THE ASTROPHYSICAL JOURNAL, 168:283-311, 1971 September 1 © 1971 The University of Chicago All rights reserved Printed in U S A

## RADIATION FROM A HIGH-TEMPERATURE, LOW-DENSITY PLASMA: THE X-RAY SPECTRUM OF THE SOLAR CORONA

WALLACE H. TUCKER AND MARVIN KOREN\*

American Science and Engineering, Cambridge, Massachusetts 02142 Received 1971 February 13

## ABSTRACT

The results of calculations of the 0.5–70 Å X-ray spectrum of a high-temperature, low-density plasma are presented. The temperature range is  $6 \times 10^{5}$  °–10<sup>8</sup> ° K, and the elemental abundances characteristic of the solar corona have been assumed. We have considered the processes of line emission following electron collisional excitation, radiation resulting from recombination, bremsstrahlung, and two-photon decay following the excitation of the metastable 2S state in hydrogenic and helium-like ions.

## I. INTRODUCTION

We present here the results of calculations of the 0.5–70 Å X-ray spectrum of hightemperature, low-density plasma having an electron temperature in the range  $6 \times 10^5$  °–10<sup>8</sup> ° K and elemental abundances equal to those generally believed to exist in the solar corona. We have made the usual assumptions of steady-state conditions and negligible absorption and have considered the processes of line emission following electron collisional excitation, radiation resulting from recombination, bremsstrahlung, and the two-photon decay following the excitation of the metastable 2S state in hydrogenic and helium-like ions.

Apart from differences in the values assumed for some of the cross-sections, these calculations differ from previous ones (Culhane 1969; Landini and Fossi 1970, and references cited therein) primarily in that we have included a large number of lines, some 459 in all, and in the consideration of the two-photon process. It turns out that this latter process is not too important, so our results for the continuous spectrum are not significantly different from those of Culhane (1969) and Landini and Fossi (1970). However, because of the much larger number of lines considered, our results for the total spectrum differ somewhat from those of Landini and Fossi (1970) with regard to both the relative importance of line radiation versus continuum radiation and the detailed shape of the spectrum.

In § II the basic assumptions and equations employed in the calculations are discussed, and in § III the results are presented in the form of tables and graphs.

### **II. BASIC EQUATIONS AND ASSUMPTIONS**

#### a) The Discrete Spectrum

In a low-density plasma such as the solar corona, line emission results from downward radiative transitions following the population of an excited level either by recombination or by inelastic collisions. The emitted photon may be resonance absorbed and reemitted, but we assume here that it eventually escapes from the hot plasma.

## i) Line Emission following Electron Collisional Excitation

The X-ray emission lines in the coronal spectrum are produced primarily as a result of this process. The energy emitted per unit volume per unit time due to excitation of level n followed by a downward transition to a level n' is given by

$$dE_{L,Z,z}(nn')/dtdV = P_{L,Z,z}(nn') = N_e N_{Z,z} E_{Z,z}(nn') \langle Q_{Z,z}(n)v \rangle, \qquad (1)$$

\* Present address: U.S. Army Strategic Communications Command, Fort Huachuca, Arizona

where  $N_e$  is the electron density,  $N_{Z,z}$  is the density of ion species  $Z,z, E_{Z,z}(nn')$  is the energy of the line,  $Q_{Z,z}(n)$  is the cross-section for excitation of the level *n* from the ground state, *v* is the electron velocity, and the angular brackets denote an average over a Maxwellian distribution of electron velocities. Excitation cross-sections are often expressed in terms of the collision strength  $\Omega$ :

$$Q_{Z,z}(n) = \pi a_0^2 \Omega_{Z,z}(n, k_i^2) / k_i^2, \qquad (2)$$

where  $k_i^2$  is the incident electron energy in rydbergs and  $a_0$  is the Bohr radius. Since  $\Omega$  is a slowly varying function of energy, the rate of radiative energy loss per unit volume for species  $Z_i$  and transition n-n' is given approximately by

$$P_{L,Z,z}^{ex}(nn',T) = 1.86 \times 10^{-19} T_6^{-1/2} N_e N_{Z,z} \langle \Omega(n) \rangle [E(nn')/I_{\rm H}] B(nn') \\ \times \exp\left[-E_{Z,z}(n)/kT\right] \quad \text{ergs cm}^{-3} \, \text{sec}^{-1} \,, \tag{3}$$

where  $T_6$  is the electron temperature in millions of degrees,  $\langle \Omega \rangle$  is an appropriate average value of the collision strength which is approximately equal to its value at  $k_i^2 = 1.5 E(n)$ ;  $E_{Z,z}(n)$  is the excitation energy of the level n;  $I_{\rm H}$  is the ionization potential of hydrogen; and B(nn') is a branching ratio giving the fraction of decays of excited state n that lead to the final state n'.

In order to compute the intensity of line radiation as a function of temperature, one needs to know the density, the abundances of the elements, the ionization equilibrium, the collision strengths, the wavelengths of the lines, and the excitation energies.

Abundances of the elements appropriate to the solar corona were taken to be (Pottasch 1967; Jordan 1966*a*, *b*):  $A(\log N) = H(12.00)$ , He(11.30), C(8.70), N(7.80), O(8.50), Ne(7.60), Mg(7.50), Si(7.70), S(7.30), Ca(6.30), Fe(7.70), and Ni(6.70).

As pointed out by Pottasch, the abundances relative to hydrogen are uncertain by about a factor of 3 due to uncertainties in the methods for determining the hydrogen number density. We have adopted a value for N(Si)/N(H) of  $5 \times 10^{-4}$ , which is the value suggested by Jordan and used by Landini and Fossi (1970) and Culhane (1969).

Jordan's (1969, 1970) calculations of the ionization equilibrium were used. She included the processes of collisional ionization from the ground state, collisional excitation followed by autoionization, radiative recombination, and dielectronic recombination reduced by a density-dependent term. This latter term was computed for a particular model for the solar chromosphere and corona according to which log  $N_eT \approx 14.90$  for log T < 6.10, log  $N_e = 8.30$  for log  $T \ge 6.10$ .

A comparison of her results with results of similar calculations in which the full dielectronic-recombination rate was used indicates that the population of a given ionization state may sometimes be changed by as much as a factor of 4, but for ions which make important contributions to the X-ray spectrum of the solar corona the effect is usually less than 10–20 percent. It should also be noted that for these ions, the difference between the results of Jordan and other similar calculations (Allen and Dupree 1969; Cox and Tucker 1969) is also small, not more than 20 percent.

For calcium, we used the ionization-equilibrium calculations of Burgess and Faulkner (private communication). In these calculations the processes of collisional ionization from the ground state, radiative recombination, and dielectronic recombination were included.

In Table 1 the atomic data used to compute the line intensities are listed. The energy levels needed for the calculations were obtained from Kelly (1968), Chapman (1969), Connerade (1970), Moore (1949, 1952), Widing and Sandlin (1968), Walker and Rugge (1970), Rugge and Walker (1970), and Evans and Pounds (1968). Where necessary, energy levels were determined by isoelectronic interpolation and extrapolation. The specific reference for each line is given in Table 1. The lines referenced WS (Widing and Sandlin), RW (Rugge and Walker) and EP (Evans and Pounds) have been observed in the solar corona.

| 3                |                                                                | Wavelength  | Excitation<br>Energy | Effective<br>Collision |                                         |
|------------------|----------------------------------------------------------------|-------------|----------------------|------------------------|-----------------------------------------|
| Ion              | Transition                                                     | (Å)         | (eV)                 | Strength               | Reference*                              |
| <u>С vi</u>      | 1s-np                                                          | 26.4        | 470                  | 0.003                  | (K)                                     |
|                  | 1s-4p                                                          | 27.0        | 459                  | 0.002                  |                                         |
|                  | 1s-3p                                                          | 28.5        | 435                  | 0.006                  | WS                                      |
|                  | 1s-2p                                                          | 33.7        | 368                  | 0.042                  | (K)                                     |
| C v              | 1s²–1s np                                                      | 32.8        | 378                  | 0.008                  | (K)                                     |
|                  | $1s^2 - 1s4p$                                                  | 33.4        | 371                  | 0.006                  | (K)                                     |
|                  | $1s^2 - 1s^3 p$                                                | 35.0-35.1   | 353                  | 0.014                  | ŴŔ                                      |
|                  | $1s^2 - 1s^2 p(^1P)$                                           | 40.3        | 308                  | 0.084                  | WS                                      |
|                  | $1s^2 - 1s^2 p(^3P)$                                           | 40.7        | 306                  | 0.008                  | (M)                                     |
|                  | $1s^2 - 1s^2 p(^3S)$                                           | 41.5        | 300                  | 0.089                  | (M)                                     |
| N VII            | 1s-np                                                          | 19.4        | 639                  | 0.002                  |                                         |
|                  | 1s-4p                                                          | 19.8        | 626                  | 0.002                  |                                         |
|                  | 1s-3p                                                          | 20.9        | 593                  | 0.005                  | RW                                      |
|                  | 1s-2p                                                          | 24.8        | 500                  | 0.031                  | RW                                      |
| N v1             | 1s <sup>2</sup> –1s np                                         | 23.3        | 532                  | 0.005                  | (K)                                     |
|                  | $1s^2 - 1s4p$                                                  | 23.8        | 521                  | 0.004                  |                                         |
|                  | $1s^2 - 1s^3p$                                                 | 24.9-25.0   | 496                  | 0.010                  | (K)                                     |
|                  | $1s^2 - 1s^2 p(^1P)$                                           | 28.8        | 430                  | 0.056                  | (M)                                     |
|                  | $1s^2 - 1s^2 p({}^{3}P)$                                       | 29.1        | 425                  | 0.010                  | (M)                                     |
| 0                | $1s^2 - 1s^2 p(^3S)$                                           | 29.5        | 420                  | 0.063                  | (M)                                     |
| 0 vIII           | 1s-np                                                          | 14.8        | 837                  | 0.002                  | RW                                      |
| · 2              | 1s-4p                                                          | 15.2        | 816                  | 0.002                  |                                         |
|                  | 1s-3p                                                          | 10.0        | 775                  | 0.005                  | RW, EP(CO)                              |
| 0                | 1s-2p                                                          | 19.0        | 053                  | 0.023                  | RW, EP (CO)                             |
| $\mathbf{O}$ VII | $1s^2-1s np$                                                   | 17.4        | /13                  | 0.004                  |                                         |
|                  | $15^{2}-154p$                                                  | 17.8        | 097                  | 0.004                  | $\mathbf{K}\mathbf{W}$                  |
|                  | $1s^{2}-1s^{3}p$<br>$1s^{2}-1s^{3}p$                           | 18.7        | 003                  | 0.009                  | $\mathbf{KW}, \mathbf{EP}(\mathbf{CO})$ |
|                  | $15^{2}-152p(^{1}P)$<br>$1_{2}^{2}, 1_{2}^{2}+(^{3}D)$         | 21.0        | 575                  | 0.050                  | WR, EF $(CO)$                           |
|                  | $15^{2}-152p(^{\circ}P)$<br>$1_{2}^{2}$ $1_{2}^{2}$ $h(^{3}S)$ | 21.0        | 570                  | 0.010                  | WR, EF(CO)                              |
| N                | $15^{2}-152p(^{6}S)$                                           | 22.1        | 1205                 | 0.003                  | WK, EF (CO)                             |
| INC X            | $1_{2}$                                                        | 9.5         | 1280                 | 0.0010                 | RW                                      |
|                  | $1_{2} - 4p$<br>$1_{2} - 3p$                                   | 9.7<br>10.2 | 1215                 | 0.00034                | RW                                      |
|                  | 13-3p<br>1e-2b                                                 | 10.2        | 1020                 | 0.0024                 | RW EP(CO)                               |
| Ne tv            | $1s^{2}-1s^{n}b$                                               | 10.8        | 1148                 | 0.003                  | $(\mathbf{K})$                          |
| INC IX           | $1s^{2}-1s^{4}b$                                               | 10.0        | 1130                 | 0.002                  | (K)                                     |
|                  | $1s^{2}-1s^{3}b$                                               | 11.0        | 1070                 | 0.005                  | RW. EP (CO)                             |
|                  | $1s^{2}-1s^{2}-1s^{2}-1s^{2}$                                  | 13.4        | 925                  | 0 030                  | RW, EP(CO)                              |
|                  | $1s^2 - 1s^2 p(^3P)$                                           | 13.6        | 912                  | 0.008                  | RW. EP (CO)                             |
|                  | $1s^2 - 1s^2 p(^3S)$                                           | 13.7        | 905                  | 0.025                  | WR                                      |
| Ne viii          | 2s-nl                                                          | 52-65.9     | 188                  | 0.050                  | (K)                                     |
|                  | $\frac{1}{2s-4l}$                                              | 67.4-74.6   | 165                  | 0.050                  | (K)                                     |
| Mg XII           | 1s-np                                                          | 6.6         | 1879                 | 0.00076                | (K)                                     |
|                  | 1s-4p                                                          | 6.7         | 1850                 | 0.00058                |                                         |
|                  | 1s-3p                                                          | 7.11        | 1740                 | 0.0017                 | WR                                      |
|                  | 1s-2p                                                          | 8.42        | 1470                 | 0.010                  | WR, EP (CO)                             |
| Mg x1            | 1s²–1s np                                                      | 7.30        | 1698                 | 0.002                  | (K)                                     |
| Ŭ,               | $1s^2 - 1s4p$                                                  | 7.47        | 1660                 | 0.0016                 | (K)                                     |
|                  | $1s^2 - 1s^3 p$                                                | 7.85–7.86   | 1570                 | 0.0035                 | WR                                      |
|                  | $1s^2 - 1s^2 p({}^1P)$                                         | 9.17        | 1350                 | 0.022                  | RW, EP (CO)                             |
|                  | $1s^2 - 1s^2 p(^3P)$                                           | 9.23        | 1340                 | 0.007                  | RW, EP (CO)                             |
|                  | $1s^2 - 1s^2 p(^3S)$                                           | 9.31        | 1330                 | 0.017                  | RW, EP (CO)                             |
| $Mg x \dots$     | 2l-nl                                                          | 33.8-43.0   | 290                  | 0.04                   | (K) '                                   |
|                  | 21-41                                                          | 44.0-47.3   | 260                  | 0.04                   | (K)                                     |
|                  | 2s-3p                                                          | 57.9        | 214                  | 0.037                  | WS                                      |
|                  | 2p-3d                                                          | 63.2-63.3   | 215                  | 0.09                   | WS                                      |
|                  | 2 <i>p–3s</i>                                                  | 65.7-65.9   | 208                  | 0.045                  | WS                                      |

TABLE 1Atomic Data Used to Compute the Line Intensities

\*Lines observed in solar corona: WS = Widing and Sandlin; WR = Walker and Rugge; RW = Rugge and Walker; EP. = Evans and Pounds. Lines observed in laboratory or computed theoretically: (K) = Kelly; (C) = Chapman; (CO) = Connerade; (M) = Moore; (H) = Hydrogenic. Lines not referenced were obtained by extrapolation or interpolation.

| Ion            | Transition                                                          | Wavelength<br>(Å)      | Excitation<br>Energy<br>(eV) | Effective<br>Collision<br>Strength | Reference*     |
|----------------|---------------------------------------------------------------------|------------------------|------------------------------|------------------------------------|----------------|
| Μσιχ           | 2s2l-2s nl'                                                         | 38-47                  | 262                          | 0.090                              | (K)            |
|                | 2s2l-2s4l'                                                          | 48-52                  | 237                          | 0.090                              | K)             |
|                | $2s^2 - 2s^3p$                                                      | 62.8                   | 196                          | 0.092                              | ŴŚ             |
|                | $2s2p-2s3d(^{3}D)$                                                  | 67.2                   | 214                          | 0.12                               | WS             |
|                | $2s2p-2s3d(^{1}D)$                                                  | 72.3                   | 201                          | 0.12                               | WS             |
| 16             | 2s2p-2s3s                                                           | 11.1                   | 189                          | 0.11                               | WS<br>(W)      |
| Mg VIII        | 252121' - 2521 n1''                                                 | 40.555.5<br>52.4-64.3  | 232                          | 0.20                               |                |
|                | 252121 -252141<br>25274-252543                                      | 52.4-04.3<br>64 2-71 7 | 193                          | 0.20                               | $(\mathbf{K})$ |
|                | $2s^{2}2p^{-2}2s^{2}p^{-3}p^{-2}$                                   | 72 6-77 4              | 193                          | 0.05                               | $(\mathbf{K})$ |
|                | $2\phi - 3d$                                                        | 75.0                   | 165                          | 0.32                               | ŴŚ             |
| Mg VII         | 2s2p <sup>2</sup> -2s2p2l nl"                                       | 55-66.8                | 186                          | 0.33                               | (K)            |
|                | $2s^2\hat{2}p^2-2s\hat{2}p^24p$                                     | 63.4                   | 196                          | 0.04                               | (K)            |
|                | $2s^2\hat{p}^2 - 2s^2\hat{p}\hat{d}$                                | 68.0-71.8              | 173                          | 0.16                               | (K)            |
|                | $2s2p^{3}-2s2p^{2}4d, 4s$                                           | 67.5-72.9              | 201                          | 0.09                               | $(\mathbf{K})$ |
| ~              | $2s^22p^2-2s^2p^2^3p$                                               | 77.0-81.0              | 186                          | 0.11                               | $(\mathbf{K})$ |
| Si xiv         | 1s-np                                                               | 4.83                   | 2507                         | 0.00050                            | (K)<br>(V)     |
|                | 1s-4p                                                               | 4.95                   | 2300                         | 0.00045                            |                |
|                | 1s - 3p<br>1s - 2p                                                  | 6 18                   | 2000                         | 0.0012                             | WR             |
| Si yuu         | 15 2p<br>$1s^2 - 1s nb$                                             | 5 29                   | 2344                         | 0.002                              | (K)            |
| 01 АШ          | $1s^2 - 1s4p$                                                       | 5.40                   | 2290                         | 0.001                              | (K)            |
|                | $1s^2 - 1s^3p$                                                      | 5.68                   | 2180                         | 0.0025                             | WŔ             |
|                | $1s^2 - 1s^2 p(^1P)$                                                | 6.65                   | 1860                         | 0.016                              | WR, EP (CO)    |
|                | $1s^2 - 1s^2 p(^3P)$                                                | 6.69                   | 1850                         | 0.006                              | WR, $EP(CO)$   |
|                | $1s^2 - 1s^2 p(^3S)$                                                | 6.74                   | 1840                         | 0.011                              | WR, EP (CO)    |
| Si x11         | 2l-nl'                                                              | 23.7-29.8              | 415                          | 0.026                              |                |
|                | 2l-4l'                                                              | 30.0-32.8              | 3/8                          | 0.020                              | WC             |
|                | 2s-3p                                                               | 40.9                   | 303                          | 0.029                              | WS             |
|                | 2p-3a<br>2b-3c                                                      | 45.6                   | 296                          | 0.003                              | WS             |
| Sixt           | 25-33<br>2521-25 nl'                                                | 26 0-32 7              | 379                          | 0.061                              | 110            |
| <b>OI MI</b>   | 2s2l-2s4l'                                                          | 33.3-36.2              | 357                          | 0.061                              |                |
|                | $2s^2 - 2s^3p$                                                      | 43.8                   | 283                          | 0.066                              | WS             |
|                | $2s2p-2s3d(^{3}D)$                                                  | 46.3                   | 309                          | 0.079                              | WS             |
|                | $2s2p-2s3d(^{1}D)$                                                  | 49.2                   | 293                          | 0.079                              | WS             |
| ~              | 2s2p-2s3s                                                           | 52.3                   | 288                          | 0.076                              | WS             |
| Si x           | 2s2p2l-2s2p nl'                                                     | 30.0 - 34.2            | 362                          | 0.12                               |                |
|                | 2s2p2l-2s2p4l                                                       | 33.5-41.0              | 330                          | 0.12                               | $(\mathbf{K})$ |
|                | 25*2p-252p3p<br>25242-25243d                                        | 40.0                   | 238                          | 0.074                              | $(\mathbf{K})$ |
|                | 252p-252p3u<br>2h-3d                                                | 50.6                   | 20)                          | 0.10                               | WS             |
|                | $2s^{2}b^{2}-2s^{2}b^{3}s$                                          | 53.5-60.5              | 271                          | 0.090                              | 11.5           |
|                | $2s^22p - 2s^23s$                                                   | 54.0                   | 230                          | 0.059                              |                |
| Si 1x          | 2s2p <sup>2</sup> 2l-2s2p2lnl'                                      | 35-40                  | 310                          | 0.10                               |                |
|                | $2s^2  2p^2 - 2s 2p^2  4p$                                          | 38                     | 326                          | 0.02                               |                |
|                | $2s^2 2p^2 - 2s^2 2p4d$                                             | 44.2                   | 280                          | 0.10                               | (K)            |
|                | $2s2p^{3}-2s2p^{2}$ 4d,s                                            | 41-43                  | 331                          | 0.06                               | (17)           |
|                | $2s^2 2p^2 - 2s^2 p^2 3p$                                           | 51-54                  | 230                          | 0.08                               | (K)<br>(V)     |
|                | $2s2p^{\circ}-2s2p^{\circ}$ 3a                                      | 52.7-55.7              | 205                          | 0.22                               |                |
|                | 2p2p3u<br>2s243-2s242 3s                                            | 61 2                   | 222                          | 0.11                               | $(\mathbf{K})$ |
| -              | $252p^{-}-252p^{-}$ 55<br>$2h^{2}-2h^{2}s$                          | 61 7                   | 201                          | 0.11                               | WS             |
| Si viti        | $2s^2 2p^3 - 2s^2 2p^2 nd$                                          | 47.6                   | 260                          | 0.03                               |                |
| <b>OI</b> (111 | $2s2p^4-2s2p^3$ nd                                                  | 47.7                   | 296                          | 0.02                               |                |
|                | 2s <sup>2</sup> Źp <sup>3</sup> -2s <sup>2</sup> Zp <sup>2</sup> 4d | 50.0-52.4              | 242                          | 0.04                               | (K)            |
|                | $2s2p^{4}-2s2p^{3}4d$                                               | 52.5                   | 275                          | 0.03                               |                |
|                | $2s^2 2p^3 - 2s^2 2p^2 4s$                                          | 53.8                   | 230                          | 0.02                               | (K)            |
|                | $2s2p^4 - 2s2p^3 4s$                                                | 54.5                   | 266                          | 0.01                               | $(\mathbf{V})$ |
|                | 254 2p°-252p° 5p                                                    | 58.9<br>61.0           | 210                          | 0.09                               |                |
|                | 2p°-2p <sup>2</sup> 3d(*P, *D)                                      | 01.10                  | 203                          | 0.30                               | VV S           |

