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ABSTRACT 

The acoustic properties of the subphotospheric layers are examined. It is shown that standing acoustic 
waves may be trapped in a layer below the photosphere. These standing waves may exist only along dis- 
crete lines in the diagnostic diagram of horizontal wavenumber versus frequency. The positions of these 
lines are derived from a modal analysis of the solar envelope The lines for the fundamental mode and the 
first-overtone mode pass through the centers of the two peaks observed by Frazier. An examination of 
the energy balance of the oscillations shows that they are overstable. When they are assigned an ampli- 
tude of 0.2 km sec”1, they generate about (5-7) X 106 ergs cm“2 sec”1. This power output suggests that 
the dissipation of the 5-minute oscillations above the temperature minimum is responsible for heating 
the chromosphere and corona. 

I. INTRODUCTION 

The 5-minute oscillations in the solar photosphere have been studied intensively 
since their discovery by Leighton and his co-workers (Leighton, Noyes, and Simon 
1962; Noyes and Leighton 1963). Athay (1966) has suggested that these oscillations are 
involved in the process which heats the chromosphere and corona. Unfortunately, the 
mechanism which generates the oscillatory motion has not been well understood. In 
particular, the power spectrum of acoustic energy predicted by a theory of generation 
must be compatible with the observed spectrum. The spectrum derived by Stein (1968) 
from LighthilPs (1952) turbulence-generation mechanism has a peak of power near 
periods of 30-60 sec and falls very steeply for periods different from these values. In 
contrast, most of the power is observed near 300 sec (Leighton et al. 1962; Tanenbaum 
et al. 1969). This paper describes a process which may generate the observed 300-sec 
oscillations and which is essentially different from LighthilPs mechanism. 

Moore and Spiegel (1966) pointed out that acoustic waves are overstable in the 
presence of a superadiabatic temperature gradient and radiative exchange of energy. 
This paper shows that the 5-minute oscillations are trapped standing acoustic waves, 
and gives eigenfrequencies for the fundamental and first three overtone modes. Examina- 
tion of the energy balance of these modes shows that the first three overtones are over- 
stable. In addition, the dispersion relation between frequency and horizontal wave- 
length may explain the apparently random location of peaks in the power spectrum ob- 
served by Howard (1967), Frazier (1968), and Gonczi and Roddier (1969). Tanenbaum 
et al. (1969) showed that the amplitude of the oscillations increases as the wavelength 
decreases. Consequently, it is reasonable to expect the shortest observable wavelength 
to dominate the power spectrum. The random locations of the power-spectrum peaks 
found by Howard (1967) may be interpreted as a result of random variations in the 
quality of the seeing. 

The vertical wavelength of the oscillations is comparable to the horizontal wave- 
length and is roughly 1000-5000 km. As a result, a correct treatment of the problem 
must necessarily involve a substantial region below the photosphere. Also, the tempera- 
ture and rate of radiative cooling change substantially over a distance of 1000 km. Clear- 
ly the approximations that the gas is perfect and the atmosphere is isothermal may not be 
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used. Indeed, the presence of a superadiabatic temperature gradient is critically impor- 
tant in the discussion of the energy balance. Another consequence of the long vertical 
wavelength is that the concepts of ray acoustics are useful only as general guides. Final- 
ly, although there may be some coupling between the oscillations and the convective 
motion, this coupling cannot be dominant since Gonczi and Roddier (1969) have found 
that the oscillations remain in phase for a least 1 hour whereas typical convective cells 
live 7-8 minutes. This lifetime of 1 hour or more differs considerably from the usually 
quoted lifetime of 8-10 minutes. This shorter lifetime has prompted many workers to 
postulate that the oscillations are generated directly by the motions of convective cells. 
The observations by Gonzci and Roddier show that the shorter lifetime should be in- 
terpreted as a beat period rather than a true lifetime. Such a beat period requires there 
to be two or more natural frequencies for the motion. We shall show in the next two 
sections that such multiple frequencies are the result of the variable acoustic properties 
below the surface of the Sun. 

