson [1972], who 
has commented on this point.) It thus seems likely that clusters are much more efficient 
than the field in galaxy-building, even though the cluster did not exist as an entity at 
the epoch of galaxy formation ; and it is possible that essentially all the material in the 
protocluster is incorporated into galaxies prior to Tc. 

It is interesting to speculate also that in a more realistic perturbation than the rec- 
tangular one considered here, the central portions might well have higher densities and 
shorter TVs, and that the galaxies there might accrete more efficiently than those in the 
outskirts. This might provide a mechanism for formation of the supergiant galaxies 
sometimes found in the centers of clusters. Another possible mechanism for their growth 
is discussed in the next section. 

b) Events at and after the Collapse 

One seemingly inescapable consequence of the collapse is the shock randomization of 
the infall energy of any remaining gaseous debris. We shall show below that any such 
debris cannot have survived as relatively cool, dense clouds. Thus, following the collapse, 
the gaseous intracluster medium will have a temperature corresponding roughly to the 
three-dimensional rms velocities of the galaxies, about 1700 km s-1 for Coma, or about 
7 X 107 ° K for a mixture that is 90 percent H and 10 percent He by number. To discuss 
the fate of this material, we need to have a model for the cluster’s density and gravita- 
tional field. We adopt the following distribution for the total density: 

_ poe-rlLa2 

p~ r2 + a2 ’ 
(60) 

with a = 170 kpc, po = 2.6 X 10“25 g cm-3, L = 1.7 Mpc. This fits the derived density 
distribution of Peebles (1970) to within the errors of determination of that distribution, 
and fits his theoretical wings fairly well where the count data are poor. This distribution 
mocks up an isothermal distribution with (v2)112 = 1700 km s-1 with fair accuracy to 
radii of about 1 Mpc, but gives lower densities for larger radii in agreement with the 
count data. The total mass is 4.0 X 1048 g, our adopted value. We assume that the gas is 
similarly distributed, for want of a better hypothesis. We shall see that it is likely that 
the gas is never an appreciable contributor to the total density (after Tc). (One can, of 
course, solve the hydrostatic equation for gas in a gravitational field generated by the 
distribution [60], but the dynamical times in the outer parts are comparable to the total 
times of interest, and there are ram-pressure and flow effects from the infall, so a more 
careful treatment, short of a detailed numerical model, seems hardly justified.) Numeri- 
cal models of the collapse (Henon 1964; Peebles 1970) indicate that a density distribu- 
tion differing only slightly from the present one is established in the period Tc < t < 
3Tc/2, after which the cluster is essentially quiescent, but during which the dynamical 
evolution is quite violent. 

Once the gas has been heated, the pressureless accretion onto galaxies that we have 
discussed clearly ceases, and since the kinetic velocities in the gas are very large com- 
pared to the kinetic velocities in galaxies, there should be no accretion at all. There are, 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



1 9
7 2

A
pJ

. 
. .

 1
76
 

IG
 

No. 1, 1972 INFALL OF MATTER INTO CLUSTERS 13 

however, some interesting effects if there is any gas left. We here discuss briefly some of 
these. 

Consider first a cluster with a hot, smooth (the distribution must clearly be smooth 
if the temperature is high) intracluster medium, and a galaxy moving through that 
medium. The interstellar material in the galaxy feels the ram pressure of the intracluster 
medium as it flows past. This ram pressure is 

Pr « PeV2 , (61) 

where pe is the external (to the galaxy, i.e., the intracluster) density, and v the velocity 
of the galaxy. If the galaxy is a typical spiral, this material will be held in the plane by 
a force per unit area which cannot exceed 

g = 2TrG(T8<Tg , (62) 