TABLE 1-Continued

TABLE 1—Continued

| Ion         | Transition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Wavelength<br>(Å)                                                                                      | Excitation<br>Energy<br>(eV)                                              | Effective<br>Collision<br>Strength                                                         | Reference*               |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------|
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                        |                                                                           |                                                                                            |                          |
| Si vIII     | $\begin{array}{c} 2p^{3}-2p^{2} \ 3d \\ (2S, ^{2}P, ^{2}D, ^{2}F) \\ 2s2p^{4}-2s2p^{3}3d \\ 2p^{3}-2p^{2} \ 3s(^{4}P) \\ 2p^{3}-2p^{2} \ 3s(^{2}P, ^{2}D) \\ 2s2p^{4}-2s2p^{3} \ 3s \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} 61.4-65.8\\ 67.3\\ 69.8\\ 70.5-74.2\\ 76.0 \end{array}$                              | 195<br>223<br>177<br>172<br>202                                           | 0.36<br>0.26<br>0.10<br>0.10<br>0.13                                                       | (K)<br>(K)<br>(K)<br>(K) |
| Si v11      | $2s2p^4 2l - 2s2p^3 2lnl'$<br>$2s2p^4 2l - 2s2p^3 2l4l'$<br>$2s^2 2p^4 - 2s2p^5 3p$<br>$2p^4 - 2p^3 3d$<br>$2s2x^6 - 2s2x^4 3d$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 50.5-56.557.3-65.66468.0-73.465-72.5                                                                   | 219<br>202<br>193<br>176<br>227                                           | 0.11<br>0.11<br>0.11<br>0.23<br>0.34                                                       | (K)<br>(K)<br>(K)        |
| S xvi       | $2p^{4}-2p^{3} 3s(^{3}P)$<br>1s-np<br>1s-4p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 79.5<br>3.70<br>3.78                                                                                   | 156<br>3340<br>3270                                                       | 0.08<br>0.00043<br>0.00033                                                                 | (K)<br>(K)<br>(K)        |
| S xv        | 1s - 4p<br>1s - 3p<br>1s - 2p<br>$1s^2 - 1s np$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.99<br>4.73<br>4.01                                                                                   | 3100<br>2620<br>3080                                                      | 0.00094<br>0.0059<br>0.001                                                                 | (K)<br>(K)<br>WR         |
| <b>O A1</b> | $1s^{2}-1s4p$ $1s^{2}-1s4p$ $1s^{2}-1s2p(^{1}P)$ $1s^{2}-1s2p(^{3}P)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.10<br>4.30<br>5.04<br>5.07                                                                           | 3010<br>2870<br>2460<br>2450                                              | 0.001<br>0.0019<br>0.012<br>0.005                                                          | WR<br>WR                 |
| S xiv       | $ \frac{1s^2 - 1s2p(^3S)}{2l - nl'} \\ \frac{2l - nl'}{2s - 3p} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5.10<br>17.6-22<br>22.6-24.2<br>30.2                                                                   | 2430<br>557<br>509<br>406                                                 | 0.008<br>0.02<br>0.02<br>0.02                                                              | WR                       |
| S x111      | $\begin{array}{c} 2p-3d\\ 2p-3s\\ 2s2l-2s nl'\\ 2s2l-2s nl$ | 32.6<br>33.8<br>19-21                                                                                  | 409<br>398<br>519                                                         | 0.05<br>0.02<br>0.043                                                                      |                          |
| S x11       | $2s2l-2s4l' 2s^2-2s3p 2s2p-2s3d 2s2p-2s3s 2s2p2l-2s2p nl' 2s2p2l-2s2p4l' 2s^2p-2s2p3p 2s2p^2-2s2p3d$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 24-20<br>31<br>33-35<br>37<br>22-23.9<br>23.4-28.7<br>33.3<br>34.7-39.8                                | 489<br>387<br>412<br>394<br>494<br>456<br>350<br>366                      | $\begin{array}{c} 0.043\\ 0.047\\ 0.11\\ 0.054\\ 0.084\\ 0.084\\ 0.052\\ 0.13 \end{array}$ |                          |
| S x1        | 2p-3d<br>2s2p <sup>2</sup> -2s2p3s<br>2p-2s<br>2s2p <sup>2</sup> 2l-2s2p2l nl'<br>2s2p <sup>2</sup> 2l-2s2p2l4l'<br>2s <sup>2</sup> p <sup>2</sup> -2s2p <sup>2</sup> 3p<br>2s2p <sup>3</sup> -2s2p <sup>2</sup> 3d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 35.4<br>37.4-42.4<br>37.8<br>24.6-26.8<br>25.4-28.8<br>34.2-36.2<br>35.2-37.3                          | 352<br>359<br>328<br>441<br>450<br>336<br>378                             | 0.15<br>0.063<br>0.041<br>0.067<br>0.067<br>0.054<br>0.15                                  |                          |
| S x         | $2p^{2}-2p^{3}d$<br>$2s2p^{2}2l-2s2p^{2}2l3s$<br>$2s2p^{3}2l-2s2p2lnl'$<br>$2s2p^{3}2l-2s2p2l4l'$<br>$2s^{2}2p^{3}-2s2p^{3}3p$<br>$2p^{3}-2p^{2}3d(^{4}P, ^{4}D)$<br>$2s^{3}2p^{3}d^{2}p^{3}d^{2}p^{3}d^{2}p^{3}d^{2}p^{3}d^{2}p^{3}d^{2}p^{3}d^{2}p^{3}d^{2}p^{3}d^{2}d^{2}p^{3}d^{2}d^{2}p^{3}d^{2}d^{2}d^{2}d^{2}d^{2}d^{2}d^{2}d^{2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 37.0<br>41.0<br>28.0-31.4<br>34.0-37.2<br>40.2<br>42.5                                                 | 326<br>316<br>396<br>360<br>308<br>292                                    | 0.35<br>0.17<br>0.11<br>0.11<br>0.058<br>0.24                                              | (K)                      |
| S 1x        | $\begin{array}{c} (25, {}^{2}P, {}^{2}D, {}^{2}F) \\ 2s2p^{4}-2s2p^{3} 3d \\ 2p^{3}-2p^{2}3s({}^{4}P) \\ 2p^{3}-2p^{2}3s({}^{2}P, {}^{2}D) \\ 2s2p^{4}-2s2p^{3} 3s \\ 2s2p^{4}2l-2s2p^{3}2lnl' \\ 2s2p^{4}2l-2s2p^{3} 2l4l' \\ 2s2p^{5}-2s2p^{4} 3d \\ 2s^{2}p^{4}-2p^{3} 3d \\ 2s^{4}-2p^{3} 2p^{4}-2p^{3} 3d \\ 2s^{4}-2p^{3} 2p^{4}-2p^{3} 2p^{4}-2p^{3} 2p^{4}-2p^{3} \\ 2s^{4}-2p^{3} 2p^{4}-2p^{3} 2p^{4}-2p^{3} \\ 2s^{4}-2p^{3} 2p^{4}-2p^{3} 2p^{4}-2p^{3} \\ 2s^{4}-2p^{3} \\ 2s^{4}$                                                        | 42.9-45.8<br>47<br>47.7<br>48.2-50.6<br>52.0<br>32.8-36.8<br>37.2-42.6<br>41.2-47<br>41.5<br>46.4-49.3 | 280<br>326<br>259<br>252<br>296<br>300<br>276<br>312<br>295<br>259<br>259 | 0.24<br>0.17<br>0.06<br>0.06<br>0.08<br>0.09<br>0.09<br>0.27<br>0.09<br>0.18<br>0.06       | (K)<br>(K)<br>(K)        |
|             | $2p^{-}-2p^{-}-3s^{-}$<br>$2s2p^{5}-2s2p^{4}$ 3s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 54.2-50.5<br>57.0                                                                                      | 224<br>284                                                                | 0.11                                                                                       | (13)                     |

TABLE 1—Continued

| Ion        | Transition                                          | Wavelength<br>(Å)        | Excitation<br>Energy<br>(eV) | Effective<br>Collision<br>Strength | Reference*     |
|------------|-----------------------------------------------------|--------------------------|------------------------------|------------------------------------|----------------|
|            |                                                     |                          |                              |                                    | (17)           |
| S VIII     | $2s2p^{\circ} 2l - 2s2p^{*} 2l nl'$                 | 37.0-41.0                | 298                          | 0.07                               | $(\mathbf{K})$ |
|            | $2s^2p^{5} - 2s^2p^{5}$ $3b$                        | 46                       | 270                          | 0.07                               | ( <b>K</b> )   |
|            | $2p^{5}-2p^{4} 3d$                                  | 51.2-54.6                | 234                          | 0.44                               | (K)            |
|            | $2s2p^{6}-2s2p^{5}$ 3d                              | 58.5                     | 212                          | 0.21                               |                |
|            | $2p^{5}-2p^{4}$ 3s                                  | 59.2-64.3                | 201                          | 0.62                               | $(\mathbf{K})$ |
| C          | 2s2p <sup>6</sup> -2s2p <sup>6</sup> 3s             | 05.0                     | 191                          | 0.09                               | $(\mathbf{K})$ |
| 5 11       | $2s^{2}2b^{6}-2s^{2}b^{5}$ $2l4l'$                  | 51.8-54.9                | 233                          | 0.30                               | $(\mathbf{K})$ |
|            | $2s^22p^6-2s^2p^6$ $3p$                             | 55                       | 225                          | 0.40                               | ()             |
|            | 2p <sup>6</sup> -2p <sup>5</sup> 3d                 | 60.8                     | 204                          | 0.30                               | (K)            |
| ۲ <u>ـ</u> | $2p^{6}-2p^{5}$ 3s                                  | 72.4                     | 171                          | 0.79                               | (K)            |
| Ca xx      | ls-np                                               | 2.3                      | 5250                         | 0.00028                            |                |
|            | 15-4p<br>1s-3p                                      | 2.4<br>2.54              | 4860                         | 0.00021                            |                |
|            | 1s - 2p                                             | 3.02                     | 4100                         | 0.0037                             |                |
| Ca xix     | $1s^2-1s np$                                        | 2.5                      | 4850                         | 0.0007                             |                |
|            | $1s^2 - 1s4p$                                       | 2.6                      | 4750                         | 0.0006                             |                |
|            | $1s^2 - 1s^3p$                                      | 2.70                     | 4570                         | 0.0012                             |                |
|            | $1s^2 - 1s^2 p({}^1P)$<br>$1s^2 - 1s^2 p({}^3P)$    | 3.18                     | 3900                         | 0.008                              |                |
|            | $1s^{2}-1s^{2}p(^{3}S)$                             | 3.20                     | 3850                         | 0.004                              |                |
| Ca xvIII   | 2l-nl'                                              | 11-12                    | 890                          | 0.01                               |                |
|            | 21-41'                                              | 14-15                    | 811                          | 0.01                               |                |
|            | 2s-3p                                               | 18                       | 650                          | 0.01                               |                |
|            | 2p-3d                                               | 19-20                    | 654                          | 0.03                               |                |
| Ca XVII    | 2p-3s<br>2s2l-2s nl'                                | 11-13                    | 896                          | 0.01                               |                |
|            | 2s2l - 2s4l'                                        | 14–16                    | 845                          | 0.03                               |                |
|            | 2s2l-2s3l'                                          | 19-22                    | 701                          | 0.13                               |                |
| Ca xv1     | 2s2p2l-2s2p nl'                                     | 12.3-13                  | 884                          | 0.04                               |                |
|            | 2s2p2l-2s2p4l'                                      | 12.7-15                  | 816                          | 0.04                               |                |
| Cawy       | 252p2i-252p3i<br>252b2 21-252p3i                    | 13 0-15 1                | 780                          | 0.23                               |                |
|            | $2s2b^2 2l - 2s2b 2l4l'$                            | 14.3-16.3                | 795                          | 0.038                              |                |
|            | $2s^2 2p^2 - 2s^2 p^2 3p$                           | 19.3-20.4                | 594                          | 0.030                              |                |
|            | $2s2p^3-2s2p^2$ 3d                                  | 19.9-21.1                | 667                          | 0.085                              |                |
|            | $2p^2 - 2p3d$                                       | 20.9                     | 560                          | 0.20                               |                |
| Coww       | 252p= 21-252p3521<br>252b3 21-252b21 ml             | 23.2                     | 500<br>725                   | 0.090                              |                |
|            | $2s2b^{3}2l-2s2b2l4l'$                              | 18.7-20.4                | 658                          | 0.060                              |                |
|            | $2s^2 2p^3 - 2s^2 p^3 3p$                           | 22.0                     | 564                          | 0.032                              |                |
|            | $2p^{3}-2p^{2} 3d^{2}$                              | 23.2-25                  | 524                          | 0.26                               |                |
|            | $2s2p^{4}-2s2p^{3}$ 3d                              | 25.8                     | 595                          | 0.093                              |                |
|            | 2p°-2p4 35<br>20244-20248 30                        | 20.2-27.8                | 407<br>540                   | 0.000                              |                |
| Ca XIII    | $2s2p^{4}2l-2s2p^{3}3s^{4}2l-2s2p^{3}2l nl'$        | 17.2-19.2                | 572                          | 0.047                              |                |
|            | $2s2p^4$ $2l-2s2p^3$ $2l4l'$                        | 19.4-22.2                | 525                          | 0.047                              |                |
|            | $2s^2\hat{2}p^4 - 2s^2p^5\hat{3}p$                  | 21.6                     | 503                          | 0.047                              |                |
|            | $2p^4-2p^3$ 3d                                      | 24.2-25.8                | 494                          | 0.094                              |                |
|            | 252p°-252p* 50<br>254-253 3c                        | 21.9-24.5                | 393<br>196                   | 0.14                               |                |
|            | 2p-2p-35<br>2s2h <sup>5</sup> -2s2h <sup>4</sup> 3s | 20.3-29.4                | 540                          | 0.057                              |                |
| Са хи      | $2s2p^{5}$ $2l-2s2p^{4}$ $2l$ $nl'$                 | 18.8-20.8                | 596                          | 0.035                              |                |
|            | 2s2p <sup>5</sup> 2l-2s2p <sup>4</sup> 2l4l'        | 22.2-23.9                | 540                          | 0.035                              |                |
|            | $2s^22p^5-2s^2p^5$ $3p$                             | 23                       | 540                          | 0.035                              |                |
|            | 2p°-2p <sup>+</sup> 3d                              | 26.7-27.3                | 459                          | 0.22                               |                |
|            | 252p=252p= 3u<br>245-244 3s                         | <u>49.4</u><br>31.6–32.7 | 384                          | 0.31                               |                |
|            | 2s2p6-2s2p5 3s                                      | 32.5                     | 382                          | 0.045                              |                |
|            | · · ·                                               |                          |                              |                                    |                |

.