II. TRAPPED WAVES 

A simplified form of the local dispersion relation is that given by Whitaker (1963). 
We let kz, kh, c, cog, and N be the vertical and horizontal wavenumbers, the adiabatic 
sound velocity, long acoustic cutoff frequency, and the Väisälä-Brunt gravity-wave 
frequency. Whitaker’s dispersion relation may then be written 

In a nonisothermal atmosphere w0 and N are given by 

--é “d <2> 

where H, g, p, S, and z are the density scale height, acceleration of gravity, density, 
entropy, and altitude. In a stratified atmosphere co0, A, and c are functions of altitude 
so that kz does not remain constant. Since we are ignoring the coupling with convective 
motions, the atmosphere is uniform in time and on horizontal planes. Consequently, a 
mode of oscillation may be assigned a value for co and kh. For such a mode, altitudes 
where kz = 0 are boundaries between regions where waves propagate and where they 
are attenuated. Ray acoustics suggests that a wave packet moving from the propagating 
region toward the attenuating region will be reflected from the boundary surface. Al- 
though equation (1) does not include the effect of radiative exchange of energy, it shows 
that for some values of to and kh there are two altitudes where kz = 0. Near the photo- 
sphere coo increases by about a factor of 1.6 due to the increase in mean molecular weight. 
For frequencies between the minimum and maximum of co0 there is a reflecting surface 
in the photosphere. As long as this condition on œ is satisfied, it is always possible to 
choose kh small enough that kz> 0 below the photosphere. For finite values of kh a 
second reflecting layer is present well below the photosphere as a result of the increase 
in sound velocity. For particular values of co and kh between these limits, trapped stand- 
ing oscillations may be set up. The fact that the oscillations are observed in a region 
where they are not permitted does not constitute a problem since the decay distance for 
the energy density %pv2 is quite long and in fact the velocity amplitude increases with 
altitude. 

In the presence of radiative exchange of energy, kz is complex rather than purely 
real or purely imaginary. For this case the analogue of equation (1) with kz = 0 was 
obtained by Souffrin (1966) by equating the real and imaginary parts of kz. In a non- 
isothermal atmosphere we may obtain a similar formula if we neglect the difference be- 
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tween the pressure and density scale heights and the gradients of c2, co«, and N2. The 
resulting formula for the critical horizontal wavenumber is 

kh = 
co2 a?2, + yo)R2 — a?o2(l + ^2/co2) 

c2 co2 + oír2 — N2 (3) 

where y is the ratio of specific heats, 

16aTh 
Cp 

(1 ~ Te COt 1 Te) , (4) 

and Cp, K, and r6 are, respectively, the heat capacity at constant pressure, the opacity, 
and the effective optical thickness of the perturbation. The formula for cor was derived 
by Spiegel (1957) for an infinite uniform medium. For this uniform case Spiegel found 
Te = p\i/k for a perturbation whose total wavenumber is k. Near the photosphere, how- 
ever, the optical thickness of a perturbation cannot be greater than the optical depth 
of the point. The effective vertical wavenumber for any perturbation cannot be less 
than pk/t. The actual vertical wavenumber for the perturbation is considerably less 
than the lower limit, so a good estimate for re is 

Te = (5) 

While the general characteristics discussed above must be true for any model of the 
solar envelope, the particular relation between kh and co must depend on the structure 
of the photosphere. The present analysis was performed on a model calculated with the 
nonlocal mixing-length theory described by Ulrich (1970). The important properties 
of this model are given in Table l.1 The entropy of the adiabatic region may not be 
correct in this model, but the general nature of the relation between kh and co is inde- 
pendent of this uncertainty. In fact, we may hope that improved observations of the 
5-minute oscillations will allow an accurate determination of the envelope adiabat. 

Figure 1 shows the altitude of the reflecting layer as a function of the horizontal wave- 
length for several periods of oscillation. Altitude zero is at optical depth unity. The 
shortest-period oscillation which is reflected in the photosphere is about 180 sec. Oscil- 
lations with shorter periods will penetrate to the chromosphere before reflection and 
have not been studied. They may be reflected at that level by the increase in sound 
velocity; however, the relevant physical phenomena may be quite different. The cutoff 
frequency is the value of co0 at the temperature minimum. In fact, the power observed 
by Tanenbaum et al. (1969) drops sharply as the cutoff period is approached. Evidently, 
reflection above the temperature minimum is much less effective than reflection from 
the photosphere. 

The principal conclusions of this section are that the 5-minute oscillations are acoustic 
waves trapped below the solar photosphere and that power in the (kh, a?)-diagram should 
be observed only along discrete lines. 

