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ABSTRACT 
When a stellar core of magnetic moment p undergoes supernova explosion, at some radius n the 

expanding shell of photons and hot gas may attain a relativistic velocity F, with associated Lorentz 
factor 7 = (1 — F2/c2)-1/2 on the order of 3 X 103 or more. This expanding shell will comb the initial 
dipole field into a radial configuration, and the associated current sheet will produce coherent radio 
emission of power as a function of frequency v 

P(v)dv = ergs , 

where q = 7r^oC_17_2 and the function yp{q) is unity for ç <<C 1 and falls to roughly J at ç = 1. The result- 
ing emission in the range of 300 MHz corresponds to an antenna temperature of about 1.5 X 107 ° K for 
a supernova event per day per steradian at 100 Mpc, dispersed by the galactic and intergalactic electron 
density. 

I. INTRODUCTION 

If presupernova stars have an external magnetic field, then the ejection of the outer- 
most layers of matter at relativistic velocity will generate a powerful pulse of electro- 
magnetic radiation by pushing on this magnetic field. We show herein that radiofre- 
quency pulses detectable at distances of many megaparsecs are expected. 

Colgate and Johnson (1960) predicted that the outer layers of a supernova should 
be accelerated to relativistic energies. The numerical hydrodynamic calculations of 
Colgate and White (1966) quantitatively evaluated the nonrelativistic shock acceleration 
in spherically symmetric distributions of matter, and showed that the velocity of the 
material behind the shock increases as F~a, where a « J and F is the fraction of mass 
exterior to the point in question. This behavior was independent of the exact density 
distribution (polytrope or red-giant structure) and was predictable from elementary 
laws of hydrodynamics (Ono, Sakashita, and Ohyama 1961; Grover and Hardy 1966). 
Hence, regardless of the mechanism of the supernova, one would expect the shock wave 
from the explosion to increase markedly in speed as it approaches the stellar surface. 
If the average velocity of the bulk of the ejected matter is 2 X 109 cm sec“1 as derived 
for Tycho’s supernova (Minkowski 1968) in its early stages, only a thirteenfold increase 
in velocity leads to the relativistic regime. Extrapolation of the F“1/4 law in this direction 
indicates that relativistic energies are reached at an external mass fraction Fr = (13)“4 « 
3 X 10“5. Although this mass fraction may seem small, it is still deep (1011 g cm-2) within 
the star, and the total mass of matter (6 X 1028 g) thus accelerated to greater than 1 GeV 
per nucleon is large. As discussed by Colgate and Johnson, the shock wave is expected 
to propagate relativistically until it “breaks out” of the star, but at the present state of 
the development of the theory, the exact hydrodynamic behavior is not known; instead, 
limits can be set which will be narrowed by further theoretical and numerical work. For 
our purposes it will be sufficient to determine whether the nature of the breakout is such 
as to liberate the shock energy mainly in incoherent radiation (photons or particles), or 
whether the energy of the driving gas can be expended in doing work on the exterior 
magnetic field; the latter process leads to our powerful electromagnetic pulse. 
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510 STIRLING A. COLGATE AND PETER D. NOERDLINGER Vol. 165 

II. SHOCKS 

A strong nonrelativistic shock divides the energy equally between kinetic and internal 
energy in the fluid behind the shock. The compression ratio of the fluid is fixed and is 
relatively small (7:1) across the discontinuity. In the case of a shock in a density gradi- 
ent, the aforementioned numerical calculations show that the subsequent expansion of 
the internal energy behind the shock further increases the velocity of the matter by the 
fixed ratio X2. 

Relativistic shocks are somewhat different, as described by the equivalent junction 
relations (May and White 1967; Johnson and McKee 1970). The feature that most near- 
ly resembles nonrelativistic shocks is that the energy is divided equally between transla- 
tional energy (relative to the laboratory frame) and internal energy behind the shock 
(measured in the proper frame of the moving fluid). The velocities of the shock itself 
and the fluid behind it nearly match, because the compression ratio is no longer bounded, 
but increases for strong shocks (—» 47*) in proportion to the Lorentz factor 7S = (1 -■ 
ß2)~112 of the post-shock fluid, where ßc is the laboratory velocity of that fluid and the 
compression ratio is defined as the ratio of pre- to post-shock fluid densities, measured in 
each case in the local rest frame of the fluid. If the specific internal energy density e is 
equal to c2ys, then the total laboratory value for the energy per gram of rest mass in the 
post-shock fluid becomes ys(c2 + e) « c2ys

2. Hence, in the relativistic case, the total 
energy per unit rest mass behind the shock is very much larger than its translational 
kinetic energy. As a result, in a subsequent expansion into vacuum, a very large change 
in translational energy takes place (^7S) as compared with a relatively modest increase 
(X4) in the nonrelativistic case. This is in accord with the fact that the equivalent mass 
density of the energy in the moving frame, e/c2, is much greater than the rest mass. The 
theory predicts 

y* * F~a, (l) 

where 0.234 < a < 0.33, and a final kinetic (translational) energy factor after expan- 
sion, y F 01 F~K

} where 
0.64 < K < 0.67 . 