where <7S is the star surface density and ag the gas surface density on the disk of the 
galaxy. For a typical large spiral with a mass of 1011 Mö and a radius of 10 kpc, <rs ~ 
0.06 g cm-2; a gas layer 200 pc thick with a density of one atom per cm3 has a surface 
density of 10-3 g cm“2, corresponding to a restoring force of about 2.5 X 10”11 dyn cm“2. 
The ram pressure, from equation (61), is, for a galaxy moving at the rms velocity of 
1700 km s“1, 5 X 10“dyn cm“2; where n is the intracluster number density. Thus if 
the intracluster density exceeds 5 X 10~A atoms cm~z, then a typical galaxy moving in it will 
he stripped of its interstellar material. The central density corresponding to the distribu- 
tion (60) has n = 0.16, so if as little as 3 X 10“3 of the mass of the cluster is in gas, a 
galaxy moving through the central regions will be stripped. We will see below that the 
X-ray data indicate that the present gas density comprises roughly 3 percent of the 
cluster mass, so we expect no normal spirals in the central regions of clusters like Coma. 
The lack of such systems is, of course, observed, and it was originally suggested (Baade 
and Spitzer 1951) that galaxy collisions were responsible, though modern cluster param- 
eters make that somewhat unlikely. 

Consider next a very massive galaxy near the center of the cluster, moving slowly. 
This situation will be met, for instance, in the case of the central supergiants in many 
clusters, and occurs not quite so “purely” in the case of NGC 4874 and 4889, the giant 
central double in Coma. The interaction of the interstellar material and intracluster ma- 
terial in this case is very different. The exact behavior probably cannot be predicted 
without recourse to detailed numerical calculation, but a few features can be investigated 
qualitatively. Two processes compete in this case: on the one hand, heat is conducted 
rather efficiently from the hot, tenuous gas into the cooler gas in the galaxy, and on the 
other hand, energy is radiated efficiently in bremsstrahlung by the cooler, denser galactic 
gas. The relative importance of these processes can be estimated under some rather re- 
strictive assumptions. The conclusions are reasonably clear; if conduction “wins,” the 
interstellar medium will be heated to 108 ° K and dissipated; if cooling is dominant, the 
ensuing behavior is likely to be much more complicated but one effect is that the galaxy 
acts as a trap for the hot gas; thus the cD galaxies might grow once again at the expense 
of the intracluster medium. One can estimate the effect easily, once parameters for the 
galaxies are derived. In Coma, one can get an estimate of the masses involved by the 
simple observation that NGC 4889 and 4874 completely dominate the central regions of 
the cluster. If one makes the reasonable assumption that these objects are not centrally 
located by chance, that they “belong” in the center, then they move there essentially 
under their mutual gravitation alone. A lower limit to the mass is then obtained by as- 
suming that the plane of their orbit contains the line of sight, and that they are at their 
maximum separation. Their projected separation is 170 kpc for ¿7 = 75 km s“1, and 
their velocity difference is 700 km s“1 (Humason, Mayall, and Sandage 1956). The 
computed systemic mass is then 2 X 1013 MQ. The projection effects and the other 
galaxies near the center contribute oppositely, and we take 1013 M0 each as a likely mass. 
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This seems very large, but well-exposed photographs show that the envelopes of these 
objects are very extensive and probably overlap; a detailed photometric and dynamical 
study of the central regions is under way (Sargent and Gunn, in preparation). 

We take 30 kpc for the gravitational radius of these galaxies, a value which comes 
from rather uncertain direct measurement on deep photographs; fortunately, neither 
this quantity nor the mass need be very accurately known for the argument below. These 
values and the virial theorem give rms velocities of 1000 km s-1, and equivalent tem- 
peratures of 3 X 107 ° K, not terribly much smaller than for the cluster itself. 

The conductive input is of order 

J = 47mc(re - T%) , (63) 

where r is some radial scale for the system and k is the conductivity; Te is the exterior 
temperature, and Ti the interior temperature. This relation is satisfied only if the mean 
free path X is small compared to r; X « 50 pc vT1 (Spitzer 1962) for electrons or protons 
at 3 X 107 ° K. The conductivity k is, in the absence of a magnetic field, about 1014T8

5/2 

(Spitzer 1962) in cgs units, so J is about 1044 ergs s_1. The bremsstrahlung luminosity 
is of order (Spitzer 1962) 

Z,& « 6 X 10“23r8i
1/2w¿2r3 ergs s“1 « 2 X 104V ergs s_1. (64) 

Thus if, at the time of collapse, the central galaxies have interstellar densities of about 
0.1 cm-3 or more, they can trap and refrigerate the intracluster gas. Under the crude 
assumption that every proton impinging upon them is trapped, each collects in this way 
about 2 X 106weMo/yr; we shall see that the present central density ne is likely about 
5 X 10-3 cm-3, so if the primordial density were also of this order, the central galaxies 
could double their mass in 109 years. 