TABLE 1-Continued

| Ion             | Transition                                                                                       | Wavelength        | Excitation<br>Energy | Effective<br>Collision<br>Strength | <b>B</b> eference* |
|-----------------|--------------------------------------------------------------------------------------------------|-------------------|----------------------|------------------------------------|--------------------|
|                 |                                                                                                  | (11)              | (07)                 |                                    |                    |
| Ca x1           | 2s <sup>2</sup> 2p <sup>6</sup> -2s2p <sup>5</sup> 2l nl'                                        | 21-24             | 520                  | 0.14                               |                    |
|                 | $2s^{2}2p^{6}-2s^{2}p^{5}$ $2l4l'$                                                               | 23.6 - 26.7       | 477                  | 0.14                               |                    |
|                 | 25*2p°-252p° 3p<br>246-245 3d                                                                    | 27.0              | 439                  | 0.19                               |                    |
|                 | $2p^{6}-2p^{5}$ 3s                                                                               | 35.2              | 350                  | 0.38                               |                    |
| Fe xxvi         | 1s-np                                                                                            | 1.40              | 8840                 | 0.00016                            | (H)                |
|                 | 1s-4p                                                                                            | 1.43              | 8650                 | 0.00012                            | (***)              |
|                 | 1s-3p                                                                                            | 1.51              | 8190                 | 0.00036                            | (H)<br>(H)         |
| Fe xxv          | $1s^{-2}p$<br>$1s^{2}-1s mb$                                                                     | 1.79              | 8400                 | 0.0022                             | $(\mathbf{n})$     |
| 10 AAV          | $1s^2 - 1s4p$                                                                                    | 1.51              | 8200                 | 0.0003                             | (0)                |
|                 | $1s^2 - 1s^3 p$                                                                                  | 1.59              | 7760                 | 0.0008                             | (C)                |
|                 | $1s^2 - 1s^2 p(^1P)$                                                                             | 1.87              | 6630                 | 0.0045                             |                    |
|                 | $1s^2 - 1s^2 p(^{\circ}P)$<br>$1s^2 - 1s^2 p(^{\circ}S)$                                         | 1.88              | 0000<br>6561         | 0.0020                             |                    |
| <b>Fe χχι</b> ν | 2l - nl'                                                                                         | 6 06-7 21         | 1720                 | 0.0071                             |                    |
| 1 C MART        | 2l - 4l'                                                                                         | 8.35              | 1480                 | 0.0071                             | (C)                |
|                 | 2s-3p                                                                                            | 10.8              | 1150                 | 0.0095                             | ĊÓ                 |
|                 | 2p-3d                                                                                            | 11.2              | 1150                 | 0.018                              | (C)                |
| Fo VVIII        | 2p-3s<br>2s2l-2sml'                                                                              | 11.4              | 1130                 | 0.0080                             | (C)                |
| re xxIII        | 2s2l-2s nl<br>2s2l-2s4l'                                                                         | 8 45-8 86         | 1430                 | 0.0076                             | (C)                |
|                 | $2s^2 - 2s^3p$                                                                                   | 11.2              | 1110                 | 0.010                              | (Č)                |
|                 | $2s2p-2s3d(^{3}D)$                                                                               | 11.5              | 1150                 | 0.0095                             | (C)                |
|                 | $2s2p-2s3d(^{1}D)$                                                                               | 11.8              | 1130                 | 0.0095                             | (C)                |
| Fo VVII         | 2s2p-2s3s<br>2s2p-2s3s                                                                           | 12.0              | 1110                 | 0.0095                             | (C)                |
| <b>FC XXII</b>  | 2s2p2l-2s2p m<br>2s2p2l-2s2l4l'                                                                  | 7.72-9.45         | 1440                 | 0.03                               |                    |
|                 | $2s^2 2p - 2s^2p 3p$                                                                             | 11.5              | 1110                 | 0.024                              | CO                 |
|                 | $2s2p^2-2s2p^3d$                                                                                 | 11.5-13.1         | 1150                 | 0.042                              |                    |
|                 | 2p-3d                                                                                            | 11.9              | 1040                 | 0.047                              | (C)                |
|                 | 252p2-252p35<br>2522a-252 35                                                                     | 12.3-13.9         | 1000                 | 0.020                              | $(\mathbf{C})$     |
| Fe xx1          | $2s^22b^2-2s^2b^2$ nb                                                                            | 7.4               | 1470                 | 0.007                              | (0)                |
|                 | $2s^22p^2-2s2p^2$ 4p                                                                             | 7.9               | 1550                 | 0.0072                             |                    |
|                 | $2s2p^{3}-2s2p^{2}$ nd, s                                                                        | 8.0               | 1470                 | 0.012                              |                    |
|                 | $2s^{2}2p^{2}-2s^{2}2p$ nd<br>$2s^{2}b^{3}2s^{2}b^{2}d$                                          | 8.3               | 1470                 | 0.019                              |                    |
|                 | 252p=252p= 40, 5<br>2c22h22c2 2h4d                                                               | 0.35-0.95         | 1570                 | 0.012                              | CO                 |
|                 | $2s^{2}2\phi^{2}-2s^{2}\phi^{2}$                                                                 | 11.6-12.0         | 1120                 | 0.026                              | ČŎ                 |
|                 | $2s2p^{3}-2s2p^{2}$ 3d                                                                           | 11.7-12.3         | 1260                 | 0.046                              | CO                 |
|                 | $2p^2-2p3d$                                                                                      | 12.4-12.7         | 1050                 | 0.11                               | CO                 |
|                 | $2s2p^{3}-2s2p^{2}$ 3s                                                                           | 12.9              | 1160                 | 0.028                              | CO                 |
| Fe xx           | $2p^{3}-2p^{3}$<br>$2p^{3}-2p^{2}$ nd(4)                                                         | 9 2               | 1330                 | 0.020                              | co                 |
| 10 mil          | $2p^{3}-2p^{2}$ $nd(2)$                                                                          | 9.6               | 1330                 | 0.008                              |                    |
|                 | $2p^{3}-2p^{2} 4d(4)$                                                                            | 9.7               | 1270                 | 0.008                              | <u></u>            |
|                 | $2p^{3}-2p^{2} 4d(2)$                                                                            | 10.2-10.5         | 1270                 | 0.008                              | CO                 |
|                 | 252p=-252p° nd<br>2524-25243 Ad                                                                  | 10.2              | 1330                 | 0.007                              |                    |
|                 | $2s^22b^3-2s^2b^3$ 3b                                                                            | 12.0-12.7         | 1100                 | 0.027                              | CO                 |
|                 | $2p^{3}-2p^{2}3d(^{4}P, ^{4}D)$                                                                  | 13.4              | 1040                 | 0.056                              | CO                 |
|                 | $2p^{3}-2p^{2}$ 3d                                                                               |                   | 1000                 | 0.05                               | •                  |
|                 | $({}^{z}S, {}^{z}P, {}^{z}D, {}^{2}F)$                                                           | 13.4 - 14.4       | 1000                 | 0.050                              | CO                 |
|                 | 252p=252p" 30<br>268-2623c(4P)                                                                   | 14./              | 925                  | 0.030                              |                    |
|                 | $2p^{3}-2p^{2}3s(^{2}P, ^{2}D)$                                                                  | 15.2<br>15.4-16.3 | 910                  | 0.014                              |                    |
|                 | 2s2p4-2s2p3 3s                                                                                   | 16.6              | 1060                 | 0.025                              |                    |
| Fe xix          | $2s^2 2p^4 - 2s^2p^4 np$                                                                         | 8.6               | 1440                 | 0.006                              |                    |
|                 | 2p=-2p nd<br>20245-20244                                                                         | 9.5<br>0.7        | 1310                 | 0.000                              |                    |
|                 | 252p <sup>2</sup> -252p <sup>2</sup> nu<br>25 <sup>2</sup> 2p <sup>4</sup> -252p <sup>4</sup> 4h | 9.7               | 1240                 | 0.002                              |                    |
|                 |                                                                                                  | 2                 | ****                 | 0.000                              |                    |

|          |                                                                                |                        | Excitation | Effective |                                                                     |
|----------|--------------------------------------------------------------------------------|------------------------|------------|-----------|---------------------------------------------------------------------|
| T        | <b>T</b>                                                                       | Wavelength             | Energy     | Collision |                                                                     |
| 10n      | I ransition                                                                    | (A)                    | (ev)       | Strength  | Kelerence*                                                          |
| Fe XIX   | 2s2p <sup>5</sup> -2s2p <sup>4</sup> ns                                        | 10.0                   | 1240       | 0.006     |                                                                     |
|          | $2p^{4}-2p^{3}$ $4d$                                                           | 10.8                   | 1240       | 0.006     | CO                                                                  |
|          | $2s^{2}p^{5}-2s^{2}p^{4}$ 4d                                                   | 10.4                   | 1240       | 0.012     |                                                                     |
|          | $2s^22p^4-2s^2p^5$ 3p                                                          | 10.8                   | 1020       | 0.029     |                                                                     |
|          | $2s2p^{5}-2s2p^{4}$ 4s                                                         | 11.1                   | 1240       | 0.006     | <b>GO</b>                                                           |
|          | $2p^4 - 2p^3 3d$                                                               | 13.5-14.2              | 1000       | 0.030     |                                                                     |
|          | $2SZp^{\circ} - 2SZp^{*} = 5a$                                                 | 12.0-14.0<br>14.5-15.0 | 870        | 0.055     |                                                                     |
|          | 2p-2p-33<br>2c245-2c244 3c                                                     | 14.3-13.0              | 1100       | 0.0000    | CO                                                                  |
| Fe XVIII | $2^{5}2p^{-2}2^{5}2p^{-3}3$<br>$2^{5}2^{2}2b^{5}-2^{5}2b^{5}mb$                | 9 15                   | 1340       | 0.007     |                                                                     |
| 10       | $2b^{5}-2b^{4}$ nd                                                             | 10.2                   | 1210       | 0.012     |                                                                     |
|          | $2p^{5}-2p^{4}$ ns                                                             | 10.4                   | 1210       | 0.016     |                                                                     |
|          | 2s2p6-2s2p5 ns                                                                 | 10.7                   | 1340       | 0.007     |                                                                     |
|          | 2s²2p5–2s2p5 nd                                                                | 10.9                   | 1340       | 0.008     |                                                                     |
|          | $2s^22p^5-2s^2p^5$ 4p                                                          | 10.9                   | 1140       | 0.007     |                                                                     |
|          | $2p^{5}-2p^{4}$ 4d                                                             | 12.2                   | 1020       | 0.012     |                                                                     |
|          | $2p^{5}-2p^{4}$ 4s                                                             | 12.4                   | 1020       | 0.016     | 00                                                                  |
|          | $2s^2 2p^5 - 2s^2 p^5 3p$                                                      | 13.4                   | 1110       | 0.025     | CO                                                                  |
|          | $2SZP^{\circ} - 2SZP^{*} 4d$                                                   | 13.0                   | 1140       | 0.008     |                                                                     |
|          | 252p <sup>2</sup> ~252p <sup>2</sup> 45<br>265_264 3d                          | 13.7                   | 862        | 0.007     | $\mathbf{RW} \mathbf{EP}(\mathbf{CO})$                              |
|          | $2p^{-2}p^{-3}u^{-3}$                                                          | 15.4                   | 872        | 0.058     | $\mathbf{K}\mathbf{W}, \mathbf{D}\mathbf{I} (\mathbf{C}\mathbf{O})$ |
|          | $2b^{5}-2b^{4}$ 3s                                                             | 15.6-16.0              | 796        | 0.128     | RW                                                                  |
|          | $2s2p^{6}-2s2p^{5}$ 3s                                                         | 16.2                   | 785        | 0.050     |                                                                     |
| Fe xvii  | $2s^2 2p^6 - 2s^2 p^6 np$                                                      | 9.9                    | 1250       | 0.02      |                                                                     |
|          | $2p^{6}-2p^{5}$ $nd^{2}$                                                       | 10.1                   | 1230       | 0.01      |                                                                     |
|          | $2s^22p^6-2s2p^6$ 4p                                                           | 11.0                   | 1130       | 0.02      |                                                                     |
|          | $2p^{6}-2p^{5}$ ns                                                             | 11.1                   | 1120       | 0.02      |                                                                     |
|          | $2s^22p^6-2s^2 2p^6 4d$                                                        | 12.3                   | 1010       | 0.03      | RW, EP (CO)                                                         |
|          | $2p^{\circ}-2p^{\circ}$ 4s                                                     | 12.7                   | 930        | 0.02      |                                                                     |
|          | $25^{2} 2p^{2} - 252p^{2} 3p$<br>$25^{2} 25^{6} - 25^{2} 25^{5} 35(1P)$        | 15.0                   | 893<br>824 | 0.130     | RW, EF(CO)                                                          |
|          | $23^{-} 2p^{-} 23^{-} 2p^{-} 33(-r)$<br>$2s^{2} 2h^{6} - 2s^{2} 2h^{5} 3d(3D)$ | 15.0                   | 806        | 0.00      | RW EP (CO)                                                          |
|          | $2s^{2} 2p^{2} 2s^{2} 2p^{5} 3s(^{3}P)$                                        | 15.5                   | 796        | 0.07      | RW, EP(CO)                                                          |
|          | $2s^2 2p^6 - 2s^2 2p^5 3s(^1P)$                                                | 16.8                   | 735        | 0.062     | RW. EP (CO)                                                         |
|          | $2s^2 2p^6 - 2s^2 2p^5 3s(^3P)$                                                | 17.1                   | 722        | 0.07      | RW, EP (CO)                                                         |
| Fe xv1   | 2s <sup>2</sup> 2p <sup>6</sup> 3s-2s2p <sup>6</sup> 3s3p                      | 15.4                   | 895        | 0.120     | , , ,                                                               |
|          | $2s^2 \ 2p^6 \ 3s - 2p^5 \ 3s 3d^-$                                            | 17.1                   | 806        | 0.050     |                                                                     |
|          | $2p^6 3s - 2s^2 2p^5 3s^2$                                                     | 17.5                   | 730        | 0.130     | CO                                                                  |
|          | 3s-5p                                                                          | 37.1                   | 334        | 0.007     |                                                                     |
|          | 3 <i>p</i> -5 <i>d</i>                                                         | 40.0                   | 344        | 0.02      | (M)                                                                 |
|          | Sp-SS                                                                          | 42.5                   | 320        | 0.009     | $(\mathbf{M})$                                                      |
|          | 3a-3j                                                                          | 50 3-54 2              | 244        | 0.02      | WS                                                                  |
|          | 3b-4p                                                                          | 54 7                   | 264        | 0.04      | WS                                                                  |
|          | 3p-4s                                                                          | 63.7                   | 232        | 0.05      | wš                                                                  |
|          | 3d-4f                                                                          | 66.4                   | 271        | 0.13      | ŴŠ                                                                  |
| Fe xv    | $2s^2 2p^6 3s^2 - 2s2p^6 3s^2 4l$                                              | 13-18                  | 820        | 0.13      |                                                                     |
|          | $2p^6 \ 3s^2 - 2p^5 \ 3s^2 \ 4l$                                               | 14–17                  | 807        | 0.23      |                                                                     |
|          | 3s3l–3s nl'                                                                    | 27.2-41                | 332        | 0.28      |                                                                     |
|          | $3s^2 - 3s4p$                                                                  | 52.9                   | 234        | 0.26      | WS                                                                  |
|          | 3s3p-3s4d                                                                      | 53.9                   | 252        | 0.10      | (M)                                                                 |
|          | 3s3d-3s4f                                                                      | 70.0                   | 177        | 0.08      | WS                                                                  |
| E. mar   | 3s3p-3s4s                                                                      | 21 7 56                | 190        | 0.18      |                                                                     |
| ге хіх   | 352131 -35 31 NI"<br>252 24-252444                                             | 51.7-50<br>56.2        | 221        | 0.20      |                                                                     |
|          | JS- JP-JSJP4P<br>ZsZh2_ZsZhAJJ                                                 | 58                     | 220        | 0.000     |                                                                     |
|          | $3x^2 3b - 3x^2 4d$                                                            | 60 0                   | 202        | 0.20      | WS                                                                  |
|          | $3_{s}3_{p}^{2}-3_{s}3_{p}4_{s}$                                               | 70                     | 245        | 0.12      |                                                                     |
|          | $3s^2 3p - 3s^2 4s$                                                            | 71                     | 175        | 0.078     | WS                                                                  |
|          | - 1                                                                            |                        |            |           |                                                                     |

TABLE 1—Continued

TABLE 1—Continued

| Ton       | Transition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Wavelength<br>(Å) | Excitation<br>Energy<br>(eV) | Effective<br>Collision<br>Strength | <b>Reference</b> * |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|------------------------------|------------------------------------|--------------------|
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (11)              | (01)                         | Strength                           |                    |
| Fe x111   | 3s3p3l3l'-3s3p3l nl"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 34.2-59           | 210                          | 0.15                               |                    |
|           | $3s3p^3 - 3s3p^2 4d$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 60                | 271                          | 0.24                               |                    |
|           | $3s^2 3p^2 - 3s^2 3p4d$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 05                | 191                          | 0.01                               |                    |
|           | $353p^{2}-353p^{2}$ 4s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 70<br>76 0        | 241                          | 0.13<br>0.17                       | We                 |
| T:        | 5525p2-5525p45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 21              | 10200                        | 0.17                               |                    |
| VI XXVIII | 1s - np                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.21              | 10000                        | 0.00010                            | (H)                |
|           | 15-4p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.24              | 0450                         | 0.00012                            | (П)                |
|           | 1s - 3p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.51              | 9430                         | 0.00031                            |                    |
| Ji www.   | 13-2p<br>$1s^2$ $1s$ mb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.33              | 0600                         | 0.0019                             |                    |
| NI XXVII  | $1_{1}^{2}-1_{2}^{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.29              | 9000                         | 0.0004                             |                    |
|           | $1_{0}^{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.30              | 9550                         | 0.0007                             |                    |
|           | $13^{-1}130p$<br>$1s^2 \cdot 1s^2 + (1p)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.57              | 7750                         | 0.0007                             |                    |
|           | $13^{-1}32p(-1)$<br>$1c^2-1c^2h(^3D)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.00              | 7700                         | 0.0038                             |                    |
|           | $13^{-1}32p(1)$<br>$1c^{2}-1c^{2}A(3S)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.62              | 7650                         | 0.0023                             |                    |
| li vvv    | $2l_{-m}l'$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5 15-6 14         | 2010                         | 0.0010                             |                    |
| 1 AAVI    | 2i - ni<br>2i - ni                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7 10              | 1730                         | 0.0001                             |                    |
|           | 21-41<br>25-34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0 20              | 1350                         | 0.0081                             |                    |
|           | 23-5P<br>26-3d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9.20              | 1350                         | 0.010                              |                    |
|           | 2p-30<br>2p-30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0 70              | 1320                         | 0.0073                             |                    |
| Ji xxv    | 2p' 0.5<br>2s2l-2sml'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5 40-6 76         | 1810                         | 0.0064                             |                    |
| 1 AAV     | 2521 25 M<br>2021-2011'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7 15-7 50         | 1670                         | 0.0064                             |                    |
|           | 2520 2540                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9 50              | 1300                         | 0.0085                             |                    |
|           | $2s^{2} + 2s^{2} + 2$ | 9 75              | 1350                         | 0.0081                             |                    |
|           | 2s2p 2s3d(1D)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10.0              | 1320                         | 0.0081                             |                    |
|           | $2s_{2p}^{2} 2s_{0}^{2} (D)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10.2              | 1300                         | 0 0081                             |                    |
| i xxiv    | 2:21 2:00<br>2:2021-2:20 nl'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5 81-6 62         | 1860                         | 0.025                              |                    |
|           | $2s_2p_2v_2s_2p_1v_2s_2p_1v_2s_2p_1v_2s_2p_2v_2s_2p_2v_2s_2p_1v_2s_2p_2v_2s_2p_1v_2s_2p_1v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2s_2p_2v_2$ | 6 50-7 94         | 1710                         | 0.025                              |                    |
|           | 25272-252030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9.32              | 1320                         | 0.020                              |                    |
|           | $2s^{2}D^{2} - 2s^{2}D^{2} - 2s^{2}D^{3}d$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9 65-11 0         | 1370                         | 0 035                              |                    |
|           | 2027 202700<br>20-3d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10.0              | 1240                         | 0 040                              |                    |
|           | 25202-252035                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10 4-11 7         | 1340                         | 0 022                              |                    |
|           | $2s^2 2p - 2s^2 3s$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10.4              | 1190                         | 0.010                              |                    |
| li xxIII  | $2s2p^2$ $2l-2s2p2l nl'$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6.15-6.94         | 1760                         | 0.031                              |                    |
|           | $2s2p^2 2l - 2s2p^24l$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.60-7.70         | 1780                         | 0.032                              |                    |
|           | $2s^2 2p^2 - 2s^2 p^2 3p$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8.85-9.35         | 1340                         | 0.022                              |                    |
|           | $2s2p^{3}-2s2p^{2} 3d$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9.20-9.70         | 1510                         | 0.038                              |                    |
|           | $2p^2-2p3d$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9.60              | 1260                         | 0.092                              |                    |
|           | $2s2p^{3}-2s2p^{2}$ 3s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10.6              | 1390                         | 0.023                              |                    |
|           | $2p^2-2p3s$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10.7              | 1150                         | 0.022                              |                    |
| ï xxII    | 2s2p3 2l-2s2p2 2l nl'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.45-7.26         | 1710                         | 0.027                              |                    |
|           | 2s <sup>2</sup> 2p <sup>3</sup> 2l-2s2p <sup>2</sup> 2l4l'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7.90-8.60         | 1550                         | 0.027                              |                    |
|           | $2s^2 2p^3 - 2s^2 p^3 3p$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9.25              | 1330                         | 0.022                              |                    |
|           | $2p^{3}-\hat{2}p^{2}$ $3d(^{4}P, ^{4}D)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9.65              | 1260                         | 0.046                              |                    |
|           | $2p^{3}-2p^{2} 3d$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |                              |                                    |                    |
|           | $({}^{2}S, {}^{2}P, {}^{2}D, {}^{2}F)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9.65-10.04        | 1210                         | 0.046                              |                    |
|           | $2s2p^{4}-2s2p^{3}$ 3d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10.7              | 1400                         | 0.041                              |                    |
|           | 2p <sup>8</sup> -2p <sup>2</sup> 3s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11.0-11.7         | 1120                         | 0.024                              |                    |
|           | $2s2p^{4}-2s2p^{3}$ 3s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12.0              | 1280                         | 0,021                              |                    |
| i xx1     | 2s2p42l-2s2p8 2l nl'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.72-7.60         | 1460                         | 0.023                              |                    |
|           | 2s2p4 2l-2s2p3 2l4l'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.70-8.83         | 1350                         | 0.023                              |                    |
|           | 2s <sup>2</sup> 2p <sup>4</sup> -2s2p <sup>5</sup> 3p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8.60              | 1290                         | 0.023                              |                    |
|           | $2s2p^{5}-2s2p^{\overline{4}} 3d^{\overline{2}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8.75-9.70         | 1460                         | 0.044                              |                    |
| •         | $2p^{4} - 2p^{3} 3\bar{d}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9,15-9.86         | 1260                         | 0.024                              |                    |
|           | $2p^{4}-2p^{3}$ 3s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10.6-11.6         | 1100                         | 0.0066                             |                    |
|           | 2s2p <sup>5_</sup> 2s2p <sup>4</sup> 3s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11.8              | 1390                         | 0.021                              |                    |
| ï xx      | 2s2p <sup>5</sup> 2l-2s2p <sup>4</sup> 2l nl'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7.40-8.25         | 1510                         | 0.040                              |                    |
|           | 2s2p <sup>5</sup> 2l-2s2p <sup>4</sup> 2l4l'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10.1-10.8         | 1380                         | 0.040                              |                    |
|           | 2s2 2p5-2s2p5 3p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10.4              | 1380                         | 0.020                              |                    |
|           | $2p^{5}-\bar{2}p^{4}$ $3d^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11.6              | 1070                         | 0.071                              |                    |
|           | $2s2p^{6}-2s2p^{5}$ 3d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12.5-12.6         | 1080                         | 0.047                              |                    |
|           | $2p^{5}-2p^{4} 3\bar{s}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 12.6-12.9         | 987                          | 0.10                               |                    |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                              |                                    |                    |