The numerical work of May and White resulted in K = 0.42 for partial expansion, 
although this value may perhaps contain a significant error. 

For the analysis of the electromagnetic pulse, we choose a = f, K = f, which in 
previous work (Colgate and Johnson 1960) is a reasonable estimate and which, in addi- 
tion, is a self-consistent assumption that produces the integral cosmic-ray spectrum 
N(>E) oc F oc yF~sl2. The shock propagates within matter, and at some boundary the 
expanding matter will perturb the “vacuum” magnetic field. We then ask, “At what ys 

will the fluid behind the shock ‘break ouC and ‘displace’ the magnetic field?” We can 
define “breakout” on a number of bases: 

1. Breakout occurs when the matter density is sufficiently low such that the hydro- 
magnetic approximation breaks down due to lack of current carriers. External to this 
boundary the volume currents in the field can give rise to only small perturbations of 
the field. 

2. Breakout occurs when the residual thickness of matter is less than that required to 
contain the Planck radiation behind the shock. The energy density in the shocked fluid 
resides entirely in the gas of photons and e+e~~ pairs, so that if the photons escape the 
fluid, the shock no longer propagates. 

3. Breakout occurs when the mass fraction of external matter is equal to the equiva- 
lent mass of the tangential component of the dipole magnetic field. The time average of 
the shock velocity increases if the total mass ahead (external mass fraction) is smaller 
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No. 3, 1971 SUPERNOVA SHELLS 511 

than the expanding mass behind. Conversely, if the mass ahead is larger (including all 
the equivalent rest mass of the magnetic field), the expansion will slow down. 

Density condition 1 can be shown to be much less restrictive than conditions 2 and 3, 
and so we start with the latter two conditions, calculate the pertinent mass fraction, and 
confirm that condition 1 is not the limiting condition for breakout. 

If we demand that the Planck radiation reaches equilibrium by radiation processes 
in the shock front, then the residual thickness of the star must be approximately 10 g 
cm-2, which corresponds to several Compton mean free paths. In order to calculate the 
corresponding mass fraction, we must assume a stellar radius. 

Current presupernova models (Finzi and Wolf 1967; Chiu 1966; Rakavy and Shaviv 
1967; Arnett 1969) all depend upon dense (109-1010 g cm-3) cores of degenerate matter 
where the degenerate electrons are relativistic and, hence, behave with an adiabatic 
index 7 = §. The resulting structure, although not exactly a polytrope of index 3, is 
nevertheless sufficiently close to give a reasonable approximation to the radius as 1 X 
108 < r < 1.5 X 108 cm when pc = 2 X 109 g cm-3 for a total mass 1.5 9K0 ^ ^ 
2 9Ko* The central density of > 2 X 109 g cm“3 is presumably the point at which neutrino 
processes become rapid enough to initiate either a thermonuclear detonation or collapse 
to a neutron star—either of which should result in a similar explosion shock wave. 

Using r — 1.25 X 108 cm gives a mass fraction corresponding to a surface layer of 
10 g cm-2 at radiation breakout of 

Fsurface = = 10"« . (2) 

The shock becomes relativistic at = 3 X 10“5, so that at breakout 

7« = = 3 X 103. (3) 

The condition for breakout, based upon the equivalent magnetic-field mass, assumes 
that if a mass fraction is to accelerate relativistically a finite volume of magnetic field, 
then the total mass energy of the field should not be larger than the rest mass of the 
moving piston (SKo^surface). 