The conductive input into smaller systems competes with the ram-pressure effects 
in removing interstellar material, but is not so important. If the intracluster density 
becomes high, the heating of gas in cluster galaxies by bremsstrahlung X-rays can also 
be important, though here again the ram pressure is so effective that it matters little 
that it has help. 

Note that, at least in Coma, the total amount of gas that could have been incorpo- 
rated into the giant central members is small compared to the cluster mass, since their 
total mass presently is a small fraction of the cluster mass. Since the total mass of gas 
at present presumably contains some contribution from infall and is still a small frac- 
tion of the cluster mass, we conclude that the gas has never made a significant contri- 
bution to the mass since the collapse. 

c) The Intracluster Medium at Present: Infall 

The cluster, on our model, has been quiescent (dynamically) for, typically, 4^-6 X 
109 years. Observationally, the cluster seems to consist entirely of elliptical and SO gal- 
axies with old stellar populations (Tumrose and Rood 1970). The minimum age of these 
systems is a little difficult to estimate without a detailed stellar content analysis, for 
which there are as yet insufficient data, but it is difficult to see how systems so red 
could be less than 109 years old—i.e., at least 109 years have elapsed since epochs of 
significant star formation. Indeed, if the picture prescribed here has any validity, the 
material out of which stars form should have been absent in nearly all the systems in 
the cluster since the collapse, with only the central giants being possible sites for star 
formation. From a sample of 100 spectra of cluster galaxies obtained for a dynamical 
analysis (Sargent and Gunn, in preparation), the only two with emission lines ([O n] 
X3727) are the central giants, but the absorption spectra of these objects show no ap- 
parent differences from any of the others except possibly for effects which are traceable 
to their very large velocity dispersions. 
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The X-ray results of Meekins et al. (1971) and Gursky et al. (1971) indicate that the 
cluster is an X-ray source with a spectrum like that of optically thin bremsstrahlung 
with a temperature of about 7 X 107 ° K, and a flux of about 0.03 photons cm“2 s“1 in 
the band 0.7-4 keV. With the gas distribution given in equation (60), with H = 75, and 
assuming that the gas is 10 percent He by number and the rest H, one obtains for the 
bremsstrahlung flux 

kT 
JE = 4.2a2 ^ e-E/kT counts cm"2 s"1 keV"1, (65) 

£L 

where a is the fraction of the cluster mass which is in gas. From this, using T = 7 X 
107 ° K, one obtains a = 0.03. This value is somewhat dependent on the Hubble con- 
stant; it can easily be shown to be proportional to #(f3/2 (remembering that the virial 
mass and the size of the cluster also depend on Ho). 

The naïve interpretation of the result is, in the present context, somewhat shattering; 
we will discuss it briefly and then attempt to defend it as the only reasonable one. A 
brief discussion of some of these points has appeared previously (Gott and Gunn 1971). 

Consider the possible origin of the gas. Some may have been left over from the be- 
ginning; certainly any remaining gaseous material at collapse must contribute to it. 
The interstellar material which was swept from the spirals and irregulars (if any) must 
contribute to it. Infall must contribute, and here one meets a difficulty. From figure 1 
it is seen that for a “reasonable” value of q0 (near J), the present mass of gas, 6 X 1013 

Mq, will accumulate in 4 X 108 years at the present infall rate, and that the rate (eq. 
[31]) was higher in the past. Furthermore, one must go to small values indeed for qo in 
order that the accumulated mass since the collapse be as small as 3 percent of the virial 
mass; values smaller than 0.01 are indicated, for which our simple theory is inadequate, 
since for such small values clusters cannot be assumed to contribute negligibly to the 
total mass density. Such small values are absurd, of course, since galaxies already make 
up a density sufficient to make qo « 0.02 (Oort 1958; Shapiro 1971). For very small ^o, 
the infall rate and the total infallen mass since collapse goes approximately as ç0