| Ion      | Transition                                            | Wavelength<br>(Å) | Excitation<br>Energy<br>(eV) | Effective<br>Collision<br>Strength | Reference*  |
|----------|-------------------------------------------------------|-------------------|------------------------------|------------------------------------|-------------|
| Ni x1x   | 2s <sup>2</sup> 2p <sup>6</sup> -2s2p <sup>6</sup> np | 8.1               | 1530                         | 0.02                               |             |
|          | 2p <sup>8</sup> –2p <sup>5</sup> nd                   | 8.3               | 1490                         | 0.008                              |             |
|          | $2s^2 2p^6 - 2s^2p^5 4p$                              | 9.0               | 1370                         | 0.02                               |             |
|          | 2p <sup>6</sup> -2p <sup>5</sup> ns                   | 9.1               | 1360                         | 0.02                               |             |
|          | $2p^{6}-2p^{5}$ 4d                                    | 10.0              | 1240                         | 0.008                              |             |
|          | $2s^2 2p^6 - 2s^2 2p^6 4d$                            | 10.0              | 1240                         | 0.024                              | RW, EP (CO) |
|          | $2s^2 2p^6 - 2s2p^6 3p$                               | 10.3              | 1090                         | 0.09                               |             |
|          | $2p^{6}-\bar{2}p^{5} 4s^{-}$                          | 11.0              | 1130                         | 0.02                               |             |
|          | $2s^2 2p^6 - 2s^2 2p^5 3d(^1P)$                       | 12.4              | 1010                         | 0.00094                            | RW, EP (CO) |
|          | $2s^2 2p^6 - 2s^2 2p^5 3d(^3D)$                       | 12.6              | 983                          | 0.039                              | RW, EP (CO) |
|          | $2s^2 2p^6 - 2s^2 2p^5 3d(^3P)$                       | 12.8              | 971                          | 0.0010                             | RW, EP (CO) |
|          | $2s^2 2p^6 - 2s^2 2p^5 3s(^1P)$                       | 13.8              | 897                          | 0.05                               | RW, EP (CO) |
|          | $2s^2 2p^6 - 2s^2 2p^5 3s(^3P)$                       | 14.3              | 881                          | 0.06                               | RW, EP (CO) |
| Ni xvIII | 2s2 206 3s-2s2p6 3s nl                                | 10.5 - 14.5       | 1030                         | 0.10                               | RWÍ         |
|          | 2p63s-2p5 3s nl                                       | 11.3-13.7         | 1010                         | 0.19                               |             |
|          | 3 <i>1–nl</i>                                         | 20-37             | 335                          | 0.11                               |             |
|          | 3s-4p                                                 | 40.6-43.7         | 305                          | 0.03                               |             |
|          | 3p-4d                                                 | 44.2              | 330                          | 0.07                               |             |
|          | 3p - 4s                                               | 51.7              | 290                          | 0.04                               |             |
|          | 3d-4f                                                 | 53.5              | 339                          | 0.11                               |             |
| Ni xvII  | $2s^2$ $2p^6$ $3s^2-2s2p^6$ $3s^2$ 4l                 | 10.4-14.4         | 943                          | 0.10                               |             |
|          | 2p6 3s2-2p5 3s2 4l                                    | 11.2 - 13.6       | 928                          | 0.18                               |             |
|          | 3s31-3s nl'                                           | 23.7-32.8         | 382                          | 0.22                               |             |
|          | $3s^2 - 3s4p$                                         | 42.2              | 269                          | 0.21                               |             |
|          | 3s3p-3s4d                                             | 45.6              | 290                          | 0.08                               |             |
|          | 3s3d-3s4f                                             | 56.0              | 204                          | 0.064                              |             |
|          | 3s3p-3s4s                                             | 59.5              | 225                          | 0.14                               |             |
| Ni xvi   | 3s3[3l'-3s3] nl"                                      | 24.9-43           | 281                          | 0.16                               |             |
|          | $3s^2 3p - 3s 3p 4p$                                  | 44                | 279                          | 0.068                              |             |
|          | $3s3p^2 - 3s3p4d$                                     | 45.5              | 358                          | 0.16                               |             |
|          | $3s^2 3p - 3s^2 4d$                                   | 47.0              | 262                          | 0.23                               | •           |
|          | $3s3p^2 - 3s3p4s$                                     | 55                | 311                          | 0.094                              |             |
|          | $3s^2 3b - 3s^2 4s$                                   | 55 7              | 222                          | 0.061                              |             |
| Ni xv    | 3s3p3l3l'-3s3p3l nl"                                  | 26.6-45           | $\frac{1}{271}$              | 0.12                               |             |
|          | $3_{s}3_{p}^{3}-3_{s}3_{p}^{2}4d$                     | 46.6              | 350                          | 0.19                               |             |
|          | $3s^2 3p^2 - 3s^2 3p4d$                               | 50                | 246                          | 0.47                               |             |
|          | $3^{3}y^{3}-3^{3}y^{2} 4^{5}$                         | 54                | 311                          | 0 10                               |             |
|          | $3s^2 3b^2 - 3s^2 3b^4s$                              | 59 0              | 210                          | 0.13                               |             |
|          | 00 OF 00 OF 10                                        | ~~~~              |                              | 5.20                               |             |

TABLE 1—Continued

For the sake of convenience, we often lumped several levels together. Thus, for example, the effective excitation energy for transitions to levels with principal quantum number n greater than or equal to 5 was assumed to be the energy of the n = 5 level, and the effective wavelength of the lines resulting from transitions from these levels to a lower-lying level was assumed to be equal to the wavelength of the transition from the n = 5 level. A similar procedure was also used for many of the transitions in complex ions with levels of the same n often being lumped together. We indicate in Table 1 the wavelength region over which these lines will be distributed.

Also given in Table 1 are "effective collision strengths" or the product of the collision strength  $\Omega$  and the branching ratio *B*. The cross-sections for excitation of the 2plevel of hydrogenic ions have been computed recently by Beigman, Vainshtein, and Vinogradov (1970). Their results for the excitation of the 2p level are in agreement with the results of Burgess (1961) to within about 20 percent. Values of the collision strength which approximate the results of Beigman *et al.* (1970) to within 30 percent were adopted, i.e.,  $\langle \Omega \ (1s, 2p) \rangle = 1.5/Z^2$ . The cross-sections for the excitation of the higher-*n* levels should scale approximately according to f(n)/E(n), where f(n) is the oscillator strength for the transition to level *n* from the ground state. Recent calculations by Krinberg (1970) for the hydrogen atom indicates that this is a good approximation. Hence, we have assumed that  $\langle \Omega(1s, 3p) \rangle = 0.24/Z^2$ , and  $\langle \Omega(1s, 4p) \rangle = 0.084/Z^2$ . All transitions to levels higher than n = 5 were lumped together and assigned the energy of the n = 5level, and the collision strengths summed over all bound levels with  $n \ge 5.5$  so that  $\langle \Omega(1s, n \ge 5.5) \rangle = 0.11/Z^2$ . For the allowed transitions in heliumlike ions, we scaled the collision strengths from the hydrogenic values according to f(n)/E(n). Recently, it has become clear that magnetic-dipole ( ${}^{3}S^{-1}S$ ) and intercombination ( ${}^{3}P^{-1}S$ ) transitions are also important in heliumlike ions. Gabriel and Jordan (1969) have computed the expected intensity of these lines relative to the allowed ( ${}^{1}P^{-1}S$ ) transitions, and we have used their values. The relative strength of the magnetic-dipole and the intercombination lines is a function of density except in the limit of very low densities  $N_e \ll 10^9$ . We have used this low-density limit in our calculations.

For lithiumlike ions, we used the results of Bely (1966a, b) for 2s-3l and 2s-4l excitations. For the excitation of levels with  $n \ge 5$ , the collision strengths were obtained in the same manner as for the highly excited states of hydrogen and heliumlike ions. For berylliumlike ions we assumed that the collision strength was equal to twice that of the corresponding lithiumlike ion. For boronlike ions we used the collision strengths calculated by Bely and Petrini (1970) for the excitation of 2p-nl transitions in lithiumlike ions. For the other ions containing from two to five 2p electrons in the ground state, we scaled the collision strengths from the boronlike values according to f(n)/E(n). We used the reults of Bely and Bely (1967) for the neonlike ions of iron and nickel, and those of Bely (1967) for the sodiumlike and magnesiumlike ions.

We have not considered the line emission resulting from the excitation of K-shell electrons of ions having one or more electrons in the n = 2 shell. For a Maxwellian gas such as we are considering here, the ratio of the power in these lines, p(K), to the power in lines produced by excitation of heliumlike ions of the same species, p(He-like) is given approximately by

$$p(K)/p(\text{He-like}) \sim (N_z/N_{\text{He-like}})K(Z)$$
, (4)

where K(Z) is the K-fluorescence yield. It is a rapidly increasing function of Z; e.g., K(10) = 0.00963; K(16) = 0.06; K(26) = 0.30. From equations (3) and (4) one sees that K-lines may be important in a narrow temperature range where N(z) > N(He-like) and  $kT \sim E(K)$ , the excitation energy for the inner-shell electron. Such a region does not exist except for the high-Z elements such as iron. In case of iron we find that the K-lines are important in the range  $10^7 \leq T \leq 3 \times 10^7$  where they are at most about 20 percent as powerful as the heliumlike ions; outside this range they make a negligible contribution.

#### ii) Line Emission following Recombination

Line emission is also produced by the recombination of an electron excited state followed by a radiative transition to the ground state. For the steady-state conditions here, the number of recombinations must equal the number of ionizations, which will always be less than the number of excitations to the first excited state. Therefore, recombination radiation will not dominate the strong lines, and will usually be negligible. It can be shown that the line radiation resulting from radiative recombination is never important; however, in some cases line radiation following dielectronic recombination makes a nonnegligible contribution.

In the dielectronic recombination of an electron to an ion, the ion is stabilized by radiative transitions which eventually take the ion into the ground state. In general, this will involve the emission of at least two line photons, since the recombination process leaves the ion in a doubly excited state n,n''. The rate of radiative energy loss per unit volume due to the de-excitation of the ionic core in the state n can be approximated by the expression

$$P_{L,Z,s}^{\rm di}(nn'', n'n'', T) = N_{e}N_{Z,s+1}E_{Z,z}(nn')\alpha_{Z,s}^{\rm di}(n), \qquad (5)$$

where  $\alpha_{Z,z}^{di}(n)$  is the rate coefficient for a dielectronic recombination in which the ionic core is excited to the state *n*. Note that, to the extent that the influence of the electron in state *n*" can be neglected, the photons produced by this process will have an energy equal to the energy of photons resulting from the collisional excitation of the ion z to the state *n*. Using the general formula given by Burgess (1965) for  $\alpha_{Z,z}^{di}(n)$ , one can relate  $P_{L,Z,z}^{di}(nn", n'n", T)$  to  $P_{L,Z,z}^{ex}(nn', T)$ . The recent work of Shore (1969) indicates that for transitions in which the principal quantum number changes, Burgess's results are systematically too large. From the values tabulated by Shore for recombination to hydrogenic ions, one finds that Shore's recombination rates are related to Burgess's ( $\alpha_B$ ) by  $\alpha \approx 3\alpha_B z^{-1.5}$  for  $z \ge 6$ . If we assume that this correction factor applies to all transitions in which the principal quantum number changes, then one has approximately

$$P_L^{\rm di}/P_L^{\rm ex} = R \approx 3 \times 10^4 T_6^{-1} (z+1)^3 / [1+0.1(z+1)+0.01(z+1)^2],$$

H-, He-like,

$$\approx 4 \times 10^{-5} T_6^{-1} (z+1)^3$$
, all others. (6)

From Jordan's (1969) ionization tables, one sees that, for hydrogenic and heliumlike ions, an ion z is not present in any appreciable concentration unless  $T_6 \ge (z + 1)^2/100$ , so that  $R \le 10^{-2}$  (z + 1) for  $z \le 15$ ,  $R \le 0.3/(z + 1)$  for  $z \ge 15$ . In an analogous manner we find for the other ions that  $R \le 10^{-2}$  (z + 1) for all  $z \le 25$ .

The de-excitation of the electron in the highly excited state n'' is more complicated, since in this case one has to take into account the rate of population of the various l''-levels of the state n'', and the cascade probabilities to the lower states n'''l'''. In order to obtain a rough estimate of the relative importance of this process, we assume that the branching ratio for the rate of population of a state n'''l''' due to dielectronic recombination followed by cascade is equal to the branching-ratio rate for collisional excitation from the ground state. Then the ratio of the power produced in a given line by these processes can be approximated by

$$R^{1}(z) \approx R(z) \exp \left[ (E_{Z,z}(n''') - E_{Z,z+1}(n'')/kT) \right].$$

Since in general  $E_{Z,z}(n''') < E_{Z,z+1}(n'')$ , we have  $R^1(z) < R(z)$ .

#### b) The Continuous Spectrum

The continuous X-ray spectrum of a hot, dilute, optically thin plasma is due to three processes: bremsstrahlung, radiative recombination, and two-photon decay of metastable states of hydrogen and helium.

#### i) Bremsstrahlung

In a hydrogenic approximation the energy emitted per unit time, volume, and wavelength interval due to encounters of Maxwellian electrons at a temperature T with ions of atomic number Z and charge z is given by

294

1 ki

41A

#### No. 2, 1971 HIGH-TEMPERATURE, LOW-DENSITY PLASMA

where  $\lambda$  is in angstroms, and  $g_B(\lambda, z, T)$  is an averaged bremsstrahlung Gaunt factor or order unity which has been computed by Karzas and Latter (1961). The bremsstrahlung spectrum of a plasma which is a mixture of a number of different ions is obtained by summing equation (7) over all Z,z. In the case of the solar corona it is possible to simplify this summation considerably since the principal contributors to the sum are hydrogen and helium, both of which are fully ionized in the solar corona. The contribution of the other elements to the sum is small, amounting to about 6 percent, and can, to a good approximation, be treated as a constant, independent of wavelength and temperature. One can then compute the bremsstrahlung spectrum from equation (7), using the values of the hydrogen and helium Gaunt factors obtained from the graphs given by Karzas and Latter (1961).

#### ii) Radiative Recombination

If we use a hydrogenic approximation to the cross-section for radiative recombination, then for a Maxwellian electron gas with temperature T, the emission spectrum due to captures into the state n of an ion Z,z is given by (Elwert 1954; Tucker and Gould 1966; Culhane 1969)

$$\begin{aligned} \frac{dE_{RR,Z,z}}{dtd\,Vd\lambda}\left(T\right) &= \frac{dP_{RR,Z,z}}{d\lambda}\left(T\right) \\ &= \frac{6.52 \times 10^{-23}}{\lambda^2 T_6^{3/2}} N_e N_H X_{Z,z,n}(T) \exp\left(-144/\lambda T_6\right) \exp\left(\operatorname{cm}^3 \sec \mathring{A}\right)^{-1} \\ &\quad (\lambda < 12400/I_{Z,z,n}) , \\ &= 0 \qquad \qquad (\lambda > 12400/I_{Z,z,n}) , \end{aligned}$$

where  $\lambda$  is in angstroms,  $I_{Z,z,n}$  is the ionization potential of the state *n* in electron volts, and

$$X_{Z,z,n}(T) = (N_{Z,z+1}/N_Z)(N_Z/N_H)(\bar{s}/2n^2)n(I_{Z,z,n}/I_H)^2 \exp(0.0116I_{Z,z,n}/T_6).$$
(9)

Here  $(\bar{s}/2n^2)$  is the incompleted fraction of shell n, and we have set the recombination Gaunt factor equal to unity. To obtain the spectrum of a plasma consisting of a mixture of ions Z,z, equation (8) must be summed over all ions and all levels n for which  $I_{Z,z,n} >$  $12400/\lambda$ . In performing this sum, we included sixty-four terms  $X_{Z,z,n}$  which consisted of the five or six lowest levels for the more abundant species and the one or two lowest levels for the less abundant species. At any given temperature and wavelength only a few terms (<10) in the sum contributed appreciably to the spectrum.

#### iii) Two-Photon Decay of the 2S States of Hydrogenic and Heliumlike Ions

Since the excitation rates of the metastable 2S states of hydrogenic and heliumlike ions are about one-third the rates for excitation of the 2P states (Beigman *et al.* 1970), the energy emitted in the two-photon process will be about a third of the energy emitted in the 2P-1S resonance transitions of these ions, unless collisional or single-photon processes are more efficient in depopulating the 2S state.

For hydrogenic ions, the two-photon transition probability is  $A(2S-1S) \approx 8Z^6 \sec^{-1}$ (Spitzer and Greenstein 1951; Shapiro and Breit 1959). By comparison, single-photon processes are negligible. The most important collisional-depopulation process is proton excitation to the 2P state, which for coronal conditions  $(n_{\rm H} \sim 10^8 \, {\rm cm}^{-3}; T_6 \sim 1)$  is completely negligible for  $Z \ge 6$  (cf. Seaton 1955). The shape of the two-photon continuum has been computed for hydrogen by Spitzer and Greenstein (1951). It extends from the frequency  $\nu = 0$  to  $\nu = \nu_T = E(2S)/h$ , is symmetric about the central frequency  $\frac{1}{2}\nu_T$ , and has a maximum at  $\frac{1}{2}\nu_T$ . To a good approximation the spectral shape may be approximated by the function  $H(\nu/\nu_T) = (\nu/\nu_T) (1 - \nu/\nu_T)$ . If we assume that this spectral shape applies to all hydrogenic ions, then the energy emitted per cm<sup>3</sup> per second per angstrom as a result of the two-photon decay of the 2S state of the ion Z, Z - 1 is given by

$$\frac{dP_{2\gamma,Z,Z-1}}{d\lambda}(T) = \frac{4P_{L,Z,Z-1}(2P-1S)}{\lambda} \left(\frac{\lambda_T}{\lambda}\right)^3 \left(1-\frac{\lambda_T}{\lambda}\right), \qquad (10)$$

where  $\lambda_T = c/\nu_T$  and  $P_{L,Z,Z-1}$  is the power per cm<sup>3</sup> in the L $\alpha$  line of the ion Z, Z - 1.

In the case of heliumlike ions the metastable states  $2^{1}S$  and  $2^{3}S$  must be considered separately. Two-photon decay of  $2^{3}S$  is unimportant, since the  $2^{3}S$  state can decay through a single-photon magnetic-dipole transition which has a much larger probability than the two-photon process (Griem 1970; Gabriel and Jordan 1970).