The equivalent mass fraction of the tangential component of the field is 

1 0° D 2 
Fb = ^ rHr • ^ 

For a dipole field, the maximum Be = /xr“3, where n is the magnetic moment of the star. 
If we choose /x such that the maximum field at the surface of the possibly resulting 

neutron star is 2 X 1012 gauss at r = 1.2 X 106 cm, as required for pulsars, and scale 
the field proportional to r~2 (constant flux), then Be max = 108 gauss. (The correspond- 
ing field at a solar radius would be 200 gauss, and recently circularly polarized light 
has been observed from a white dwarf, which implies a magnetic field > 107 gauss 
[Kemp et al. 1970].) Then at the magnetic equator, the equivalent mass fraction becomes 

47t rz Be2 

c2mo 3 Stt 
10"15, 

which is the same as the mass fraction of matter corresponding to the radiation breakout 
condition. Therefore, we consider the coherent radiation from a conducting surface 
expanding within a vacuum dipole magnetic field at a constant velocity corresponding 
to 75 = 7S = 3 X 103. 
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512 STIRLING A. COLGATE AND PETER D. NOERDLINGER Vol. 165 

Actually, as a refinement, we expect the velocity of expansion to be a function of both 
radius and angle. At the poles, where we have free expansion into vacuum, yn ^ T*2. 
Between the poles and equator of the dipole, conservation of total energy of the com- 
bined surface layer (mass fraction) and Be field implies (averaged over the radial ex- 
pansion) 

Be
2yB2 == constant or yB = . (5) 

sin V 

Finally, the condition of “conducting” is equivalent to breakout condition 1 and 
requires that there exist sufficient current carriers moving at a limiting velocity c within 
the thickness of 10 g cm-2 to bound the compressed field ysBe in the moving frame. 
Therefore, the current sheet is & = cyBBe/ (47r) = Nec, or Af = 5 X 1019 electrons cm“2 

or 9 X 10“5 g cm-2. This is well satisfied by the “surface layer” condition 2. 
Therefore, we calculate the ensuing radiation on the assumptions that (a) the initial 

exterior field is of dipole form; (b) the conducting surface starts at some radius and 
expands at constant speed V; and {c) what happens in the interior of the conducting 
surface is irrelevant, the essential boundary condition being that in the rest frame of the 
expanding shell the tangential electric field should vanish at the shell surface. Behind 
the contact surface, we expect radial field lines, as in the solar wind of a nonrotating 
Sun. The expanding surface essentially “combs” the dipolar lines into radial lines. Sur- 
face currents arrange themselves on the expanding shell so as to destroy the tangential 
component of B behind the surface (see Fig. 1). In the sequel we explicitly write down 
the “combing” condition, which amounts to conservation of radial magnetic flux within 
any cone whose apex is at the center of the star, and we show that it is redundant with the 
boundary condition given in (c) above. This redundancy gives us confidence in the 
consistency of our model. Before the explosion, the magnetic field is 

Br = 2ßr~z cos 0 , Be = pr~z sin 6 , (6) 

where p is the magnetic moment of the star. We now claim that the correct field outside 
the expanding shell must have the form of equation (6) plus a pure magnetic-dipole 
radiation and induction field, whose time dependence must, of course, be determined. 
This form was suggested by an earlier approximate analysis (Colgate and Noerdlinger 
1970) and is justified by the fact that we are able to satisfy Maxwell’s equations and all 
boundary conditions this way. Thus, we write B = B0(r) + Bi(r, t), E = Ei(r, i), where 
Bo is given by equation (6) and (Bh Ei) have the angular form of magnetic-dipole type 

Fig. 1.—A dipole magnetic field of initial magnetic moment as at rQ “combed” by an expanding cur- 
rent sheet to the radius R. The current sheet corresponds to the conducting surface of the exploding star. 
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containing only outgoing waves (Jackson 1962). The general dipole term is readily 
available only in Fourier-transform form, which we take directly from Jackson’s equa- 
tion (16.44). A single Fourier component at angular frequency u is of the form 

/• v »/ v , fn* COS 0 A , ic\ A ¿a>sin0A . ic 
*(») - —(^1 + -J - a—(l + -- 

cr 

(7) 

(8) 

Here we have introduced an undetermined Fourier strength /(co) from which the ex- 
pected /¿-dependence has been factored. 

Equations (7) and (8) are to be used only exterior to the shell 

r(f) = r0 (¿ < 0) , (9a) 

r(t) = rQ+Vt (/ > 0) . (9b) 

Since the boundary conditions must be expressed in terms of the time-dependent 
forms of E and R, we introduce the Fourier and inverse Fourier operators 

g = (27t)-1/2 fe^dt ; g"1 = (27t)-1/2 /V-^co . (10) 

The time-dependent forms of E and B will be designated by the same symbols, with time 
as an argument, but to avoid confusion we denote = F(¿). The boundary con- 
ditions are that for ¿ < 0 and r > ro, E\ and B\ vanish, and that for / > 0, on the ex- 
panding shell we have 