2/3 

(cf. eq. [31]). Thus, if we assume that all the gas is infallen material, that no gas has 
been lost, and that galaxies make up a density corresponding to qo = 0.02, one obtains 
a value for qo by demanding that 

(M„ - Mi) (g0 ~0
Q'° -) = > (66) 

or, approximately, since Mo — Mi « 1.6 qo2lzMo, and Afgas ~ 0.03 Mo, 

qo - 0.02 = 0.02ç0
1/3, (67) 

or qo « 0.026. The value 0.02 for the galaxy density is very uncertain, but the conclusion 
is that the intergalactic gas density is smaller than or, at most, comparable to the density in 
galaxies, and qo itself must be very small, unless there is much unseen mass in other 
forms, either in zero-rest-mass fields or in collapsed, low-luminosity objects such as 
lower-main-sequence stars, small black holes, rocks, or whatever. 

This conclusion can be escaped in a number of possible ways, none of which we believe 
are viable, though the severity of our limit may be eased somewhat. Clearly any gas 
remaining in the cluster after collapse, and the remnant interstellar gas of the member 
galaxies, makes the problem worse (i.e., it decreases the allowable gas infall). 

Some gas can have been incorporated into the central galaxies, but not much, as we 
have seen. The gas cannot be making galaxies presently, since there are no young systems 
in the cluster. The age limit of 109 years for the youngest galaxies is a bit uncertain, but 
if we say that all the infalling mass were incorporated into galaxies until 109 years ago, 
and none thereafter, we obtain with reasoning essentially the same as before that qo < 
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0.1; the hypothesis, however, seems a bit artificial. Indeed, the gas upon infall suffers 
an adiabatic compression, and if the adiabatic exponent is greater than 4/3, it can 
easily be shown that such compression is a stabilizing influence against gravitational 
fragmentation. The relevant value for these conditions is clearly 5/3, so that infall 
should not induce the formation of galaxies. The infall velocities are quite high (cf. fig. 3), 
and at some point must be randomized in an essentially stationary shock. The location 
of this shock depends on the internal and external gas density, and is sensitive to the 
form of the density distribution assumed, but typically will occur in the vicinity of the 
gravitational radius, about 3 Mpc. The resulting temperatures are of the order of the 
kinetic temperature of the cluster (and of the X-ray spectrum as fitted to bremsstrah- 
lung), about 7 X 107 ° K. Once so heated, galaxies can clearly not form. 

But does the intracluster medium have to be smooth? Perhaps there are clouds in 
which the gas is trapped and cooled; perhaps the intergalactic medium is sufficiently 
clumpy that there is no shock, the clouds avoiding collisions altogether. 

That this cannot be the case can be demonstrated very simply. In order that there 
be clouds in the cluster, it is necessary that they be stable against tidal disruption and 
gravitational contraction (since there are no young stellar systems, and therefore their 
cooling time must be long), and they must avoid collisions with each other. There is, in 
addition, the powerful constraint imposed by the X-ray flux. 

We approximate the cluster with a uniform sphere of radius R = 2 Mpc, mass M = 
2 X 1015 M0, and kinetic temperature Tkin = 7 X 107 ° K (for our standard composi- 
tion). A fictitious cloud of gas with the same mass, radius, and temperature would have 
a bremsstrahlung cooling time tCOoi of about 1.3 X 1010 years. Now let the cluster contain 
N clouds of radius r = ßR, density p = 7pciuster, and temperature T = bT^. Let the 
ratio of external pressure (from the intracluster medium) to the cloud internal pressure 
be /. Then the virial theorem demands, if the clouds are in equilibrium, 

Ô(l-/) = 0V (68) 
Tidal stability requires that 

7 > 1 . (69) 

Let the cloud cooling time be /cioud = ^cooi ; then 

bll2/y = t . (70) 

Let p be the formal average number of collisions with another cloud in the time since 
collapse. Then taking the collapse time to be 4 X 109 years and the velocity to be the 
cluster rms velocity, we have 

P=(k- Tc)irrh ^ = 0„ - Tc) ~ ^ « 4A^ . (71) 