The results for the 2<sup>1</sup>S state are very similar to those for hydrogenic ions. The spectrum is roughly the same, and the transition probability is asymptotically equal to  $16(Z-1)^6$ , or twice the two-photon-decay rate of the hydrogenic 2S state with nuclear charge Z-1 (Drake, Victor, and Dalgarno 1969). Thus, collisional depopulation is unimportant for coronal conditions, and the intensity due to the two-photon continuum is proportional to the rate of excitation of the 2<sup>1</sup>S from the ground state. The probability of exciting the 2<sup>1</sup>S state is about one-third the probability of exciting the 2<sup>3</sup>P, 2<sup>1</sup>P, and 2<sup>3</sup>S states, so that the intensity of the 2<sup>1</sup>S two-photon continuum can be computed to a good approximation by using equation (10) with  $P_{L,Z,Z-1}$  (2<sup>3</sup>P-1<sup>1</sup>S,T) +  $P_{L,Z,Z-2}$  (2<sup>3</sup>P-1<sup>1</sup>S,T).

#### III. RESULTS

The results of the calculation are presented in Tables 2 and 3, and in Figures 1–3. In Table 2 we list  $-\log_{10} P_{L,Z,z} \exp(nn',T)/N_e^2$ , the negative logarithm of the power in the lines, as a function of temperature. The lines are listed according to ionic species and wavelengths. The corresponding transition can be found in Table 1. In Table 2 the ions were specified by arabic rather than roman numerals to save space. The cutoffs in the table were determined by the availability of ionization-equilibrium calculations. This explains why the numbers for calcium ions cut off at 10<sup>7</sup> ° K in every case. In the future we hope to extend the ionization-equilibrium calculations in order to eliminate such artificial cutoffs. The numbers in Table 1 refer only to line emission resulting from electron collisional excitation. Equations (4) and (6) can be used to obtain an estimate of the line emission produced as a result of K-shell excitation and dielectronic recombination.

To facilitate computation of radiative-recombination spectra, we have tabulated in Table 3 the recombination sum  $S = \sum X_{Z,z,n}(\lambda, T)/T_6$  (see eq. [9]) as a function of wavelength and temperature. Only the values at the edges are given, since between the edges the sum is constant. Note that the ratio of S to the bremsstrahlung Gaunt factor  $g_B$  is equal to the ratio of recombination radiation to bremsstrahlung radiation. Since  $g_B \approx 1-1.3$  for most wavelengths and temperatures of interest, S gives the ratio of recombination to bremsstrahlung emission within a factor of 2. From the numbers given in Table 3, we see that for a given temperature  $T_6$ , recombination dominates bremsstrahlung at wavelengths below about  $600/T_6$  Å. For wavelengths larger than this value, bremsstrahlung dominates.

In Figure 1 we have plotted the spectrum of a coronal plasma for several different temperatures. A resolution of 0.5 Å was assumed, and some prominent lines are labeled according to the ion and wavelength. The smooth curves show the contribution of the various continuum processes. The processes of bremsstrahlung (B), radiative recombination (RR), and two-photon emission  $(2\gamma)$  are shown. The dashed line represents the total continuum emission (C). The spectrum is expressed in units of ergs cm<sup>3</sup> sec<sup>-1</sup> Å<sup>-1</sup>, so that multiplication by the emission integral  $\int N_e^2 dV$  gives the power emitted per angstrom.

1971ApJ...168..283T







# TABLE 2

# LOG POWER IN LINES (ergs cm<sup>-3</sup> s<sup>-1</sup>) AS A FUNCTION OF TEMPERATURE (° K)

Log T =

|                | λ     | 5.8              | 6.2         | 6.4       | 6.6           | 6.8   | 7.0    | 7.3                | 7.6       | 8.0            |
|----------------|-------|------------------|-------------|-----------|---------------|-------|--------|--------------------|-----------|----------------|
| NIXXVIII       | 1.21  |                  |             |           |               |       |        | 31.52              | 28.42     | 27.01          |
| NIXXVIII       | 1.24  |                  |             |           |               |       |        | 31.32              | 28.25     | 26.87          |
| NIXXVII        | 1.29  |                  |             |           |               |       | 34.28  | 28.15              | 26.83     | 26. 81         |
| NIXXVII        | 1.30  |                  |             |           |               | ····· | 34.37  | 28.25              | 26.93     | 26.92          |
| NiXXVIII       | 1.31  |                  | ÷           |           |               |       |        | 30.88              | 27.88     | 26.54          |
| NIXXVII        | 1.37  |                  |             |           | ···· B        |       | 33.76  | 2 <sup>7</sup> .76 | 26.51     | 26.53          |
| FeXXVI         | 1.40  | ·<br>• • • • • • |             | · · · · · |               |       |        | 29.76              | 27.20     | 26.06          |
| FeXXVI         | 1.43  |                  |             |           |               |       |        | 29.58              | 27.05     | 25.92          |
| FeXXV          | 1.50  |                  |             |           | *             |       | 30.86  | 26.69              | 25.67     | 25.79          |
| FeXXV          | 1.51  |                  |             |           |               |       | 30.87  | 26.75              | 25.75     | <b>2</b> 5.89  |
| FeXXVI         | 1.51  | ••••             |             |           | · · · · · · · |       |        | 29 <i>.</i> 17     | 26.69     | 25 <i>.</i> 60 |
| NIXXVIII       | 1.55  |                  | <i></i>     |           |               |       |        | 29.80              | 26.98     | 25.75          |
| FeXXV          | 1.59  |                  |             |           |               |       | 30.29  | 26.28              | 25.34     | 25.51          |
| NIXXVII        | 1.60  |                  |             |           |               |       | 32.43  | 26.76              | 25.68     | 25.80          |
| NIXXVII        | 1.61  |                  |             |           |               |       | 32.63  | 26,97              | 25.89     | 26.01          |
| NIXXVII        | 1.62  |                  |             |           |               |       | 32.71  | 27.07              | 25.99     | 26.12          |
| FeXXVI         | 1.79  |                  |             |           |               |       |        | 28.12              | 25.81     | 24.81          |
| FeXXV          | 1.87  |                  |             |           | 1.50          |       | 29.05  | 25.32              | 24. 52    | 24.78          |
| FeXXV          | 1.88  |                  |             |           |               |       | 29.27  | 25.55              | 24.76     | 25.02          |
| FeXXV          | 1.89  |                  |             |           |               |       | 29. 32 | 25.61              | 24.82     | 25.08          |
| CaXX           | 2.30  |                  |             |           |               |       |        |                    |           |                |
| CaXX           | 2.40  |                  | • • • • • · |           |               |       |        |                    |           |                |
| CaXIX          | 2.50  |                  |             |           |               |       |        |                    |           |                |
| CaXX           | 2.54  |                  |             |           |               |       |        |                    |           |                |
| CaXIX          | 2,60  |                  |             |           |               |       |        |                    |           |                |
| CaXIX          | 2.70  |                  |             |           |               |       |        |                    |           |                |
| CaXX           | 3. 02 |                  |             |           |               |       |        |                    |           |                |
| CaXIX          | 3.18  |                  |             |           |               |       |        |                    |           |                |
| CaXIX          | 3.20  |                  |             |           |               |       |        |                    |           |                |
| CaXIX          | 3. 22 |                  |             |           |               |       |        |                    |           |                |
| SXVI           | 3.70  |                  |             |           | 32 99         | 29 82 | 27 92  | 26 60              | 26 78     | 27 54          |
| SXVI           | 3.78  |                  |             |           | 32.78         | 29.64 | 27.76  | 26.46              | 26.65     | 27.41          |
| SXVI           | 3.99  |                  |             |           | 32, 26        | 29.20 | 27.38  | 26.12              | 26.33     | 27.10          |
| SXV            | 4. 01 |                  | 37.64       | 31, 12    | 28.37         | 26.99 | 26.22  | 25.98              | 26.86     | 28.50          |
| SXV            | 4 10  | ••••             | 37 52       | 31 09     | 28.39         | 27 05 | 26.29  | 26.07              | 26.96     | 28 60          |
| SXV            | 4.30  |                  | 36.77       | 30.50     | 27.91         | 26.63 | 25.91  | 25.73              | 26.64     | 28.29          |
| SXVII<br>SXVII | 1.00  |                  | 00.77       | 00.00     | 30 95         | 28 12 | 26.44  | 25 30              | 25 57     | 26 38          |
| SIXIV          | 4.83  | ••••             |             | <br>33 90 | 30, 95        | 27 54 | 26 25  | 26.10              | 26.62     | 20,00          |
| SIXIV          | 4.05  | ••••             |             | 34 02     | 31 08         | 27.64 | 26.38  | 26.23              | 26,02     |                |
| SXV            | 5.04  | ••••             | 34 75       | 28.96     | 26 67         | 25 58 | 24.98  | 24 90              | 25 86     | 27.55          |
| SXV            | 5 07  | • • • • •        | 35 11       | 20, 30    | 27 05         | 25.00 | 25 28  | 25 30              | 26.26     | 27 94          |
| SXV            | 5 10  | ••••             | 34 93       | 29.07     | 26 31         | 20.37 | 25 14  | 25.07              | 26 04     | 27.72          |
| SIXIV          | 5 22  | ••••             | 54.05       | 23.07     | 30.51         | 20.73 | 25 02  | 25.07              | 26 21     |                |
| GIVITT         | 5 20  | 20 67            | 22 02       | 28 61     | 26 02         | 27.20 | 25 71  | 20.75              | 20.31     | ••••           |
| GIVIII         | 5 40  | 33.01            | 22 11       | 20.01     | 20.93         | 20.99 | 25 07  | 20.50              | ••••      | ••••           |
| 317111         | 5.40  | 39.78            | 34.14       | 40.74     | 47.04         | 20.10 | 43,84  | 20.07              | · · · · · | • • • • •      |
| SIXIII         | 5.68  | 38.94            | 31.50       | 28.21     | 20.62         | 25.73 | 25.48  | 20.36              | · · · · · | · · · · ·      |

299

 $\ensuremath{\textcircled{}^{\odot}}$  American Astronomical Society  $\ \bullet$  Provided by the NASA Astrophysics Data System

| NiXXVI            | 6.14 | ••••             | •••••     | ••••      |           | ••••     | 29.13  | 25.92  | 26.19     | 27.43     |
|-------------------|------|------------------|-----------|-----------|-----------|----------|--------|--------|-----------|-----------|
| SiXIV             | 6.18 |                  | • • • • • | 31.87     | 29.30     | 26.12    | 24.98  | 24.95  | 25.53     |           |
| MgXII             | 6.60 | • • • • •        |           | 30.86     | 28.05     | 26.55    | 26.25  | 26.69  |           |           |
| NIXXIV            | 6.62 |                  |           | ••••      |           | 30.43    | 26.95  | 25.68  | 27.47     | 30.46     |
| SiXIII            | 6.65 | 36.58            | 29.74     | 26.83     | 25.47     | 24.73    | 24.57  | 25.53  |           |           |
| SiXIII            | 6.69 | 36.97            | 30.15     | 27.25     | 25.90     | 25.17    | 25.01  | 25.98  |           |           |
| MgXII             | 6.70 | s <b></b> .      |           | 30.98     | 28.17     | 26.68    | 26.37  | 26.82  |           | 4         |
| SiXIII            | 6.74 | 36.63            | 29.83     | 26.94     | 25.60     | 24.87    | 24.71  | 25.68  |           |           |
| NiXXV             | 6.76 |                  |           |           |           |          | 28.48  | 26.30  | 27.35     | 29.46     |
| NiXXIII           | 6.94 |                  |           |           |           | 28.70    | 26.31  | 25.95  | 28.51     | 6         |
| NIXXVI            | 7.10 |                  |           |           |           |          | 29.05  | 25.92  | 26.22     | 27.48     |
| MaXII             | 7.11 |                  |           | 30.33     | 27.61     | 26,16    | 25,89  | 26.36  |           |           |
| FeXXIV            | 7.21 |                  |           |           |           | 30, 43   | 26.58  | 24, 95 | 25,29     | 26, 58    |
| NIXXII            | 7 26 |                  |           |           | 31.20     | 27.89    | 25.88  | 26.46  | 29.75     |           |
| MaXI              | 7 30 | 32 84            | 29 29     | 27 42     | 26 33     | 25 95    | 26 42  | 207.10 | 20770     |           |
| FeYYI             | 7 40 | 04.04            | 25.25     | 571 15    | 20.00     | 26.84    | 25 14  | 26 22  |           |           |
| Mayi              | 7 47 | 32 04            | 20 17     | 27 57     | 26 46     | 26.07    | 26 54  | 20.22  |           |           |
| MINU              | 7 50 | 55.04            | 25.47     | 27.07     | 20.40     | 20.07    | 20.04  | 26 20  | 27 27     | 20 10     |
| NIVVI             | 7.50 | ••••             | ••••      |           | 29 08     | 26 78    | 25 58  | 20.30  | 27.57     | 25.45     |
| NIXVIII           | 7.00 | ••••             |           | ~ ~       | 23.00     | 20,70    | 26.30  | 27.00  | 28 50     |           |
| Mayi              | 7.96 |                  | 28 85     | 27 06     | 26 02     | 25.67    | 26.16  | 20, 34 | 20.00     |           |
| FoyyII            | 7.00 | 32.20            | 20.05     | 27.00     | 20.02     | 23.07    | 20.10  | 24 92  | 26 72     |           |
| PONNI             | 7.03 | ••••             | ••••      | • • • • • |           | 27.23    | 25.15  | 24.33  | 20.72     |           |
| I CAAL            | 7.90 | ••••             | ••••      | ••••      |           | 20.07    | 25.15  | 20.21  | 27 40     | 20 40     |
| INIAAIV<br>Eevyyi | 7.94 | ••••             | • • • • • | ••••      |           | 30.33    | 20. 91 | 25.00  | 27, 43    | 30. 43    |
| rext              | 8.00 | ••••             | ••••      | ••••      |           | 20.00    | 24.91  | 25.99  | • • • • • | ••••      |
| FeXXIII           | 8.00 | ••••             | ••••      | ••••      | ••••      | 29.22    | 25.95  | 25.28  | 26.35     | 28.49     |
| NIXIX             | 8.10 | ••••             | ••••      | 27.58     | 26.17     | 25.61    | 25.66  | 28.86  | • • • • • | • • • • • |
| NIXX              | 8.25 | • • • • •        | • • • • • | 29.84     | 27.29     | 25.84    | 25.30  | 27.65  | ••••      |           |
| NIXIX             | 8.30 | •••••            | • • • • • | 27.91     | 26.53     | 25.99    | 26.05  | 29.26  |           |           |
| FeXXI             | 8.30 | ••••             | • • • • • | • • • • • | • • • • • | 26.40    | 24.71  | 25.79  |           |           |
| FeXXIV            | 8.35 | ••••             | • • • • • | • • • • • | • • • • • | 30.31    | 26.52  | 24.96  | 25.32     | 26.63     |
| MgXII             | 8.42 | ••••             | ••••      | 29.07     | 26.54     | 25.23    | 25.03  | 25.57  |           | • • • • • |
| FeXIX             | 8.60 | • • • • •        |           | • • • • • | 27.79     | 25.70    | 25.22  | 27.82  |           | ••••      |
| NiXXII            | 8.60 |                  | ••••      |           | 31.04     | 27.80    | 25.85  | 26.47  | 29.77     |           |
| NIXXI             | 8.60 |                  | ••••      |           | 28.92     | 26.69    | 25.54  | 27.09  |           |           |
| NIXXI             | 8.83 | ••••             | • • • • • |           | 28.97     | 26.72    | 25.55  | 27.08  |           |           |
| FeXXIII           | 8.86 |                  | • • • • • |           | • • • • • | 29.16    | 25.92  | 25.28  | 26.37     | 28.52     |
| FeXXI             | 8.95 |                  |           |           |           | 26.53    | 24.88  | 26.00  |           |           |
| NiXIX             | 9.00 | · · · · <i>·</i> |           | 27.31     | 26.01     | 25.53    | 25.63  | 28.86  |           |           |
| NIXIX             | 9.10 |                  |           | 27.29     | 26.00     | 25.53    | 25.63  | 28.86  | • • • • • |           |
| FeXVIII           | 9.15 | •••••            | 33.98     | 28.50     | 26.41     | 25.26    | 25.45  | 28.90  |           |           |
| MgXI              | 9.17 | 30.45            | 27.45     | 25.92     | 25.04     | 24.80    | 25.35  |        |           |           |
| FeXX              | 9.20 | • • • • •        |           |           | 29.03     | 26.16    | 25.09  | 26.89  |           |           |
| NIXXVI            | 9.20 |                  |           |           |           | <b>.</b> | 28.85  | 25.81  | 26.16     | 27.44     |
| MgXI              | 9.23 | 30.92            | 27.93     | 26.41     | 25.54     | 25.30    | 25.86  |        |           |           |
| NIXXII            | 9.25 | <del>.</del> .   |           |           | 30.91     | 27.78    | 25.89  | 26.57  | 29.90     |           |
| MgXI              | 9.31 | 30.47            | 27.51     | 26.00     | 25.13     | 24.90    | 25.46  |        |           |           |
| NIXXIV            | 9.32 |                  |           |           |           | 30.25    | 26.92  | 25.79  | 27.65     | 30.68     |
| NiXXIII           | 9.35 |                  |           |           |           | 28.64    | 26.36  | 26.11  | 28.73     |           |
| FeXXII            | 9.45 |                  |           |           |           | 27.17    | 24.70  | 24.93  | 26.74     |           |
|                   |      |                  |           |           |           |          |        |        |           |           |