£* + = 0 , r = r,+ Vt. (11) 

Because the formal expressions (7) and (8) do not incorporate any means for excluding 
the region interior to the star before the explosion, it is necessary to ignore the spurious 
fields which accidentally appear in this region (r < r^t < 0), much as in simple image- 
charge problems the fields in the image region have no significance. Alternatively, one 
can physically interpret the fields that seem to be present in the excluded region as those 
that would have been produced by a hypothetical time-dependent point dipole at r = 0, 
which varied in such a way as to satisfy condition (11) for / > 0. In computing the 
emitted energy spectrum it is proper and most convenient to treat these fields as if they 
are real; at sufficiently large times they are all realized as actual fields outside the shell, 
and so they do contribute to the energy. In the sequel, then, we allow these fields to 
exist. 

Before going into the analysis based on boundary condition (11), we present an 
alternative boundary condition based on the idea of “combing out” the lines of force. 
Not only does this concept give a cross-check, but the actual equation combines with 
that arising from condition (11) to yield a much simpler equation for /(co). If the shell 
is a perfect conductor, the magnetic-field lines cannot slide tangentially along it, so in 
any fixed region of (0, 0)-space (i.e., in any fixed cone centered at the origin), there 
must always emerge from the expanding shell as many flux lines as emerged at ¿ = 0. 
This gives the condition 

where 
Br(Ç) = 2M/'0"

1r2 cos 0 , ¿ > 0 , (12) 

£ = ro + Vt. (13) 
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Now when equations (7) and (8) are put into the inverse transform (10), a certain 
operator M results which merits separate definition : 

M = (2ir)-1'2 f exp [-iut + io)c~l{n + Vt)]dw . (14) 
— co 

It will also be necessary to have the time derivative of M: 

(d/dt)Mf(o>) = - ß)f{o>)] , V/c. (15) 

Armed with these formulae, we substitute equations (6)-(8) into equations (10) and 
(11), remembering that in equation (11) Be includes the initial and perturbed fields. 
The result is 

um - ß){iuc-'rl - r2) + wcar'r*]f(o>)} + ^r3 = o. (i6) 

In principle, this may be solved for/(co). It should be noted that £ and M freely com- 
mute. Although it is possible to choose suitable contours for integrations such as those 
in equation (16), to encircle the poles properly at co = 0, it will turn out a little later 
that the expressions finally used have no ambiguities of this type, so the problem is 
ignored. When equation (12) is put in similar form, there results 

M[(ßr2 + ißcorl$r*)f(o>)] - ß F/ro_1£-3 = 0 . (17) 

Fortunately, equations (16) and (17) are redundant; they must be lest/be overdeter- 
mined. The redundancy is exhibited by comparing the difference of equations (16) and 
(17) with the time derivative of equation (17); the two results are identical. We omit the 
algebra, which is simply subtraction of equations or the application of equation (15), 
respectively. The common result is 

M/(co) - iAtc-lMo>f(u) - ßro-1 = 0 , (18) 

where ^4 = 1 — ß. Now, although any of equations (16)-(18) seems difficult to solve, 
the situation is quite different when looked at in terms of the time-dependent form, 
F(t). In fact, one has 

Mf(a>) = F(r) , (19) 
where 

T = At — roc-1 . (20) 

Similarly, Mco/(co) may be reduced to F'(r) via equation (15), viz.: 

Afco/(co) = iF'ir) . (21) 

In the foregoing, the identity (r0 + F/M = r0 + Ft has been used. Using equations 
(19) and (20), we reduce equation (18) to the form 

(r0 + Ft)F'(t) + cFir) - Fro"1 = 0 . (22) 

This is a first-order linear differential equation for F(r), or equivalently for F(¿), since 
the variable is dummy. The boundary condition to be used is 

F(t) =0 at t = —r^/c. (23) 

To understand this condition, recall the remarks previously made about the meaning of 
the fields when r < r0 and ¿ < 0. A hypothetical image source at the origin must start 
up at such time that its disturbance reaches r0 at ¿ = 0, but not before. To see that F{t) 
has the significance of the source at the origin, one may compare with Jackson’s (1962) 
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equation (16.47). Alternatively, one may verify by inspection that our final solution 
has the form of a pulse that originates at r = r0 when ¿ = 0, so far as the region exterior 
to r0 is concerned, and that any different boundary condition would not fit this require- 
ment. The solution to equation (22) subject to condition (23) is 