III. MODAL ANALYSIS 

The arbitrary variation of the atmospheric parameters requires the calculation to be 
performed numerically. Some simplification of the momentum and continuity equations 
results from using the mass flux 

j - pv (6) 
1 The presence of negative values for coo in this table is due to a density inversion just below the photo- 

sphere. This density inversion is unavoidable in models computed with a nonlocal convective theory. An 
extensive discussion of this problem is not appropriate here since the density inversion plays only a minor 
role in determining the acoustic properties of the atmosphere. 
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TABLE 1 

Important Properties of the Average Model 

—2 
(km) 

T 
(° K) (km sec-1) 

coo X102 
(sec-1) 

coÄX102 
(sec-1) 

#2X104 
(sec-2) 

239. 
387. 
474. 
570. 
685. 
719. 
750. 
793. 
821. 
837. 
863. 
908. 

1040. 
1220. 
1410. 
2730. 
4640. 
7770. 

17900. 
49800. 

4640 
4680 
4820 
5130 
5940 
6330 
6830 
7960 
9280 

10000 
10700 
11300 
12300 
13200 
14100 
19300 
27600 
45000 

119000 
755000 

7.23 
7.23 
7.30 
7.56 
8.16 
8.41 
8.70 
9.12 
9.39 
9.61 
9.92 

10.3 
10.9 
11.6 
12.2 
15.8 
20.9 
29.6 
50.8 
95.2 

+3.23 
+3.17 
+3.00 
+2.71 
+2.40 
+1.78 
+1.13 
-1.76 
-3.69 
-1.67 
+0.08 
+0.77 
+1.06 
+ 1.10 
+ 1.07 
+0.87 
+0.67 
+0.48 
+0.29 
+0.17 

0.33 
1.10 
2.11 
3.57 
6.36 
9.14 
7.61 
4.47 
1.94 
0.72 
0.20 
0.04 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

+ 10.1 
+ 9.5 
+ 8.7 
+ 6.2 
+ 4.5 
+ 2.3 
- 3.9 
-18.6 
-30.4 
-15.0 
- 8.0 
- 3.1 
- 1.0 
- 0.47 
- 0.27 
- 0.03 

0.00 
0.00 
0.00 
0.00 

Fig. 1.—Altitude z of the reflecting layer versus horizontal wave length \h for three periods of oscilla- 
tion. Permitted oscillations are found to the right of each line. Dashed lines indicate positions of the 
eigensolutions found in § III. These solutions are labeled by their modal numbers defined as the number of 
nodes between the reflecting layers plus one. 
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in place of the velocity. In terms of this variable, only the coefficients in the energy 
equation change significantly with depth. The second-order term dropped, V>(pvv), 
is somewhat different from the usual term dropped, p(w)v; however, in a linearized 
analysis the results should not be affected. We denote fluctuations in the thermodynamic 
variables with primes, and subtract the hydrostatic equation from the momentum 
equation. The linearized equations of motion are 

TdS' 
dt 

% = -VP' + gp', (7) 

f=-vv, (8) 

= ~ -pjí ~ CPUBr ’ (9) 

where # = (0, 0, —g). We may express 5' and T' in terms of P' and p' by use of the 
equation of state. 

The modal equations are obtained by setting d/dt = iœ and d2/dx2 + d2/dy = —kh2. 
The z-dependence of all quantities may then be obtained from a numerical integration. 
A common procedure in problems such as this is to allow co to be complex. The imaginary 
part of co then indicates whether the mode grows or decays. Unfortunately, this method 
cannot be used at present because of the difficulties with the outer boundary condition 
discussed below. Consequently, these calculations have been done with real co, and the 
growth or decay of the oscillations has been determined from energy balance in § IV. 

The main result of the arbitrary temperature stratification is that d/dz may not be 
replaced by ikz — 1/(2H). We may eliminate the horizontal component of j by dividing 
equation (7) by iu and multiplying the x- and y-components by d/dx and d/ dy, re- 
spectively. After the results are uêed in equation (8), we obtain 

dP' 
dz 

-iuj, - gp', 
dz 

— ¿cop' — 
h2pf 

ico 
(10) 

Pf _ N2Jg _ U>R_ / , 
C2 ÍO)g ico V (11) 

These equations give the altitude dependence of the complex amplitude of the oscilla- 
tions. They must be supplemented by boundary conditions. The interior boundary 
condition is given by equation (1). In that equation kz gives the z-dependence oijz/p