| FeXIX   | 9.50  |           |           |           | 27.67 | 25.64     | 25.20  | 27.83     |           | <i></i>   |
|---------|-------|-----------|-----------|-----------|-------|-----------|--------|-----------|-----------|-----------|
| NIXXV   | 9.50  |           |           |           |       |           | 28.25  | 26.19     | 27.31     | 29.46     |
| NeX     | 9.50  |           | 31.03     | 28.00     | 26.46 | 26.26     | 26.58  | 27.17     |           |           |
| NIXXVI  | 9, 52 |           |           |           |       |           | 28.76  | 25.72     | 26.07     | 27.35     |
| FeXX    | 9.60  |           |           |           | 29.03 | 26.16     | 25.09  | 26.89     |           |           |
| NIXXIII | 9, 60 |           |           |           |       | 35.01     | 29.82  | 27.07     | 28.44     |           |
| NIVYTI  | 9 65  | 3         |           |           | 30.53 | 27, 43    | 25,56  | 26.25     | 29.59     |           |
| Fovv    | 9 70  |           |           |           | 28.98 | 26.13     | 25.08  | 26.90     |           |           |
| FOVIV   | 9.70  |           |           |           | 27.37 | 25.34     | 24, 90 | 27.53     |           |           |
| Tevin   | 0.70  |           |           |           | 27 60 | 25 60     | 25 19  | 27 84     |           |           |
| r exix  | 9.70  | • • • • • | 21 16     | 28 12     | 26.59 | 26.39     | 26.70  | 27.30     |           |           |
| Nex     | 9.70  | ••••      | 51.10     | 20.12     | 20.05 | 20.05     | 28 89  | 25 86     | 26.21     | 27.50     |
| NIXAVI  | 9.70  | ••••      |           |           | ••••  | 29 19     | 26.16  | 25.87     | 28 46     |           |
| NIXXIII | 9.70  | •••••     | ••••      | ••••      | 20.00 | 20.40     | 20.10  | 26.07     | 20,40     |           |
| NIXXI   | 9.70  | • • • • • | • • • • • | ••••      | 20.00 | 20.49     | 20.25  | 20.00     |           | 20 16     |
| NIXXV   | 9,75  | •••••     | • • • • • | ••••      |       |           | 28.28  | 20.21     | 41.34     | 29.40     |
| FeXXI   | 9.81  | •••••     | ••••      | • • • • • |       | 26.46     | 24.73  | 25.79     |           |           |
| NIXXI   | 9.86  | • • • • • | ••••      | • • • • • | 28.87 | 26.66     | 25.52  | 27.07     |           | ••••      |
| FeXVII  | 9.90  |           | 29.91     | 26.04     | 24.96 | 24.64     | 25.44  | 29.64     | ••••      |           |
| FeXIX   | 10.00 | • • • • • | •••••     | •••••     | 27760 | 25.60     | 25.19  | 27.84     |           |           |
| NIXIX   | 10.00 | • • • • • | ••••      | 27.49     | 26.29 | 25.87     | 26.00  | 29.27     | • • • • • |           |
| NIXXV   | 10.00 | •••••     | • • • • • |           |       | • • • • • | 28.27  | 26.21     | 27.32     | 29.47     |
| NIXXIV  | 10.00 |           | ••••      | ••••      |       | 29.91     | 26.61  | 25.49     | 27.37     | 30.40     |
| NIXIX   | 10.00 | •••••     |           | 27.01     | 25.81 | 25.39     | 25.53  | 28.80     | ••••      |           |
| NIXXII  | 10.04 | •••••     |           |           | 30.48 | 27.41     | 25.55  | 26.26     | 29.60     |           |
| FeXVII  | 10.10 |           | 30.16     | 26.30     | 25.24 | 24.93     | 25.74  | 29.95     |           |           |
| FeXX    | 10.20 |           |           |           | 29.09 | 26.22     | 25.15  | 26.95     |           |           |
| FeXVIII | 10.20 |           | 33.38     | 28.05     | 26.06 | 24.97     | 25.19  | 28.68     |           |           |
| NeX     | 10.20 |           | 30.50     | 27.54     | 26.05 | 25.89     | 26.22  | 26.83     |           |           |
| NiXXV   | 10.20 |           |           |           |       |           | 28.27  | 26.21     | 27.33     | 29.48     |
| NIXIX   | 10.30 |           |           | 26.19     | 25.10 | 24.75     | 24.93  | 28.24     |           |           |
| FeXIX   | 10.40 | •         |           |           | 27.30 | 25.30     | 24.89  | 27.54     |           |           |
| FeXVIII | 10.40 |           | 33.26     | 27.93     | 25.93 | 24.85     | 25.07  | 28.55     |           |           |
| NIXXIV  | 10.40 |           |           |           |       | 30, 49    | 27.20  | 26.10     | 27.98     | 31, 02    |
| NiXX    | 10.40 |           |           | 29.92     | 27.46 | 26.08     | 25.57  | 27.95     |           |           |
| FeXY    | 10.50 |           |           | 20102     | 28 98 | 26.13     | 25 08  | 26 90     |           |           |
| NIVYTT  | 10.60 |           |           |           | 20.00 | 28.64     | 26.35  | 26.09     | 28 70     |           |
| Foyy    | 10.00 |           | ••••      |           | 29 03 | 26.19     | 25.14  | 26.96     | 20.70     |           |
| FONUTIT | 10.70 | ••••      | ·····     | 20 50     | 25.03 | 20.13     | 25.15  | 20, 90    |           | ••••      |
| reaviti | 10.70 | •••••     | 33. 90    | 20, 30    | 20.41 | 20.20     | 20.40  | 20.30     |           |           |
| NIXXIII | 10.70 | ••••      | ••••      |           |       | 20,00     | 20.33  | 20.13     | 20.77     |           |
| NIXXII  | 10.70 | •••••     | ••••      | ••••      | 30.71 | 27.55     | 25.03  | 20.29     | 29.01     |           |
| FeXIX   | 10.80 | • • • • • | • • • • • |           | 27.60 | 25.60     | 25.19  | 27,84     |           |           |
| FeXXIV  | 10.80 | • • • • • |           | • • • • • |       | 30.03     | 26.34  | 24,86     | 25.26     | 26.60     |
| FeXIX   | 10.80 | ••••      | ••••      |           | 26.73 | 24.83     | 24.48  | 27.18     |           |           |
| NiXX    | 10.80 | •••••     |           | 29.62     | 27.16 | 25.78     | 25.27  | 27.65     | ····      | · · · · · |
| NeIX    | 10.80 | 29.58     | 27.56     | 26.38     | 26.06 | 26.65     | 27.57  |           | • • • • • |           |
| FeXVIII | 10.90 |           | 33.93     | 28.44     | 26.35 | 25.21     | 25.39  | 28.84     |           | ••••      |
| FeXVIII | 10.90 |           | 33.42     | 28.17     | 26.23 | 25.17     | 25.42  | 28.92     | • • • • • | •••••     |
| FeXVII  | 11.00 |           | 29.57     | 25.84     | 24.85 | 24.58     | 25.42  | 29.66     |           |           |
| NIXIX   | 11.00 |           | ••••      | 26.91     | 25.79 | 25.42     | 25.59  | 28.89     | • • • • • | •••••     |
| NeIX    | 11.00 | 29.69     | 27.67     | 26.48     | 26.17 | 26.76     | 27.68  | · · · · · |           |           |
|         |       |           |           |           | 301   |           |        |           |           |           |

1971ApJ...168..283T

© American Astronomical Society • Provided by the NASA Astrophysics Data System

| NIXXIV  | 11.00  |           |        |           |           | 30.03  | 26.69           | 25.54     | 27.40     | 30.42     |
|---------|--------|-----------|--------|-----------|-----------|--------|-----------------|-----------|-----------|-----------|
| FeXIX   | 11.10  |           |        |           | 27.60     | 25.60  | 25.19           | 27.84     |           |           |
| FeXVII  | 11.10  |           | 29.55  | 25.82     | 24.84     | 24.58  | 25.42           | 29.66     |           |           |
| FeXXIV  | 11.20  |           |        |           |           | 29.75  | 26.06           | 24.58     | 24.99     | 26.32     |
| FeXXIII | 11.20  |           |        |           |           | 28.90  | 25.75           | 25.19     | 26.32     | 28.50     |
| FeXXIV  | 11.40  |           |        |           |           | 30.06  | 26.38           | 24.90     | 25.31     | 26.65     |
| FeXXIII | 11.50  |           |        |           |           | 28.94  | 25.78           | 25.21     | 26.33     | 28.51     |
| FeXXII  | 11.50  |           |        |           |           | 27.12  | 24.74           | 25.06     | 26.91     |           |
| NeIX    | 11.60  | 29.06     | 27.15  | 26.03     | 25.76     | 26.38  | 27.32           |           |           |           |
| NIXXI   | 11.60  |           |        |           | 29.29     | 27.15  | 26.06           | 27.65     |           |           |
| NiXX    | 11.60  |           |        | 28.86     | 26.63     | 25.39  | 24.97           | 27.44     |           |           |
| NIXXIV  | 11.70  |           |        |           |           | 30.22  | 26.88           | 25.74     | 27.61     | 30.63     |
| NIXXII  | 11 70  |           |        |           | 30, 68    | 27.65  | 25.82           | 26.55     | 29, 91    |           |
| Fow     | 11.90  |           |        |           | 00.00     | 28 93  | 25.77           | 25, 21    | 26.34     | 28.51     |
| NUM     | 11.00  |           |        |           | 20 05     | 26.78  | 25 60           | 27 12     | 20.01     | 20.01     |
| NIXXI   | 11.00  |           | ••••   | ••••      | 23.00     | 20.70  | 20.00           | 27.12     | 26 61     |           |
| Fexall  | 11.90  | ••••      | ••••   | ••••      |           | 20.00  | 44. 44<br>05 71 | 44.70     | 20.04     |           |
| CaxVIII | 12.00  | • • • • • | ••••   |           |           | 20,00  | 25.71           |           |           |           |
| FeXXI   | 12.00  | ••••      | ••••   | • • • • • | ••••      | 26.11  | 24.52           | 25.68     |           |           |
| FeXXIII | 12.00  | ••••      |        | ••••      |           | 28.92  | 25.77           | 25.21     | 26.34     | 28.52     |
| NIXXII  | 12.00  | • • • • • |        |           | 30.39     | 27.78  | 25.90           | 26.59     | 29.93     |           |
| FeXVIII | 12.20  | ••••      | 32.85  | 27.74     | 25.89     | 24.89  | 25.17           | 28.71     |           |           |
| NeX     | 12.20  | ••••      | 29.16  | 26.43     | 25.09     | 25.01  | 25.40           | 26.06     |           |           |
| FeXXI   | 12.30  | ••••      | ••••   | ••••      | · · · · · | 25.92  | 24.29           | 25.42     | • • • • • |           |
| FeXVIII | 12.40  | · · · · · | 32.73  | 27.62     | 25.76     | 24.77  | 25.05           | 28.58     |           | ••••      |
| FeXXII  | 12.40  |           | ••••   |           | • • • • • | 27.38  | 25.03           | 25.38     | 27.24     |           |
| NIXIX   | 12.40  |           |        | 28.06     | 27.04     | 26.72  | 26.93           | 30.25     |           |           |
| NiXX    | 12.60  |           |        | 29.06     | 26.82     | 25.57  | 25.15           | 27.61     |           |           |
| NIXIX   | 12.60  |           |        | 26.38     | 25.38     | 25.08  | 25.29           | 28.62     |           |           |
| FeXXI   | 12.70  |           |        |           |           | 25.45  | 23.88           | 25.07     |           |           |
| FeXVII  | 12.70  |           | 29.02  | 25.52     | 24.68     | 24.51  | 25.40           | 29.69     |           |           |
| FeXX    | 12.70  |           |        |           | 28.30     | 25.53  | 24.53           | 26.39     |           |           |
| NIXIX   | 12.80  |           |        | 27.96     | 26.96     | 26.66  | 26,88           | 30.21     |           |           |
| FeXXI   | 12.90  |           |        |           |           | 26.09  | 24.49           | 25.65     |           |           |
| NIXX    | 12,90  |           |        | 28.58     | 26.41     | 25.21  | 24.82           | 27.30     |           |           |
| FeXVIII | 13.00  |           | 33.36  | 28.11     | 26.17     | 25.12  | 25.36           | 28.86     |           |           |
| CaXVII  | 13.00  |           |        |           |           | 26.53  | 26.26           | . <b></b> |           |           |
| CaXVI   | 13.00  |           |        |           | 28.31     | 26.13  | 26.57           |           |           |           |
| FeXXII  | 13, 10 |           |        |           |           | 26, 89 | 24.50           | 24.81     | 26.66     |           |
| NIVY    | 13 10  |           |        | 28.96     | 26.80     | 25, 60 | 25.22           | 27.70     |           |           |
| FoVV    | 13.10  |           |        | 20.00     | 27 93     | 25119  | 24.20           | 26.08     |           |           |
| Tenn    | 13.40  |           | 22 70  | 27 57     | 25 65     | 24 61  | 24 96           | 28 37     |           |           |
| rexviii | 13.40  |           | 34.70  | 21.07     | 23.05     | 24.01  | 24,00           | 20. 57    | ••••      |           |
| NelX    | 13.40  | 27.01     | 25.97  | 25.02     | 24.00     | 20.04  | 20.52           | <br>05 71 |           |           |
| FeXXI   | 13.50  |           | ••••   |           |           | 26.04  | 24.50           | 25.71     |           | ••••      |
| NeIX    | 13.60  | 28.11     | 20.50  | 25.57     | 45.41     | 20.11  | 47.09           |           |           |           |
| NIXVII  | 13.60  | • • • • • | 29.20  | 25.97     | 26.07     | 26.37  | 27.34           |           | ••••      |           |
| FeXVIII | 13.70  | ••••      | 33. 42 | 28.17     | 26.23     | 25.17  | 25.42           | 28.92     | • • • • • |           |
| NeIX    | 13.70  | 27.60     | 26.00  | 25.08     | 24.93     | 25.62  | 26.61           |           |           | • • • • • |
| NiXVIII | 13.70  | • • • • • | 30.20  | 25.91     | 25.21     | 25.04  | 25.51           | 29.25     |           |           |
| NIXIX   | 13.80  |           |        | 26.14     | 25.20     | 24.94  | 25.18           | 28.53     |           |           |
| FeXVII  | 13.80  |           | 28.12  | 24.66     | 23.84     | 23.68  | 24.59           | 28.89     | • • • • • |           |

302

 $\ensuremath{\textcircled{}^{\odot}}$  American Astronomical Society + Provided by the NASA Astrophysics Data System

| FeXXII         | 13.90 | • • • • • • |             |           |           | 27.09          | 24.71     | 25.02          | 26.87     |           |
|----------------|-------|-------------|-------------|-----------|-----------|----------------|-----------|----------------|-----------|-----------|
| FeXIX          | 14.00 |             |             |           | 26.61     | 24.63          | 24.22     | 26.88          |           |           |
| FeXIX          | 14.20 | · · · · ·   |             | • • • • • | 26.69     | 24.81          | 24.46     | 27.17          |           |           |
| NIXIX          | 14.30 | • • • • •   |             | 26.04     | 25.11     | 24.86          | 25.10     | 28.46          |           | <b></b>   |
| FeXVIII        | 14.40 | · · · · ·   | 31.56       | 26.64     | 24.90     | 23.97          | 24.30     | 27.87          |           |           |
| FeXX           | 14.40 |             |             |           | 27.89     | 25.18          | 24.20     | 26.09          |           |           |
| NIXVII         | 14.40 |             | 29.50       | 26.25     | 26.33     | 26.63          | 27.60     |                |           |           |
| NiXVIII        | 14.50 |             | 30.54       | 26.22     | 25.51     | 25.33          | 25.79     | 29.52          |           |           |
| FeXX           | 14.70 |             |             |           | 28.08     | 25.29          | 24.27     | 26.12          |           |           |
| OVIII          | 14.80 | 29.54       | 26.66       | 25.46     | 25.48     | 25.84          | 26.24     |                |           |           |
| FeXIX          | 15.00 |             |             |           | 27.15     | 25.32          | 25.02     | 27.76          |           |           |
| CaXVIII        | 15.00 |             |             |           |           | 26.63          | 25.71     |                |           |           |
| FeXVII         | 15.00 |             | 29.86       | 26.49     | 25.73     | 25 <i>.</i> 60 | 26.53     | 30.84          |           |           |
| CaXVI          | 15.00 |             |             |           | 28.26     | 26.11          | 26.57     |                |           |           |
| CaXV           | 15.10 |             |             |           | 27.49     | 25.97          | 27.04     |                |           |           |
| FeXX           | 15.20 |             |             | <i></i>   | 28.43     | 25.75          | 24.80     | 26.71          |           |           |
| FeXIX          | 15.20 |             |             |           | 26.83     | 24.89          | 24.52     | 27.20          |           |           |
| OVIII          | 15.20 | 29.67       | 26.78       | 25.58     | 25.61     | 25.97          | 26.37     |                |           |           |
| FeXVII         | 15.30 |             | 28.32       | 24.96     | 24.22     | 24.10          | 25.03     | 29 <i>.</i> 35 |           |           |
| FeXVI          | 15.40 | 33.12       | 27.83       | 24.79     | 24,26     | 24.40          | 25.62     |                |           |           |
| FeXVIII        | 15.40 |             | 31.76       | 26.83     | 25.09     | 24.16          | 24.48     | 28.05          |           |           |
| FeXVII         | 15.50 |             | 29.89       | 26.54     | 25.80     | 25.69          | 26, 63    | 30.95          |           |           |
| OVITI          | 16.00 | 29.04       | 26.22       | 25.08     | 25.13     | 25, 51         | 25, 92    |                |           |           |
| CaXVII         | 16.00 |             |             |           |           | 26.51          | 26.26     |                |           | 40<br>1   |
| FeXVIII        | 16.00 |             | 31, 22      | 26.37     | 24.69     | 23, 79         | 24.14     | 27.73          |           |           |
|                | 10.00 |             | 01 00       | 0.0 88    | 05 00     |                |           |                |           |           |
| FexvIII        | 16.20 | •••••       | 31.60       | 26.77     | 25.09     | 24.20          | 24.55     | 28.14          | • • • • • | • • • • • |
| Fexx<br>Collin | 16.30 | •••••       | ••••        | ••••      | 28.42     | 25,75          | 24.80     | 26.71          | • • • • • | ••••      |
| Caxv           | 16.30 | • • • • •   | ••••        | ••••      | 27.50     | 25.98          | 27.04     |                | ••••      | · · · · · |
| Fexa           | 10.00 |             | · · · · · · |           | 28.29     | 25.55          | 24.50     | 26.43          | • • • • • |           |
| FexVII         | 10.80 |             | 28.03       | 24.70     | 24.06     | 23.98          | 24.93     | 29.27          |           | • • • • • |
| Fexv           | 17.00 | 30.89       | 26.14       | 25.16     | 25.02     | 25.66          | 27.30     |                |           |           |
| Fexvi          | 17.10 | 33.09       | 27.97       | 25.04     | 24.57     | 24,75          | 26.00     |                | • • • • • |           |
| FeXVII         | 17.10 | •••••       | 27.93       | 24.67     | 23.99     | 23.91          | 24.87     | 29.20          |           | ••••      |
| Caxiv          | 17.20 |             | ••••        |           | 26.53     | 25.64          | 27.21     |                | • • • • • | • • • • • |
| OVII           | 17.40 | 26.49       | 25.42       | 25.32     | 26.05     | 26.98          | 27.84     | • • • • •      | ••••      | • • • • • |
| FeXVI          | 17.50 | 32.34       | 27.36       | 24.51     | 24.10     | 24.32          | 25.59     | · · · · ·      | • • • • • | · · · · · |
| OVII           | 17.80 | 26.60       | 25.52       | 25.43     | 26.16     | 27.08          | 27.95     | • • • • •      | • • • • • |           |
| CaXVIII        | 18,00 |             | ••••        | • • • • • | • • • • • | 26.60          | 25,73     | · · · · ·      | • • • • • | •••••     |
| FeXV           | 18.00 | 31.20       | 26.43       | 25.42     | 25.28     | 25.91          | 27.55     |                | • • • • • | ••••      |
| OVII           | 18.70 | 25.76       | 24.74       | 24.69     | 25.44     | 26.38          | 27.26     | • • • • •      |           | · · · · · |
| OVIII          | 19.00 | 27.70       | 25.12       | 24.11     | 24.26     | 24.69          | 25.14     |                | ••••      | ••••      |
| CaXIII         | 19.20 | •••••       |             | 27.51     | 26.06     | 25.87          | 27.93     | · · · · ·      | · · · · · | · • • • • |
| NVII           | 19.40 | 28.00       | 26.38       | 26.28     | 26.64     | 27.04          | 27.46     |                |           |           |
| CaXVI          | 19.50 |             | ••••        |           | 27.37     | 25.31          | 25.83     | • • • • •      | · · · · · | ••••      |
| NVII           | 19.80 | 28.12       | 26.51       | 26.40     | 26.76     | 27.17          | 27.58     | · · · · ·      |           |           |
| CaXVIII        | 20.00 |             |             |           | •••••     | 26.12          | 25.25     |                |           | · · · · · |
| CaXV           | 20.40 |             |             | • • • • • | 27.47     | 26.05          | 27.17     | · · · · ·      |           | · · · · · |
| CaXIV          | 20.40 | • • • • •   | ••••        |           | 26.49     | 25.63          | 27.22     | · · · · ·      |           | ··· · · · |
| CaXII          | 20.80 |             | 28.76       | 26.83     | 25.88     | 26.41          | • • • • • | ••••           | <b>.</b>  | · · · · · |
| NVII           | 20.90 | 27.53       | 25.98       | 25.91     | 26.29     | 26.72          | 27.14     |                |           |           |