F(t) t> ~r-j, (24) c 

and, of course, F is zero at smaller times. Now, to recover the fields, we must in principle 
substitute expression (24) into equation (10) to get/(co), and thence into equations (7) 
and (8), returning to (10) if we want the time dependence. This onerous procedure may 
be skirted by using the convolution theorem; clearly the effect of the chain of operations 
just described is to convolve F(f) with the inverse Fourier transform of the functions in 
equations (7) and (8). Since we are interested mainly in the radiation field, let us find 
only the radiation part of which we denote as 

Brad = sin 6 êeB2(r, t) . (25) 

Clearly, B2 is the convolution of F(t) with 

S(t) = -%-l[ne™rlc(io>/ cr)] (26) 

= - re-') , (27) 

where hr means the derivative of the Dirac ¿-function. Thus, 

J32(r, t) = (27t)-1'2 fF(tf)S(t - t')dt' . (28) 

Equation (28) will introduce the derivative of F(t), which is largest at t = —tq/c. In 
order to be able to study the behavior there, it is convenient to introduce a displaced 
time coordinate defined by 

t = t tq/c . (29) 

In addition, the time interval T = Tq/c for light to travel one stellar radius enters 
frequently. In terms of these variables, F has the form 

fu) = ^ [i - (i + > * >0 ; =0 * *' <0 • (3°) 

Equation (30) nicely exhibits the rapid fluctuations that F undergoes near t = 0 when 
F « c, that is, when ^4 « 0. Specifically, in this limit of large 7 = (1 — ß2)-1/2, we have 
A « ^7~2, so that most of the variation of F occurs in the brief interval 0 < / < %Ty~2. 
Thus, we expect the Fourier spectrum of the pulse to extend not just to frequencies of 
order T-1, but to a factor 72 higher. If equation (30) is put into equation (28), there 
results 

where 

Biir, l) ßß , ß?y(ß+»iß 
err O'A V ^ AT) 

(31) 

f = î — r/c > 0 , r > ro. (32) 

The first inequality in expression (32) is essential, as it represents the correct form of 
the pulse, but the second inequality is just an arbitrary restriction to the physical region; 
eventually, the entire pulse is seen in the observable region, and we may consider its 
properties then, ignoring the restriction r > r0. Because of dispersion, we shall probably 
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not see the pulse shape, but will be interested in the total energy emitted per Hz band- 
width, P(w). This is obtained from 

P(co) = fdü\ fBte' ''dt' 
2 
sin2 0 ergs Hz-1. (33) 

The factor 4 takes into account the energy present in the electric field and the fact that 
we define P only for positive frequency, although formally there is energy present at 
negative frequency. A factor 2tt has been used to convert to ergs Hz“1 from units based 
on angular frequency w; it makes no difference that c*> itself is left as the argument. In 
general, the Fourier transform of expression (31) will be an incomplete F-function, but 
it is possible to achieve simple, accurate results when y is large. Then, we may replace 
ß by 1, except in ^4, where we use A « ^T“2. It may then be shown that 

f) exp (iut*)dt* = ai(^o) ^(tf) , (34) 

where ° 
oo 

$(?) = Sp-' exp (ipq)dp = exp (iq) — iq[á (q) + i si (?)] (35) 
and 1 q = co7Y(2y2) . (36) 

Here, si and ci are the sine and cosine integrals (Gradshteyn and Ryzhik 1962). The 
fact that 7 has disappeared from all the results except in the definition of q means that 
the spectrum of radiation emitted will always be of identical form and maximum 
strength, but will simply extend to higher frequencies when y is large (Colgate and 
Noerdlinger 1970). Upon substituting into equation (32), we obtain the emitted power 
(using / sin2 0dß = 87r/3) 

P{v)dv — ^ß2c~lr^24f{q)dv ergs , (37) 

where v is the frequency, q = wvT/y2, and ÿ = 14>|2. A graph of ^ versus q is shown in 
Figure 2. The fact that it starts out nonzero even at zero frequency is associated with 
the fact that the pulse of radiation is <íunipolar,,, i.e., that at any point of observation, 
B$ and E# do not reverse sign. The behavior at large q is ~(f~2- The function ÿ was 
integrated numerically, and to the 1 percent accuracy of the method used, the integral 

f \p(q) dq 
0 

Fig 2 —Emitted power per unit frequency versus frequency in terms of the reduced variables 
(ordinate) and q (abscissa). The value q — \ corresponds to that frequency such that the vacuum wave- 
length equals approximately the thickness of the relativistically compressed dipole magnetic field 
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is just unity. This implies that, upon converting to an integral over frequency, the total 
energy U emitted in the pulse is 

U = 
4yV* 

37rr0
3 0.425 ergs . (38) 