112, 
and we may set N2 ~ 0. The boundary condition is then 

The outer boundary condition is less simple. For frequencies less than the maximum 
value of coo at the temperature minimum there is a layer about the temperature minimum 
through which the amplitude decreases. The simultaneous decrease in density maintains 
the velocity amplitude roughly constant. Beyond the temperature minimum at some 
point the oscillations are again permitted. Since the thickness of the attenuating layer 
is not great, the two propagating regions are coupled together. Ultimately, the tempera- 
ture rise in the chromosphere will cause the oscillations to be attenuated. For modes 
whose horizontal wavelength is roughly 104 km, this second reflecting layer is located 
where the temperature is roughly 105 ° K. For most chromosphere models the upper 
permitted region is about 2000 km thick. Since the density scale height is about 150 km 
through this region, the velocity amplitude must increase by about a factor of exp 
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(2000/300) « 1000. The observed velocity amplitude of 0.3 km sec-1 in the photosphere 
would be increased to 300 km sec-1. Clearly some dissipation mechanism must operate 
to keep the velocity small. 

The mechanism discussed by Osterbrock (1961) involves the conversion of acoustic 
waves into magnetoacoustic waves. These waves then are converted to shocks by the 
decreasing density, and the energy is dissipated rapidly. One formulation of the outer 
boundary condition would be to couple the mode to an outgoing wave where propagation 
becomes permitted beyond the temperature minimum. This is not an acceptable solu- 
tion, however, since the vertical wavelength is about 1000-2000 km—about the dis- 
tance between the temperature minimum and the point where shock formation is sup- 
posed to take place. The procedure used in the present calculation has been to find that 

Fig. 2.—Diagnostic (¿a, oj)-diagram. Loci of the eigensolutions are shown as solid lines labeled by 
their modal numbers. Short dashed line indicates region where the oscillations were found by Tanenbaum 
et at. (1969). The two long dashed curves indicate the frequencies found by Frazier (1968). The three long- 
short dashed lines indicate the frequencies found by Gonczi and Roddier (1969). These workers did not 
determine the spatial wavelengths qf the observed oscillations, but their results may be interpreted as 
modes 1-3 at about the resolution limit of Tanenbaum et al. (1969). 

mode which has the smallest velocity amplitude above the temperature minimum. This 
mode may be expected to be damped least by the shock formation. The simple condition 
of smallest velocity amplitude does not provide any phase relation between the pressure 
perturbation and the velocity. Consequently, the growth or damping of the oscillations 
has been determined indirectly by the method described in § IV. The simple boundary 
condition does determine the eigenfrequencies to an accuracy of about 1 percent. 

The dispersion relation between fa and o> is shown in Figure 2, together with a rough 
representation of the relevant observational material. It is clear from this diagram that 
poor resolution in horizontal wave number will smear out the distinct frequencies. In 
particular, observational efforts which do not attempt to identify the wavelength of the 
oscillations are bound to lead to more or less random frequencies in the range 0.015 < 
co < 0.032. Consistent observations may be obtained only in cases where a narrow 
range of wavelengths is selected. Such selection appears to have been achieved by 
Frazier (1968) by virtue of this high spatial resolution and small field of view. The work 
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by Tanenbaum et al. (1969) also included a resolution of the power in one spatial di- 
mension. Their results do not show the distinct lines predicted here, although there is a 
hint of diagonal ridges roughly parallel to the dispersion lines. 

IV. ENERGY BALANCE 

a) The Fundamental Equation of Conservation 

The present incomplete understanding of the outer boundary condition eliminates 
the possibility of determining the growth or decay of the oscillations from the imaginary 
part of the frequency. A physically meaningful alternative is to compare the energy 
change in a fixed volume of space with the energy of the oscillation. Three processes act 
to change the energy of the oscillations. First, there is the work done on the oscillating 
fluid during one cycle. This is 

2îr/co 
work = — S vJP'dt, (13) 

o 

where vz, P', and all quantities below associated with the oscillation are the real parts of 
the complex modal solutions found in § III. The second process is the flow of thermal 
energy in through the surface. This is 

2t/w 
thermal flux = — f pvzEdt, (14) 

o 

where E is the internal energy of the fluid. Finally, there is the second-order part of 
the radiative flux which escapes into space. As long as the optical-depth scale does not 
chance significantly during the cycle, we may evaluate the radiative flux from 

2ir/w oo 
radiative flux = — y jT^aT^T^E^ir^d^dt, (15) 

0 r 

where <r is the Stefan-Boltzmann constant and E2 is the second exponential integral. 
The minus sign appears in all these formulae because we wish to determine the rate of 
change of the energy in the volume of space. We shall neglect the flux of kinetic energy 
\pvhz which is third order. 