303

 $\ensuremath{\textcircled{}^{\odot}}$  American Astronomical Society  $\ \bullet$  Provided by the NASA Astrophysics Data System

| CaXV         | 20.90 |             | • • • • • |                 | 26.63  | 25.22     | 26.36     |           |           | · · · · ·              |
|--------------|-------|-------------|-----------|-----------------|--------|-----------|-----------|-----------|-----------|------------------------|
| CaXVIII      | 21.00 |             |           | · · · · · · · · |        | 26.60     | 25.73     |           |           | • • • • •              |
| SXIII        | 21.00 | 31.30       | 26.79     | 25.21           | 25.83  | 26.65     | 27.32     |           |           | <i></i>                |
| CaXV         | 21.10 |             |           |                 | 27.06  | 25.60     | 26.71     |           |           |                        |
| CaXIII       | 21.60 | · · · · · T |           | 27.43           | 26.03  | 25.87     | 27.95     |           |           |                        |
| OVII         | 21.60 | 24.96       | 24.11     | 24.15           | 24.98  | 25.96     | 26.86     |           |           | · · · · <sup>*</sup> · |
| OVII         | 21.80 | 25.55       | 24.71     | 24.76           | 25.59  | 26.57     | 27.48     |           | <i></i>   |                        |
| SXIV         | 22.00 |             | 28.36     | 25.81           | 25.71  | 25.94     | 26.10     |           |           |                        |
| CaXVII       | 22.00 |             |           |                 |        | 25.84     | 25.63     | ®         |           |                        |
| CaXIV        | 22.00 |             |           |                 | 26.71  | 25.90     | 27.51     |           |           |                        |
| OVII         | 22.10 | 24.96       | 24.14     | 24.20           | 25.04  | 26.03     | 26.93     |           |           |                        |
| CaXIII       | 22.20 |             |           | 27.45           | 26.04  | 25.87     | 27.95     |           |           |                        |
| CaXII        | 23.00 |             | 28.62     | 26.76           | 25.85  | 26.41     |           |           |           | · · · · ·              |
| CaXV         | 23.20 |             |           |                 | 26.95  | 25.54     | 26.68     |           |           |                        |
| NVI          | 23.30 | 26.42       | 26.23     | 26.84           | 27.80  | 28.67     | 29.59     |           |           |                        |
| NVI          | 23.80 | 26.54       | 26.35     | 26.96           | 27.93  | 28.79     | 29.72     |           |           |                        |
| SXII         | 23.90 | 28.70       | 25.56     | 24.81           | 26.09  | 27.46     | 28.62     |           |           |                        |
| CaXII        | 23.90 |             | 28.62     | 26.76           | 25.85  | 26.41     |           |           |           |                        |
| CaXI         | 24.00 |             | 26.70     | 25.67           | 25.28  | 26.27     |           |           |           |                        |
| SXIV         | 24.20 |             | 28.24     | 25.76           | 25.69  | 25.94     | 26.11     |           |           |                        |
| CaXIII       | 24.50 |             |           | 27.07           | 25.60  | 25.40     | 27.45     |           |           |                        |
| NVII         | 24.80 | 26.34       | 24.96     | 25.01           | 25.46  | 25,92     | 26.37     |           |           |                        |
| N <b>V</b> I | 25.00 | 26.07       | 25.93     | 26.57           | 27.55  | 28.43     | 29.36     |           |           |                        |
| CaXIV        | 25.00 |             |           |                 | 25.78  | 24.99     | 26.61     |           |           |                        |
| CaXIV        | 25.80 |             |           |                 | 26.26  | 25.44     | 27.04     |           |           |                        |
|              | 05 00 |             |           | 07.10           | 05 50  | 05 53     | 07.00     |           |           |                        |
| CaxIII       | 25.80 |             |           | 27.12           | 25.72  | 25.57     | 27.66     |           | ••••      | •••••                  |
| SXIII        | 26.00 | 31.18       | 26.72     | 25.17           | 25.82  | 26.65     | 27.33     |           | • • • • • | • • • • •              |
| CVI          | 26.40 | 25.65       | 25.41     | 25.77           | 26, 18 | 26.60     | 27.01     |           |           |                        |
| CaXI         | 26.70 |             | 26.60     | 25.63           | 25.26  | 26. 27    | · · · · · | • • • • • | ••••      | ••••                   |
| SXI          | 26.80 | 27.10       | 25.16     | 25.28           | 27.15  | 29.03     | · · · · · | ••••      | • • • • • |                        |
| CaXI         | 27.00 |             | 26.42     | 25.47           | 25.12  | 26.14     |           |           | • • • • • |                        |
| CVI          | 27.00 | 25.77       | 25.54     | 25.90           | 26.31  | 26.73     | 27.14     | · · · · · | • • • • • |                        |
| CaXII        | 27.30 | ••••        | 27.64     | 25.87           | 25.02  | 25.62     | • • • • • | <i></i>   |           | · · · · ·              |
| CaXIV        | 27.80 | ••••        | ••••      | •••             | 26.36  | 25,59     | 27.23     | ••••      | ••••      | • • • • •              |
| CVI          | 28.50 | 25.22       | 25.04     | 25.43           | 25.35  | 26.28     | 26.70     |           | • • • • • | • • • • •              |
| CaXIV        | 28.50 | ••••        | • • • • • | • • • • •       | 26.56  | 25.76     | 27.38     | · · · · · | • • • • • |                        |
| SXII         | 28.70 | 28.54       | 25.47     | 24.77           | 26.08  | 27.46     | 28.64     |           | · · · · · | • • • • •              |
| SXI          | 28.80 | 27.13       | 25.18     | 25.29           | 27.15  | 29.02     | • • • • • |           | ••••      | • • • • •              |
| NVI          | 28.80 | 25.03       | 25.01     | 25.73           | 26.76  | 27.67     | 28.62     |           | ••••      | ••••                   |
| NVI          | 29.10 | 25.76       | 25.75     | 26.47           | 27.50  | 28.42     | 29.37     |           | • • • • • |                        |
| CaXII        | 29.20 | •••••       | 27.86     | 26.14           | 25.31  | 25.92     |           | ••••      |           |                        |
| CaXIII       | 29.40 |             | • • • • • | 27.53           | 26.18  | 26.06     | 28.17     |           | • • • • • |                        |
| NVI          | 29.50 | 24.94       | 24.94     | 25.66           | 26.70  | 27.62     | 28.57     |           |           | · • • • •              |
| SiXII        | 29.80 | 28.33       | 25.45     | 25.15           | 25.56  | 25.90     | 26.47     |           |           |                        |
| CaXIII       | 29.80 |             | ••••      | 27.39           | 25.96  | 25.79     | 27.86     |           |           |                        |
| SXIV         | 30.20 | • • • • •   | 28.02     | 25.65           | 25.66  | 25.96     | .26.16    |           | · · · · · |                        |
| SXIII        | 31.00 | 30.72       | 26.45     | 25.03           | 25.75  | 26.63     | 27.34     |           | · · · · · |                        |
| CaXI         | 31.20 | · · · · ·   | 26.43     | 25.55           | 25.24  | 26.28     |           |           |           | • • • • •              |
| SX           | 31.40 | 25.72       | 24:84     | 25.70           | 28.16  | <i></i> . |           | <i></i>   |           |                        |
| CaXII        | 32.50 |             | 28.16     | 26.48           | 25.69  | 26.32     |           |           |           | · · · · ·              |
|              |       |             |           |                 |        |           |           |           |           |                        |

304

 $\circledcirc$  American Astronomical Society  $\, \bullet \,$  Provided by the NASA Astrophysics Data System

1971ApJ...168..283T

# TABLE 2—Continued

| SXIV    | 32.60          | 27.               | 62 25.25 | 25.26 | 25.56     | 25.76         | • • • • •   | • • • • •        | · · · · ·                             |
|---------|----------------|-------------------|----------|-------|-----------|---------------|-------------|------------------|---------------------------------------|
| SIXI    | 32.70          | 26.52 24.         | 77 25.26 | 26.28 | 27.17     | • • • • •     |             |                  |                                       |
| CaXII   | 32.70          | 27.               | 33 25.65 | 24.85 | 25.48     |               |             | · · · · ·        | · · · · ·                             |
| SIXII   | 32.80          | 28.19 25.         | 38 25.11 | 25.55 | 25.92     | 26.49         |             |                  |                                       |
| NiXVII  | 32.80          | 27.               | 77 25.18 | 25.67 | 26.24     | 27.36         | • • • • •   |                  | · • • • • •                           |
| CV      | 32.80          | 25.42 26.         | 07       | ···   |           | · · · · ·     |             | °<br>• • • • • • |                                       |
| SXII    | 33.30          | 28.33 25.         | 46 24.88 | 26.27 | 27.70     | 28.91         |             |                  |                                       |
| CV      | 33.40          | 25.51 26.         | 18       | *     |           |               |             |                  |                                       |
| CVI     | 33.70          | 24.17 24.         | 10 24.57 | 25.05 | 25.51     | 25.95         | · · · · ·   |                  |                                       |
| SXIV    | 33.80          | 28.               | 00 25.64 | 25.66 | 25.96     | 26.16         |             |                  |                                       |
| SiX     | 34.20          | 25.17 24.         | 38 25.59 | 27.21 |           |               | · · · · · 8 |                  | i. <sup>*</sup>                       |
| SXIII   | 35.00          | 30.45 26.         | 14 24.68 | 25.39 | 26.26     | 26.95         | ·).         |                  |                                       |
| CV      | 35.10          | 25.10 25.         | 80       |       |           |               |             |                  | <i></i>                               |
| CaXI    | 35.20          | 25.               | 89 25.07 | 24.30 | 25.87     |               |             |                  |                                       |
| SXII    | 35.40          | 27.88 25.         | 00 24.42 | 25.81 | 27.24     | 28.45         |             |                  |                                       |
| SiXT    | 36.20          | 26.44 24.         | 72 25.24 | 26.28 | 27.18     |               |             |                  | ·                                     |
| SXT     | 36.20          | 26.78 25.         | 03 25.28 | 27.23 | 29.15     |               |             |                  |                                       |
| STY     | 36.80          | 25.12 25.         | 24 26.72 | ÷     |           |               |             |                  |                                       |
| OLA     | 37.00          | 30.69 26          | 41 24 98 | 25.69 | 26.57     | 27.27         |             |                  |                                       |
| OVT     | 37.00          | 25.93 24          | 20 24 46 | 26.42 | 28 35     |               |             |                  |                                       |
| DAL     | 37.00          | 20.33 24.         | 77 25 27 | 25.07 | 25.22     | 25 89         | 29 79       |                  | Č.                                    |
| NIXVIII | 37.00          | 20.               | 71 25.27 | 25.07 | 25.22     | 27.00         | 25.75       |                  | · · · · · · · · · · · · · · · · · · · |
| rexvi   | 37.10          | 31.93 27.         | 71 25.55 | 20.21 | 25.01     | 27.00         |             |                  |                                       |
| SX      | 37.20          | 25.58 24.         | // 20.0/ | 26.15 | 20 60     |               |             |                  |                                       |
| SXI     | 37.30          | 26.50 .24.        | 6/ 24.8/ | 26.79 | 28.09     |               |             | ••••             |                                       |
| SXII    | 37.80          | 28.35 25.         | 52 24.96 | 26.37 | 27.82     | 29.03         | • • • • •   |                  |                                       |
| SIIX    | 38.00          | 25.46 25.         | 61 27.53 | ••••  | • • • • • |               | •••••       |                  |                                       |
| SXII    | 39. 8 <b>0</b> | 27.99 25.         | 09 24.49 | 25.87 | 27.30     | 28.50         |             |                  |                                       |
| FeXVI   | 40.00          | 31.53 27.         | 27 24.88 | 24.75 | 25.15     | 26.53         | • • • • •   | · · · · ·        |                                       |
| SiIX    | 40.00          | 24.71 24.         | 88 26.82 |       | • • • • • |               |             |                  | • • • • •                             |
| SX      | 40.20          | 25.66 24.         | 95 25.91 | 28.43 |           |               |             | ••••             |                                       |
| CV      | 40.30          | 24.10 24.         | 89       |       |           |               |             |                  |                                       |
| CV      | 40.70          | 25.11 25.         | 90       |       |           |               |             | ·                |                                       |
| SiXII   | 40.90          | 27.86 25.         | 19 25.01 | 25.51 | 25.90     | 26.50         |             |                  |                                       |
| SiX     | 41.00          | 25.07 24.         | 33 25.57 | 27.21 |           |               |             |                  |                                       |
| SXI     | 41.00          | 26.21 24.         | 50 24.77 | 26.73 | 28.67     | • • • • • •   |             |                  |                                       |
| FeXV    | 41.00          | 28.80 24.         | 93 24.50 | 24.72 | 25.58     | 27.36         |             |                  |                                       |
| CV      | 41.50          | 24.05 24.         | 85       | ••••• |           |               |             |                  |                                       |
| SIX     | 41.50          | 25.11 25.         | 23 26.72 |       | ••••      |               |             | · · · · · ·      |                                       |
| SVIII   | 41.60          | 25.39 26.         | 18 28.22 |       |           |               |             |                  | • • • • •                             |
| NIXVII  | 42.20          | 27.               | 58 25.12 | 25.70 | 26.32     | 27.48         |             |                  |                                       |
| SXII    | 42.40          | 28.28 25.         | 39 24.80 | 26.18 | 27.62     | 28.82         |             |                  |                                       |
| FeXVI   | 42.50          | 31.81 <b>2</b> 7. | 58 25.21 | 25.10 | 25.51     | 26.89         |             |                  |                                       |
| sx      | 42.50          | 24.99 24.         | 31 25.28 | 27.82 |           | S             |             |                  |                                       |
| SIX     | 42.60          | 25.04 25.         | 20 26.71 |       |           |               |             |                  |                                       |
| MaX     | 43.00          | 25.50 25.         | 41 25.86 | 26.08 | 26.54     |               |             |                  |                                       |
| SIIX    | 43.00          | 25.01 25.         | 14 27.05 |       |           |               |             | · · · · ·        |                                       |
| NIXVI   | 43.00          | 32.10 2.7         | 05 25 27 | 26.36 | 27.27     | 28.89         |             |                  | ÷.,                                   |
| NIXVIII | 43, 70         | 29                | 28 25.82 | 25.64 | 25.80     | 26, 48        | 30, 39      |                  |                                       |
| SIXT    | 43 80          | 26 13 24          | 55 25 16 | 26.25 | 27 19     | -0,10         |             |                  |                                       |
| NIVIT   | 44 00          | 32 46 27          | 41 25 EA | 26.72 | 27.13     | ····<br>29 27 | •••••       |                  | •••••                                 |
| 1112211 |                | 54.70 4/.         | 1 20.04  | 40.73 | 27.04     | 43.41         | • • • • •   | ••••             | ••••                                  |

1971ApJ...168..283T

| SiXII   | 44.20 | 27.51     | 24.84 | 24.66     | 25.15     | 25.55     | 26.15     | · · · · · |             | • • • •        |
|---------|-------|-----------|-------|-----------|-----------|-----------|-----------|-----------|-------------|----------------|
| SiIX    | 44.20 | 24.60     | 24.83 | 26.80     |           |           |           |           |             | • • • •        |
| NiXVIII | 44.20 |           | 28.96 | 25.46     | 25.27     | 25.42     | 26.09     | 30.00     |             | · · · ·        |
| NiXV    | 45.00 | 30.39     | 26.45 | 25.51     | 27.25     | 28.54     |           |           |             |                |
| NiXVI   | 45.50 | 32.38     | 27.19 | 25.32     | 26.35     | 27.22     | 28.83     |           | · · · · · . | • • • •        |
| SIXII   | 45.60 | 27.78     | 25.12 | 24.95     | 25.45     | 25.85     | 26.46     |           |             | • • • •        |
| NiXVII  | 45.60 | • • • • • | 28.03 | 25.55     | 26.12     | 26.72     | 27.88     |           |             | · · · ·        |
| SX      | 45.80 | 24.95     | 24.29 | 25.28     | 27.82     |           |           |           |             |                |
| SVIII   | 46.00 | 25.29     | 26.14 | 28.21     |           | • • • • • | • • • • • |           |             | · · · · ·      |
| SIXI    | 46.30 | 26.15     | 24.52 | 25.10     | 26.17     | 27.09     |           |           |             |                |
| NIXV    | 46.60 | 30.48     | 26.39 | 25.36     | 27.04     | 28.29     |           |           | • • • • •   | ••••           |
| MgIX    | 47.00 | 24.96     | 25.72 | 26.81     | 27.72     |           |           |           | • • • • •   |                |
| SX      | 47.00 | 25.26     | 24.52 | 25.45     | 27.96     |           |           |           |             |                |
| SIX     | 47.00 | 24.69     | 24.78 | 26.25     |           |           | . <i></i> |           |             |                |
| NIXVI   | 47.00 | 31.88     | 26.86 | 25.10     | 26.21     | 27.12     | 28.76     |           |             |                |
| MgX     | 47.30 | 25.39     | 25.36 | 25.84     | 26.09     | 26.56     |           |           |             |                |
| FeXVI   | 47.40 | 31.55     | 27.28 | 24.88     | 24.75     | 25.15     | 26.53     |           |             |                |
| SIVIII  | 47.60 | 25.21     | 26.14 | 28.69     |           |           |           |           |             |                |
| SiVIII  | 47.70 | 25.52     | 26.37 | 28.88     |           |           |           |           |             |                |
| SX      | 47.70 | 25.48     | 24.86 | 25.87     | 28.43     |           |           |           |             |                |
| SVIII   | 47.80 | 25. 29    | 26.14 | 28.21     |           |           |           |           |             |                |
| SiX     | 48.00 | 25.01     | 24.41 | 25.74     | 27.43     |           |           |           |             |                |
| SIXI    | 49.20 | 26.09     | 24.49 | 25.09     | 26.17     | 27.11     |           |           | <i></i> .   | े<br>• • • • • |
| SIX     | 49.30 | 24.68     | 24.87 | 26.40     |           |           |           |           |             |                |
| SVII    | 50.00 | 25.28     | 26.69 |           |           |           |           |           |             |                |
| N13711  | F0 00 | 20 71     | 25 01 | 24 01     | 00.00     | 07 07     |           |           |             |                |
| NIXV    | 50.00 | 29.71     | 25.81 | 24.91     | 20.00     | 27.97     | • • • • • | • • • • • | • • • • •   | • • • • •      |
| SIX     | 50.60 | 24.51     | 23.93 | 25.29     | 26.98     | ••••      | ••••      | ••••      | • • • • •   |                |
| SX      | 50.60 | 25.45     | 24.85 | 25.87     | 28.43     | ••••      |           |           | ••••        |                |
| NIXVIII | 51.70 |           | 29.13 | 25.68     | 25.52     | 25.68     | 26.37     | 30.28     | · · · · ·   | • • • • •      |
| MgIX    | 52.00 | 24.87     | 25.68 | 26.81     | 27.73     | ••••      | • • • • • | ••••      | • • • • •   | • • • • •      |
| SX      | 52.00 | 25.48     | 24.79 | 25.76     | 28.29     |           |           | ••••      | ••••        | •••••          |
| SIXI    | 52.30 | 26.09     | 24.50 | 25.10     | 26.19     | 27.13     | • • • • • | ••••      | ••••        | • • • • •      |
| SIVIII  | 52.40 | 25.33     | 26.29 | 28.86     | ••••      | ••••      | •••••     | • • • • • | • • • • •   | • • • • •      |
| SIVIII  | 52.50 | 25.27     | 26.16 | 28.69     | •••••     | ••••      |           |           | • • • • •   | • • • • •      |
| FeXV    | 52.90 | 28.49     | 24.81 | 24.49     | 24.78     | 25.69     | 27.50     | ••••      |             | • • • • •      |
| MgVIII  | 53.50 | 24.54     | 26.09 | 27.78     | 29.15     | • • • • • |           | ••••      | • • • • •   |                |
| NIXVIII | 53.50 | •••••     | 28.78 | 25.27     | 25.07     | 25.21     | 25.88     | 29.79     | • • • • •   | • • • • •      |
| SIVIII  | 53.80 | 25.29     | 26.27 | 28.85     | • • • • • |           | • • • • • | · · · · · | • • • • •   | • • • • •      |
| FeXV    | 53.90 | 28.96     | 25.25 | 24.91     | 25.18     | 26.09     | 27.89     | · · · · · | • • • • •   | ••••           |
| SIX     | 54.00 | 25.01     | 24.46 | 25.83     | 27.54     | • • • • • | • • • • • |           | • • • • •   | • • • • •      |
| SIIX    | 54.00 | 24.55     | 24.86 | 26.88     | • • • • • | ••••      | • • • • • | • • • • • | • • • • •   | ••••           |
| NIXV    | 54.00 | 30.61     | 26.59 | 25.61     | 27.32     | 28.59     | • • • • • | ••••      | • • • • •   | • • • • •      |
| FeXVI   | 54.20 | 30.88     | 26.80 | 24.53     | 24.48     | 24.92     | 26.33     |           | • • • • •   | ••••           |
| SIVIII  | 54.50 | 25.71     | 26.63 | 29.16     | • • • • • |           |           |           | • • • • •   |                |
| SVIII   | 54.60 | 24.37     | 25.29 | 27.40     | ••••      | • • • • • | · · · · · | · • • • • | • • • • •   | • • • • •      |
| FeXVI   | 54.70 | 30.59     | 26.48 | 24.18     | 24.11     | 24.55     | 25.95     | • • • • • | · • · · ·   |                |
| SVII    | 54.90 | 25.23     | 26.67 | ••••      | ••••      | •••••     | • • • • • | • • • • • |             | · · · · ·      |
| SVII    | 55.00 | 25.08     | 26.53 | · · · · · | • • • • • | · · · · · | ••••      | •••••     | · · · · ·   |                |
| NIXVI   | 55.00 | 32.44     | 27.33 | 25.51     | 26.58     | 27.48     | 29.10     |           |             |                |
| SIIX    | 55.30 | 23.69     | 24.03 | 26.07     | • • • • • |           | · · · · · |           |             |                |