III. HEURISTIC ANALYSIS 

A heuristic argument can be given for the emission based upon the shock jump con- 
ditions. The tangential magnetic field is compressed by (47^) as in a strong shock, 
giving a thickness of r0/(47b) for the magnetic field in the moving frame, moving at a 
velocity corresponding to 75. The apparent thickness as viewed by a stationary ob- 
server is then r0/(47j?2). This pulse of magnetic field will have constant Fourier co- 
efficients up to a frequency vc 4^75^0“ V-1. The total energy radiated should then be 

4752/W/87r)á Vol = f7*Vr(f3 

which is close to equation (38). 
We now consider the emission above vc. Following equation (37), P(v) œ v~2, v > vc. 

The emission at high frequency (*> > vc) is due to the approximation that breakout of 
the shock is a sudden phenomenon. Actually, breakout involves the gradual acceleration 
of the matter by the radiation stress of the photon flux from the shocked fluid. The cor- 
responding scale height h of the breakout layer of 10 g cm-2 is roughly Ä ~ 2 X 105 cm. 

Therefore, the spectrum behavior P(v) oc v~2 should extend up to a frequency cyB2h~l. 
Finally, we consider the effect of the variation of 7^ oc (sin 0)_1. If we assume from 

the previous arguments that the radiation per unit solid angle 

P(v) oc Be2 « (Be sin 0)2 (39) 

and that the upper frequency limit of the plateau vc oc yB
2 oc 7/ (sin 0)~2, then the total 

radiated energy per solid angle remains constant, and the power aXv < vc becomes pro- 
portional to \/vc. For frequencies larger than vc, the radiation flux will be larger than the 
equatorial value by (sin 0)-1 with a probability § sin Odd of viewing that orientation of the 
dipole. 

From equation (31), it is possible to show that the maximum laboratory value for 
Bi, at the leading edge of the pulse, is ^7^2^o. However, in the shock frame, this is not 
further increased, because B\ has an associated electric field, which causes it to move 
radially outward at speed c in any frame, and thus it is found that in the moving frame, 
B\ and Bq are of comparable magnitude. This yields a remarkably simple picture in the 
shock frame. Think of the expanding shock as a moving mirror. From the standpoint 
of the mirror, an incoming Lorentz-contracted magnetic field of strength 7^0 and scale 
height ro/75 is reflected into a similar outgoing wave. When this is transformed back 
to the laboratory, its strength is increased another factor ys while its scale height is 
decreased a factor yB, and we get out a strong, brief pulse. It does not seem to be essen- 
tial that the “incident” magnetic field has an associated electric field slightly too weak 
to make it an electromagnetic wave. 

The thicknesses and energies per unit surface area present in the original field Bq and 
the perturbed field B\ as seen in the two reference frames, together with the relevant 
scale heights, are summarized in Table 1. 

IV. DETECTION 

The total energy in the radiation pulse for yB = 3 X 103 is 
çm 

U = ^ FByB
2c2 = 1046 ergs . (40) 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
7l

A
pJ

. 
. .

16
5.

 .
50

 9C
 

518 STIRLING A. COLGATE AND PETER D. NOERDLINGER Vol. 165 

TABLE 1 

Thicknesses and Energies of the Fields in the 
Two Reference Frames 

Laboratory Frame Shock Frame 

Field Scale Energy Scale Energy 

B0  r0 BoVo ro/75 7ßBo2r0 
Bi      r0/7.B2 B0V0752 ^0/JB ysBoho 

Note.—Factors of order unity are ignored. 

(This is also the energy of cosmic rays of E > yß2c2 = 1016 eV per supernova re- 
quired to fill the Galaxy if one assumes a cosmic-ray lifetime of 3 X 106 years and 1 
supernova per 100 years.) The electromagnetic radiation will be dispersed both within 
galaxies and in intergalactic space such that the time dispersion is 

108 

D = jitcS
n*dlsec- (41) 

The dispersion due to the galactic electrons, n 0.02 cm“3 (Bridle and Venugopal 
1969), has a minimum value toward the galactic pole of A^ = f ncdl 2 X 1019 cm“2 or 
&*> 3 X 1016f“2 sec. Therefore, all frequencies <5 X 1012 will be dispersed more by 
propagation than by the time structure of the source. 