These relations can be solved to yield 

N = 4r2-(f-yy , Ó = 7V , ß = r7
1/2(l - /)1/2 • (72) 

The fraction a of the cluster mass that is in clouds is 

a = Nyß* = i/>73/2r(l - Z)1'2, (73) 

and the X-ray data require that if 5 > 0.1 (so that the X-rays are observed), 

f72=Í¿73/2(l-01/2< 0.03, (74) 

since the observed X-ray luminosity is 0.03 of that appropriate to our gaseous cluster. 
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Now r must be larger than about j if the clouds are to survive to the present epoch, and 
p must, of course, be of order unity or smaller, since collisions at the rms velocity of the 
cluster must certainly be disruptive. First, assume that / = 0. Then inserting 7 > 1, 
^ < 1, r > ^ in equations (72) yields N <\, b ß >%, and we have the marginal 
possibility of one hot cloud in the cluster center—but the X-ray luminosity of such a 
cloud would be larger than the gaseous cluster and is ruled out by the observations. 
Actually, such a single cloud need not satisfy the tidal requirement, but its existence is 
precluded by the X-ray data. 

Clearly, objects one would like to call “clouds”—things small compared to the cluster 
radius—are possible only if 1 —/<<C 1, i.e., clouds which are essentially in pressure 
equilibrium with negligible self-gravitation.1 Such objects must still be hot, however, to 
avoid cooling and collapse, and the X-ray data preclude their contribution of even as 
much mass as the supposed hot intracluster medium (which must still be present to 
provide pressure equilibrium). 

A more realistic picture is even more discouraging. The cluster is strongly centrally 
condensed, so y must exceed not just unity, but the highest average interior density it 
encounters—a number which might be more like 5 or 10—which would rule out clouds 
altogether, since it would require that any clouds be fewer than one in number, hotter 
and bigger than the cluster (the “external” pressure must clearly be small in that case!). 

We conclude that the intracluster medium is smooth and hot, and that the gas which 
has fallen has not been incorporated into condensed objects in the cluster. 

One possibility remains, that the gas has somehow been held at bay or even ejected. 
Two possibilities present themselves: normal stellar winds from the galaxies, and large- 
scale violent events. If is even as small as 0.1, the mass infall to the present epoch is 
35 percent of the cluster mass; the energy input to the cluster of this material (taking 
as velocity the infall velocity at Rg) is 6 X 1046 ergs s_1. To keep the material at bay 
requires an average input of at least this much, in mass outflow; and if the mass outflow 
is not to contribute itself to the intracluster medium, it must occur at velocities large 
compared to the kinetic velocities. With present ideas of quasar luminosities, it would 
require an equivalent of 10 “average” QSOs at all times in the cluster to disperse the 
material; stellar winds are woefully inadequate energetically, and their velocities too 
low anyhow. 

Thus, our simple calculation earlier stands, and with it the inference about the small- 
ness of #o. 

The other possible weakness of our arguments lies at the very beginning, in the as- 
sumption that clusters grow from small density perturbations; a highly inhomogeneous, 
turbulent early universe might produce “isolated” clusters which do not interact sig- 
nificantly with their surroundings, but there seems no natural way to do this, or to 
avoid the situation, on some sort of average, that we discuss here. The Coma cluster, 
of course, may be an atypical example in the smallness of its X-ray luminosity and 
inferred low gas density, but the situation will become much more difficult if other rich, 
collapsed clusters also display those characteristics. 

d) Other Clusters 

The collapse timescales for Coma are representative of relatively rich, tightly bound 
clusters; the times are enormously longer for small aggregates like the Local Group. The 
present is very much the epoch of cluster formation, and, from the results we have obtained, 
it is perhaps possible to draw a few conclusions about clusters in general. 