TABLE 2—Continued

| SiIX    | 55.70  | 24.21          | 24.46  | 26.45           | • • • • •      | ••••   |                    | · · · · · |             | · · · · · . |  |
|---------|--------|----------------|--------|-----------------|----------------|--------|--------------------|-----------|-------------|-------------|--|
| NIXVI   | 55.70  | 32.32          | 27.38  | 25.67           | 26.30          | 27.74  | 29 <i>.</i> 39     | · · · · · |             |             |  |
| FeXIV   | 56.00  | 26.92          | 24.24  | 24.70           | 25.44          | 26.90  | 29.21              |           |             |             |  |
| NIXVII  | 56,00  |                | 28.01  | 25.63           | 26.26          | 26,90  | 28.08              |           |             |             |  |
| FeXIV   | 56.20  | 27.29          | 24.61  | 25.07           | 25.81          | 27.26  | 29.58              |           |             | • • • • •   |  |
| SIX     | 56.30  | 25.04          | 25.30  | 26.87           | ••••           |        |                    |           | • • • • •   |             |  |
| SIVII   | 56.50  | 25.39          | 27.01  |                 |                |        |                    |           |             |             |  |
| SiX     | 56.80  | 24.66          | 24.04  | 25.36           | 27.04          |        |                    |           |             |             |  |
| SIX     | 57.00  | 24.98          | 25.12  | 26.63           | • • • • •      | ••••   | · · <i>· ·</i> · · |           |             |             |  |
| MgX     | 57.90  | 25.28          | 25.33  | 25.87           | 26.15          | 26.64  |                    |           |             |             |  |
| FeXIV   | 58.00  | 27.13          | 24. 33 | 24.72           | 25.41          | 26.84  | 29.14              | <i>.</i>  |             |             |  |
| SVIII   | 58.50  | 24.62          | 25.58  | 27.72           |                |        |                    | • • • • • |             |             |  |
| SIVIII  | 58.90  | 24.58          | 25.60  | 28.20           |                |        |                    | •••••     |             |             |  |
| FeXIII  | 59.00  | 25.82          | 24.05  | 25.24           | 26.38          | 28.40  |                    |           |             |             |  |
| NiXV    | 59.00  | 30, 16         | 26.33  | 25.46           | 27.25          | 28.57  |                    |           |             |             |  |
| NIXVII  | 59.50  |                | 27.69  | 25.29           | 25.90          | 26. 54 | 27.71              |           |             |             |  |
| FeXIV   | 60.00  | 26.72          | 24.06  | 24.54           | 25. 29         | 26.75  | 29.07              |           |             |             |  |
| FeXIII  | 60.00  | 25.81          | 23.92  | 25.05           | 26.15          | 28.13  |                    | ••••      |             |             |  |
| SiX     | 60.50  | 24.96          | 24.34  | 25.66           | 27.34          |        |                    |           |             |             |  |
| SVII    | 60.80  | 25.14          | 26.64  |                 |                |        |                    |           |             |             |  |
| SIVIII  | 61.00  | 23.95          | 24.99  | 27.60           |                |        |                    |           | ÷           |             |  |
| SiIX    | 61.20  | 24.44          | 24.73  | 26.75           |                |        |                    |           |             |             |  |
| SiIX    | 61.70  | 24.20          | 24.58  | 26.64           |                |        |                    |           |             | '.          |  |
| MgIX    | 62.80  | 24.74          | 25.63  | 26.80           | 27.75          |        |                    |           |             |             |  |
| MgX     | 63.30  | 24.90          | 24.95  | 25.48           | 25.76          | 26.25  | ••••               |           |             |             |  |
| MaVII   | 63, 40 | 26, 06         | 28.34  |                 |                |        |                    |           |             |             |  |
| FeXVI   | 63. 70 | 30.74          | 26.69  | 24.43           | 24.38          | 24.84  | 26.25              |           |             |             |  |
| SIVIT   | 64.00  | 25, 31         | 26, 98 |                 |                |        |                    |           |             |             |  |
| MaVIII  | 64.30  | 24.42          | 26.04  | 27.79           | 29.18          |        |                    |           |             |             |  |
| SVIII   | 64. 30 | 24.12          | 25.10  | 27.25           |                |        |                    |           |             |             |  |
| SVIII   | 65, 00 | 24.93          | 25, 93 | 28.09           |                |        |                    |           |             |             |  |
| FeXIII  | 65,00  | 25.15          | 23.42  | 24.63           | 25.79          | 27 81  |                    |           |             |             |  |
| SIVIT   | 65 60  | 25 34          | 26.99  | 200             | 20.70          | 27.01  |                    |           |             |             |  |
| GIVIT   | 65 80  | 20.01          | 20.55  | 27 60           |                |        |                    |           | ••••        |             |  |
| NeVIII  | 65 90  | 25.55          | 24.50  | 26 43           | 27 04          |        | ••••               | ••••      |             | ••••        |  |
| May     | 65 90  | 25.19          | 25.24  | 20.43           | 26.07          | 26 56  |                    | ••••      |             |             |  |
| FoXVI   | 66 40  | 30 45          | 26.33  | 20.79           | 23.95          | 20.00  | 25 79              | • • • • • | • • • • • • |             |  |
| Mavii   | 66 80  | 25 12          | 27 41  | 24.02           | 20, 50         | 24.00  | 20.75              |           |             |             |  |
| MalX    | 67 20  | 24 68          | 25 53  | 26 68           | 27 62          |        |                    |           |             |             |  |
| SIVITI  | 67.20  | 24.16          | 25.05  | 27 74           |                |        |                    |           |             |             |  |
| GIVITT  | 69 80  | 24.10          | 25.52  | 28 16           | ••••           |        |                    |           |             | • • • • •   |  |
| FOVIN   | 70.00  | 27. 77         | 20.52  | 20.10           | 25 65          | 27 09  | 29 40              |           | • • • • • • | • • • • •   |  |
| FOVILI  | 70.00  | 27.22          | 24.00  | 25 20           | 26 42          | 27.03  | 23.40              |           | *           | • • • • •   |  |
| Faxi    | 70.00  | 28 94          | 25 26  | 25.01           | 25 24          | 26.28  | 28 10              | ••••      | ••••        | ••••        |  |
| Faytu   | 71 00  | 20.04          | 20.20  | 25.01           | 20.34          | 20.20  | 20.10              | ••••      | • • • • •   | •••••       |  |
| Mautt   | 71.70  | 27.20          | 26 40  | 28 25           | 20.33          | 41.31  | 23.70              | ••••      | • • • • •   | 3           |  |
| Mautt   | 71 20  | 27.0J<br>25 10 | 20.43  | 40 <b>. 4</b> J | 23.00          | ••••   |                    | •••••     | •••••       |             |  |
| Maty    | 72 20  | 20.40          | 21.12  | 26 69           | ·····<br>27 62 | ••••   | •••••              |           |             |             |  |
| QUIT    | 72.30  | 24.04          | 20.02  | 20.00           | 27.03          | ••••   | • • • • •          | ••••      |             | ••••        |  |
| GIVIT   | 79 50  | 24.03          | 20.13  |                 | ••••           | ••••   |                    | ••••      | ••••        | ••••        |  |
| DIVII . | 12.30  | 44.96          | 20. 33 | • • • • •       | ••••           | ••••   | • • • • •          | • • • • • | • • • • •   | • • • • •   |  |

307

 $\ensuremath{\textcircled{}^{\odot}}$  American Astronomical Society  $\ \bullet$  Provided by the NASA Astrophysics Data System

## WALLACE H. TUCKER AND MARVIN KOREN

|        | TABLE 2—Continued |        |        |               |        |        |                  |                      |             |    |  |
|--------|-------------------|--------|--------|---------------|--------|--------|------------------|----------------------|-------------|----|--|
| MgVII  | 72.90             | 25.73  | 27.99  |               |        | ÷      | • .• • • •       | °]14                 |             |    |  |
| SIVII  | 73.40             | 24.95  | 26.65  | · · · · · · ` |        |        |                  |                      |             |    |  |
| SIVIII | 74.20             | 24. 43 | 25. 52 | 28.17         |        |        |                  | -<br>191             |             |    |  |
| FeXV   | 74.50             | 28.54  | 24.92  | 24.65         | 24.97  | 25.89  | 27.72            |                      | · · · · · · |    |  |
| NeVIII | 74.60             | 25.53  | 26.04  | 26.44         | 27.06  |        |                  | 22                   |             |    |  |
| MgVIII | 75.00             | 24.26  | 25.93  | 27.71         | 29.13  | •••••  | •••              | *<br>• • • • •       |             |    |  |
| SIVIII | 76.00             | 24. 39 | 25.43  | 28.04         |        | •••••  | · · · · ·        | 1972)<br>• • • • • • |             | 23 |  |
| FeXIII | 76.00             | 25.63  | 23.95  | 25. 20        | 26. 38 | 28. 41 | 2                | · · · · ·            | · · · · ·   |    |  |
| MgVIII | 77.40             | 24.41  | 26.03  | 27.77         | 29.17  |        |                  | · · · · · ·          |             |    |  |
| MgIX   | 77.70             | 24.64  | 25. 54 | 26.72         | 27.68  |        | ·                |                      |             |    |  |
| SIVII  | 79.50             | 25.36  | 27.10  |               | ¥      | ••••   | :<br>            |                      |             |    |  |
| MaVII  | 81.00             | 25.60  | 27, 89 | ÷             |        |        | 4 <sup>1</sup> 1 | 49                   | ÷           |    |  |





These figures show the gradual shift from a line to a continuous spectrum and the concentration of the lines toward shorter wavelengths as the temperature increases.

In Figure 2 the power radiated in various wavelength bands is plotted as a function of temperature.

Finally, in Figure 3 the intensities of several of the strongest lines are plotted as a function of temperature.

1. 1. 28

308

© American Astronomical Society • Provided by the NASA Astrophysics Data System

## TABLE 3

# Edges in Recombination Sum S as a Function of Temperature (° K) and Wavelength (Å)

|         |          |       |                  |           |         | Log  | T =  |                         |           |         |      |
|---------|----------|-------|------------------|-----------|---------|------|------|-------------------------|-----------|---------|------|
| λ       | Ion      | 6.0   | 6.2              | 6.4       | 6.6     | 6.8  | 7.0  | 7.2                     | 7.4       | 7.6     | 8.0  |
| 2050.00 | HeII     | 0.25  | 0.15             | 0.10      | 0.06    | 0.04 | 0.02 | 0.02                    | 0.01      | 0.01    |      |
| 912.00  | HI       | 0.37  | 0.23             | 0.14      | 0.09    | 0.06 | 0.04 |                         |           |         |      |
| 225.00  | OVI      | 2.01  | 1.21             | 0.74      | 0.46    | 0.28 | 0.18 | 0.11                    | 0.07      | 0.04    | 0.02 |
| 141.00  | CV       | 8.06  | 4.22             | 2.38      | 1.40    | 0.84 | 0.52 | 0.32                    | 0.20      | 0.13    | 0.05 |
| 100.00  | SiIX     | 8.18  | 4.33             | 2.43      | 1.43    | 0.86 | 0.53 |                         | • • • •   |         |      |
| 93.20   | FeX      | 8.37  | 4.40             |           | • • • • |      |      |                         | • • • • • |         |      |
| 86.70   | FeXVI    | 8.47  | 4.42             | ••••      |         |      |      |                         |           |         |      |
| 74.20   | NVII     | 8.52  | 4.45             | 2.46      | 1.44    |      |      |                         |           |         | •••• |
| 71.25   | SiXI     |       | 4.51             | 2.52      | 1.45    | 0.87 |      |                         |           |         |      |
| 56.60   | SiXII    |       |                  | 2.58      | 1.52    | 0.91 | 0.55 |                         |           | ×       |      |
| 47.30   | FeX      | 9.08  | 4.63             | 2.64      | 1.54    |      |      |                         |           | ••••    |      |
| 46.60   | MgVIII   | 9.26  | 4.65             |           |         |      |      | ِ <b>ً</b> <sup>®</sup> |           |         |      |
| 40.80   | SiVIII   | 9.42  | 4.66             | • • • • • |         |      |      | · · · · <sup>6</sup>    |           |         |      |
| 38.50   | MgIX     | 9.79  | 4.67             |           |         | •••• |      |                         |           |         |      |
| 37.70   | SVIII    | 10.11 | 4.68             |           |         |      |      |                         |           |         |      |
| 37.60   | FeXII    | 10.22 | 4.70             |           |         |      |      |                         | <u>ن،</u> |         |      |
| 35.70   | MgX      | 10.25 | 4.86             | ÷         |         |      |      |                         |           |         |      |
| 35.20   | SiIX     | 10.68 | 5.0 <del>0</del> | 2.70      | 1.56    | 0.92 | •••• |                         |           |         |      |
| 33.80   | MgX      | 11.14 | 5.20             | 2.71      |         |      |      |                         |           |         |      |
| 33.40   | FeXV     | 11.33 | 5.29             | 2.73      | 1.57    |      |      |                         |           | ••••    |      |
| 31.60   | CV       | 11.53 | 5.34             | 2.77      | 1.58    |      |      |                         |           |         |      |
| 30.60   | FeXVI    | 23.73 | 5.77             | 2.79      | -       |      |      |                         | - V-2-1   |         |      |
| 27.55   | FeXVII   |       |                  | 2.86      | 1.62    | 0.93 |      |                         |           |         |      |
| 25.35   | FeXVI    |       |                  | 2.92      | 1.66    |      |      |                         |           |         |      |
| 24.90   | SIXII    | 55.55 | 17.83            | 5.38      | 2.35    | 1.21 | 0.67 |                         |           |         |      |
| 22.50   | NVI      |       | 18.12            | 5.70      | 2.46    | 1.25 | 0.68 | ·*                      | · · · · · |         |      |
| 18.60   | NVII     | 60.24 | 19.11            | 5.75      |         |      | ×    |                         |           |         |      |
| 17.60   | SXIV     | 60.87 | 21.93            | 6.84      | 2.72    | 1.33 | 0.71 | 0.32                    | 0.20      | 0.13    | 0.05 |
| 16.80   | OVII     |       | 21.94            | 7.10      | 2.91    | 1.39 | 0.74 | 0.33                    |           |         |      |
| 14.20   | OVIII    | 79.90 | 36.96            | 9.92      | 3.06    | 1.40 |      | ÷                       |           |         |      |
| 10.40   | NeIX     | 80.00 | 40.62            | 19.02     | 6.46    | 2.36 | 1.09 |                         |           |         |      |
| 9.16    | FeXVIII  |       | 41.99            | 20.49     | 7.06    | 2.42 | ×    |                         |           | · · · · |      |
| 9.12    | NeX      |       |                  |           | 7.08    | 2.50 | 1.12 | 3 m -                   | · · · · · | ·       |      |
| 8.55    | FeXIX    |       |                  | 20.63     | 8.00    | 3.06 | 1.30 | 0.40                    |           |         |      |
| 7.85    | FeXX     |       |                  |           |         | 3.10 | 1.36 | ••••                    |           |         |      |
| 7.36    | FeXXI    |       |                  |           |         | 3.12 | 1.45 | 0.41                    | ••••      | •       |      |
| 7.04    | MgXI     |       |                  |           |         |      | 1.55 | 0.45                    |           |         |      |
| 6.92    | FeXXII   |       |                  | 21.45     | 8.89    | 3.58 | 1.61 | 0.46                    |           |         |      |
| 6.36    | FeXXIII  |       |                  |           |         | *    | 1.65 | 0.52                    | 0.21      |         | -    |
| 6.33    | MgXII    |       |                  |           |         |      | 1.66 | 0.57                    | 0.23      |         |      |
| 6.06    | FeXXIV   |       |                  |           | 8.89    | 4.02 | 2.07 | 0.73                    | 0.29      |         |      |
| 5.09    | SIXIII   |       |                  |           |         |      | 2.08 | 0.97                    | 0.47      | 0.22    | 0.06 |
| 4.65    | SIXIV    |       |                  | 22.10     | 8.99    | 5.04 | 2.63 | 1.07                    | 0.48      |         |      |
| 3.85    | SXV      |       |                  | ••••      | • • • • | 5.14 | 3.15 | 1.58                    | 0.71      | 0.32    |      |
| 3.56    | SXVI     |       |                  |           | 9.22    | 5.37 | 3.32 | 1.67                    | 0.74      |         |      |
| 2.42    | CaXIX    |       |                  |           |         |      | 3.35 | 1.78                    | 0.88      | 0.40    | 0.08 |
| 1.35    | FeXXVI   |       |                  |           |         |      |      |                         | 1.10      | 0.69    | 0.19 |
| 1.24    | NiXXVII  |       |                  |           |         |      |      |                         |           |         | 0.21 |
| 1.01    | NiXXVIII |       |                  |           |         |      |      |                         | 1.13      | 0.74    | 0.24 |
|         |          |       |                  |           |         |      |      |                         |           |         |      |

 $\ensuremath{\textcircled{\circ}}$  American Astronomical Society • Provided by the NASA Astrophysics Data System





We thank A. Krieger, L. VanSpeybroeck, G. Vaiana, and D. Webb for helpful discussions, H. Chasan for programming assistance, and E. O'Neill for typing a difficult manuscript. This research was supported by NASA contract NASW-2070 and by the Air Force Office of Scientific Research contract F44620-71-C-0019.

#### REFERENCES

- Allen, J., and Dupree, A. 1969, Ap. J., 155, 27.
- Beigman, I. L., Vainshtein, L. A., and Vinogradov, A. 1970, Soviet Astr.—AJ, 13, 775. Bely, O. 1966a, Proc. Phys. Soc., 88, 587.
- -. 1966b, Ann. d'ap., 29, 131. -. 1967, ibid., 30, 953.
- Bely, O., and Bely, F. 1967, Solar Phys., 2, 285.
- Bely, O., and Petrini, D. 1970, Astr. and Ap., 6, 318. Burgess, A. 1961, Mém. Soc. R. Sci. Liège, 4, 299.

- Burgess, A. 1901, Mem. Soc. R. Sci. Liege, 4, 299. ——. 1965, Ap. J., 141, 1588. Chapman, R. 1969, Ap. J., 156, 87. Connerade, J. 1970, Ap. J. (Letters), 162, L139. Cox, D., and Tucker, W. 1969, Ap. J., 157, 1157. Culhane, J. 1969, M.N.R.A.S., 144, 375. Drake, G. Victor, G. and Dalgarno, A. 1960, Pk
- Drake, G., Victor, G., and Dalgarno, A. 1969, *Phys. Rev.*, 180, 25. Elwert, G. Z. 1954, Zs. f. Naturforschung, 53, 637. Evans, K., and Pounds, K. 1968, Ap. J., 152, 319. Gabriel, A., and Jordan, C. 1969, Nature, 221, 947.

- . 1970, ibid., 149, 1.
- Karzas, W., and Latter, R. 1961, Ap. J. Suppl., 6, 167.
  Kelly, R. 1968, Atomic Emission Lines Below 2000 Angstroms: Hydrogen through Argon (NRL Report 6648; Washington: U.S. Government Printing Office).

- Krinberg, I. 1970, Soviet Astr.—AJ, 13, 780. Landini, M., and Fossi, B. 1970, Astr. and Ap., 6, 468. Moore, C. E. 1949, N.B.S. Circ., No. 467, Vol. 1.

- Spitzer, L., and Greenstein, J. 1951, Ap. J., 114, 407. Tucker, W. H., and Gould, R. J. 1966, Ap. J., 144, 244.
- Walker, A., and Rugge, H. 1970 (preprint).
- Widing, K., and Sandlin, G. 1968, Ap. J., 152, 545

1971ApJ...168..283T