As a consequence, the received energy 5 in a band Af Hz arrives in a time AD = 
Av(dD/dv) seconds. The received energy for equatorial emission (sin 0 = 1) is 

iy<vc) (42) 

(v > vc) . (43) 

A receiver has a bandwidth Av and integrates for a time At. The bandwidth can never 
be less than one period in the time A/, or At > Av~l. In addition, during the time A/, the 
signal will change in frequency due to dispersion. The time that the signal remains within 
the receiver band Av is AD, where AD = Av{dD/dv). The optimum detection occurs 
when the receiver integrates for just the time that the signal remains within the band. 
A longer integration includes noise with no signal, and a shorter time neglects signal. 
Therefore, for optimum detection AD = At. Finally, in order to minimize the noise 
power received within the bandwidth Av in the time At (power oc AvAtkT)y we wish 
to minimize the product AvAt, or At < Av“1. This, combined with our first condition, 
implies At = Av*1, so that the optimum detection is 

Therefore, detection occurs when the received signal energy in an antenna of area 
wa2 and in a time At equals the system noise energy in a bandwidth Av and time At. A 
combined radio antenna and receiver is characterized by a system noise kT ergs Hz“1 

sec“1, so that for detection 

ttcPS > {kT)AvAt ergs , 

S ~ 
U Av 

4tR2 ergs cm -2 

and 
U /Av\ / vcV 

ergscm 
-2 
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or 
kT 

~ wa2 ergs cm 2. (45) 

If we further impose the condition that for detection we require one observed event 
per day, then for a supernova rate of 10“2 per year and a galaxy density of 5 X 10-2 

(Mpc)-3, a beamwidth of \2/Tra2 steradians will include one supernova per day at a 
distance Rd 

Rd = 100(a/\)2/37r1/3 Mpc . (46) 

For a/\ = 1, ne = 10-6 in the Metagalaxy, v = 3 X 108 Hz, D — 9 sec, and Ay = 
4 X 103 Hz. 

This optimum detection criterion for Ay presupposes that the broadbanding due to 
multiple paths in both galactic and metagalactic space is small. The thin-screen model 
of scintillation (Salpeter 1967), which is compared with the current measurements by 
Lang (1971), predicts a decorrelation-frequency bandwidth which reflects different path 
lengths for various scattered paths. The inverse decorrelation frequency is a measure of 
the time difference At of various paths. The bandwidth Ay of a dispersed, dv/dty initially 
coherent signal becomes 

Ay = At 
dv 
dt 

1.3 X W{àn?)R2 

ay4 

R (Atte2) 1 
a (ne) v 1 (47) 

where (Ane
2) is the mean square fluctuating electron density and a is the turbule dimen- 

sion. If we assume that R/a ^ 1010, that (Ane
2)/(ne

2) = 10-4 is the same in -the Meta- 
galaxy as within the Galaxy, and that = 2 X 10~2 cm-3 within the Galaxy and 10“6 

between galaxies, then at y = 3 X 108 Hz, Ay « 3 X 103 Hz within the Galaxy and 
10“1 Hz in metagalactic space. Therefore, one should keep in mind the possible increase 
in bandwidth due to propagation when considering the signal-to-noise ratio. 

Detection results in the condition 

for y < yc, and 

^ kTR5l2nell2vc 
U - 21/27ra2y3/2 

^ kTRbl2ne
ll2v112 

U - 2ll2ira2vc 

ergs 

ergs (48) 

for y > yc. In each case, the maximum signal occurs at y = yc. From Figure 2, we esti- 
mate that the half-power point occurs at vc = The most likely value of 
yB

2 = 107 and r0 = 1.2 X 108 cm, yc = 3 X 108 Hz. Substituting the condition (eq. [46]) 
of one event per day at a/\ = 1 and Rd = 145 Mpc into the above detection condition 
and letting T = 50° K represent the combined sky and system noise temperature, we 
obtain the condition 

U>7X 10z0ne
1,2vcv112 ergs (y < vc) 

and 
yW 

U > 7 X WW12 — ergs (y > yc) . (49) 
Vc 

If one is fortunate enough to be observing at y = yc, and if ne ~ 10“6 cm-3, then we 
require t/ > 3.5 X 1040 ergs, which is roughly 3 X 105 smaller than the most optimistic 
emitted pulse. 