The violent heating at collapse and subsequent energy input via infall should be a 
phenomenon common to all clusters that have collapsed. Thus it becomes possible to 

1 Silk and Goldsmith have shown recently (1972) that collapsed low-tèmperature clouds supported 
by rotation can exist within very narrow parameter limits. It is not clear to the authors why these objects 
do not cool and become galaxies. 
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understand the difference between the “open” clusters and the “regular” clusters and 
their populations (Abell 1965). The open aggregates are irregular because they have not 
undergone violent quasi-relaxation; they have not yet collapsed. For the same reason, 
they have generated no hot intracluster medium, and they can (and do) contain normal 
spiral galaxies because these have not been swept clean. The “regular” objects have 
collapsed, and contain no spirals (except for an occasional one just falling in from out- 
side). Thus irregular, open clusters should not be X-ray sources—at least not “hot” 
X-ray sources. 

e) The Local Group and Infall on the Galaxy 

It is perhaps instructive to consider the infall problem for the Local Group—or, more 
precisely, in the Local Group, i.e., the accretion by the Galaxy. Oort (1970) has recently 
estimated that the Galaxy accretes about 0.9 percent of its mass per 109 years, as evi- 
denced by the high-velocity clouds. (This estimate includes not only the observed clouds; 
inferences are made about a general flow, and the total infall is calculated.) It is difficult 
to attach an error to this figure—Oort estimates that it is correct to, perhaps, a factor 
of 2. 

If we assume that the Local Group is bound with a collapse time Tc > /0, then we 
can show, by using equations (58) and (28), that the present infall rate is 

1 dM\ = 2 a0 

M dt\, 3/0i ~ ao/^c)
2/3, 

where a0 is the present mass fraction in gas. The assumption that the Local Group is 
just marginally bound (rc—> œ) is consistent with consideration of the dynamics 
(Herbst 1969) and also with a detailed consideration of the M31-Galaxy system (Oort 
1970). The characteristic total mean density in the Local Group is 3 X 10“29 g cm“3 

(the mass of the Galaxy and M31 spread over a sphere 600 kpc in radius). If ç0 is small, 
¿o/o ~ 1, and we expect a cluster of galaxies that is marginally bound (Tc-+ oo) to 
have a mean density of ^4.7 X 10“30 g cm“3 at the present epoch. A cluster with Tc = 
2/o should have a mean density of ^2.6 X 10“29 g cm“3 (cf. eqs. [39] and [38]). The 
expected density with Tc = 2/0 agrees well with the observed value for the Local Group. 
Thus, let us assume that for the Local Group 2k < Tc < oo. Then using Oort’s rate 
we find 0.07 < «o < 0.18. The mass fraction in gas, while somewhat uncertain, seems 
not unreasonable in comparison with our formerly derived figure of some 30 percent in 
the field and 3 percent in Coma. Our values of ao correspond to gas densities of 1 to 3 X 
10“6 atoms cm”3 within the Local Group. 

VII. SUMMARY AND CONCLUSIONS 

In the first half of the paper we have developed a simple theory of spherically sym- 
metric, pressureless infall from an originally expanding medium, and in the second half 
we have applied those results to some phenomena in clusters of galaxies, specifically 
the Coma cluster. 

The salient points in the development are the following. 
1. It seems likely that infall onto cluster galaxies during the early phases prior to 

dynamical collapse of the cluster can result in extremely high “efficiency” of galaxy- 
building. It is possible that little or no intergalactic gas is left in this process. 

2. The remaining medium, if any, is shock-heated at the time of collapse to approxi- 
mately the kinetic temperature of the cluster; normal spirals are swept clean of inter- 
stellar material by this gas, and under certain circumstances central giant galaxies can 
grow further at its expense. 

3. Infalling gas from outside is heated in a standing shock to the temperature of the 
intracluster gas and distributes itself smoothly within the cluster. The X-ray data strong- 
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ly limit the amount of gas that may have fallen in, and one infers that the gas density 
in intergalactic space is very low; in a pressureless Friedmann cosmology, the decelera- 
tion parameter is smaller than 0.1, and is likely much smaller. The universe must be 
open (hyperbolic) unless most of its mass is hidden in zero-rest-mass fields or in col- 
lapsed low-luminosity objects. 

4. The distinction between open, irregular clusters and compact, regular ones is sug- 
gested to be simply that the latter are older, and the former younger, than their collapse 
times. In view of point (2) above, this explains why spirals are found in open clusters and 
are not found in compact ones. X-ray observations provide an easy method of checking 
this assertion. 
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