This very large expected signal-to-noise ratio is predicated upon the assumption of a 
highly condensed presupernova star surrounded by a relatively large vacuum-dipole 
magnetic field. In discussing breakout condition 1, we have shown that there is expected 
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to be sufficient plasma in the magnetic field to provide a good hydromagnetic piston 
surface. The question also arises as to whether there is so much plasma that the wave is 
attenuated by reflection (plasma cutoff) or absorption (energization of plasma particles). 
One of us has shown (Noerdlinger 1970) that if radiation reaction is neglected, a plane 
electromagnetic pulse of thickness X is assured of penetrating a column density Ne ~ 
l/(reX) of electrons and ions without reflection, where re = é^/mâ. Thus our pulse 3 cm 
thick will certainly penetrate 1012 electrons or ions per cm2. This is a rather tenuous 
atmosphere; however, a thicker atmosphere might very well only disperse the wave, not 
reflect it, since the foregoing criterion is sufficient for good transmission but may not be 
necessary. In fact, the usual condition 03 > œp is probably adequate (Noerdlinger 1971) 
for transmission, which allows a plasma density in excess of ne = 108 cm-3. 

The acceleration of ions by the wave (Ostriker and Gunn 1969) results in ions of 
Lorentz factor 

Yi = (£)2/S < 1.4 X 106, (50) 

where rj, is the Larmor radius of an ion of kinetic energy SDîc2 in the field B0. Thus, 
losses to the ions will be small provided Ni < 1025 cm-2. If radiation reaction is ne- 
glected, the electrons, like the ions, stay in phase well with the wave (Ostriker and Gunn 
1969), and pick up an energy per particle that is smaller by the factor (1836)“1/3. The 
force of radiation reaction can only throw the particle out of phase, or retard its progress 
along the local electric field vector in the laboratory reference frame. Thus, the total 
energy fEdr taken out of the wave by an electron (which must be shared by kinetic 
energy and radiated photons) cannot be larger than the estimated kinetic energy in the 
absence of radiation reaction, and we may neglect losses to the electrons as compared 
with those to the ions. A brief discussion of the effect of radiation reaction in spherical 
geometry, when the field is due to a rotating dipole, is also given bv Gunn and Ostriker 
(1970). 

With a possible signal-to-noise ratio as large as 3 X 105 at 145 Mpc for an antenna of 
X/a = 1, it is natural to inquire what the maximum possible redshift % is for detection 
with a large radio telescope. The dispersion must be integrated along the path at the 
Doppler-shifted frequency / = *>(1 + z) in an electron density ne, = we0(l + z)3 and 
path length 

às= ctfo”Kl + z)“2(l + 2qoz)~ll2dz . 

Hence, the dispersion becomes 
z 

D = £>o(l + + 2q0x)-Wdx , (51) 
0 

where D0 = cHo~lne1.6 X 10rB/v2. For z large and D— 1-6 X 10“3(Æo_1) 
nevc~

2{\ + z)2 seconds at an observed frequency v = ^(1 + z)“1 if vc is assumed to be 
the optimum source frequency. 

The receiver bandwidth kv corresponds to a source bandwidth A/ = A^(l + z). The 
energy emitted is UAv'vr1. The received energy S becomes 

5 = 
UAv(l + z) 

4:tRl2VC 

ergs cm 2, (52) 

where Rl is the luminosity distance = cH^~lq^~2{qaz + (#o — 1)[(1 + 2^0z)1/2 — 1]}. 
Using equation (44) for Av and taking g0 = è, we obtain 

„ = U vc
ll22112  _2 

4(ctf(T1)6/2»e1/2[l + 2 - (1 + z)1/2P(l + z)1/2 ergS cm ■ 
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The Arecibo antenna has an approximate area ttö2 ~ 3 X 108 cm2, and the sky noise 
temperature increases with decreasing frequency below ^ = 3 X 108 Hz as v~2 5, so that, 
for an emitted frequency vCl T 30(1 + z)2 5 ° K and ne — 10-6; and substituting these 
values into the detection condition kT — t<i2S results in 

ttv 1/291/2^^2 
(1 + *)■[! + , - (1 + ,)■«]’ - = 1.5 X 105, (53) 

or 1+2 = 12atv = 2.4 X 107 Hz. Ionospheric reflection and absorption limits v to 
values not less than 3 X 107 Hz, setting a practical limit of 1 + z = 10. If, instead, 
observation is restricted to v = vc which demands emission at vc(l +2), then the signal- 
to-noise ratio increases by (1 + z)3/2 from dispersion and (1 + z)25 from noise, but it 
decreases as (1 + z)~2 due to the roll-off at the source for emission above vc (Fig. 2). 
The result is that the left-hand side of the equation (53) is reduced by (1 + z)-2, result- 
ing in a maximum (1 + z) = 100. The addition to the measured noise (30° K) in the 
direction of the North Galactic Pole by all supernovae in the Universe at 3 X 108 Hz 
would be 10 percent if U were the maximum value of 1046 ergs per supernova. 
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