The energy density of the oscillations is also composed of two parts—thermal and 
kinetic. These are 

thermal-energy density 
2t/co 
f [PE - {pE\]dt, 
0 
2ir/w 

kinetic-energy density = f %pv2dt. 
o 

Landau and Lifshitz (1959, § 49) show that 

d *2 

— y*(energy density) dz = flux (zi) — flux (z2) 

(16) 

(17) 

(18) 

when the energy density and flux (flux in this context includes work) are the sums 
of the parts given in equations (13)-(17). It is worth emphasizing that equation (18) 
is a rigorous result to second order. 

The energy flux is virtually zero in the deep interior where radiative exchange is 
negligible. This is a result of our boundary-condition equation (12), which sets the 
velocity and thermodynamic fluctuations 90° out of phase. Equation (11) clearly shows 
that this phase relationship is altered when coß ^ co. For most of the eigensolutions 
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found in § III the flux at the temperature minimum was negative, a result which in- 
dicates that the oscillations are overstable. The cause for the overstability is the same 
as the mechanism discussed by Souffrin and Spiegel (1967) in connection with gravity 
modes. A comparison of the energy of the oscillations to the flux showed that the ampli- 
tude should increase by a factor of e in from twenty to thirty periods. This is a rather 
significant result since it eliminates the necessity of coupling the convective velocity 
field to the acoustic modes. It is likely that interaction between the convective and oscil- 
latory velocity fields will take place and that this interaction may even contribute to the 
energy of the oscillatory field. Present observational evidence does not indicate that this 
interaction is dominant. Frazier (1968) has concluded from a direct inspection of his ob- 
servations that the two velocity fields are uncorrelated. 

b) Dissipation above the Photosphere 

The discussion of the energy balance to this point has been incomplete in that the 
region above the temperature minimum has been ignored. As indicated in § III, the 
motion above the temperature minimum is coupled to that below in a rather direct 
fashion. In the upper region the motion is generally thought to involve conversion 
of mechanical energy to heat through some hydromagnetic interaction (see, for example, 
the discussions by Osterbrock 1962 and Athay 1966). Since the oscillations are not 
observed to grow in time, we may equate the nonradiative heat input to the chromo- 
sphere to the energy produced below the photosphere by the overstable oscillation. 
Clearly the energy production is proportional to the square of the amplitude of the 
oscillation. Without an explicit treatment of the dissipation, we must assign the ampli- 
tude on the basis of the observations. The summary by Tanenbaum et al. (1969) sug- 
gests Arms = 0.2 km sec“1 for wavelengths between 500 and 4000 km. Table 2 gives the 
required dissipation per unit area per unit time if the entire observed velocity is assigned 
to each of the modes and wavelengths indicated. The modal number is defined as one 
plus the number of nodes between the reflecting layers. The actual nonradiative heat 
input to the chromosphere and corona is a weighted average of these numbers and de- 
pends on the detailed distribution of the velocity amplitude on the (kh, w)-plane. The 
available evidence suggests that the modes which produce the most energy (those with 
periods about 300 sec) are also the modes with the largest amplitudes. Clearly this 
energy-production mechanism is in good agreement with the rate of energy loss by 
radiation of 5.6 X 106 ergs cm-2 sec“1 found by Athay (1966) for all layers above the 
temperature minimum (Table 2). 

c) Uncertainty in 03r 

An important uncertainty in these calculations is the radiative-interaction rate 
o)r. The formula we have used may be quite inaccurate in optically thick regions. In 
general, we may determine oír from 

00 
q = fKviJv — Bv)dv , (19) 

0 

where Jv is the mean intensity. We expect that # ^ 0 in the unperturbed atmosphere 
because the convective flux varies with depth. This radiative exchange of heat, go, 
must be statistically balanced by the convective motions. The heat exchange due to 
the oscillatory motion is then the fluctuation in q. Unfortunately, we must know go 
before we can determine the fluctuation in g since variations in k interact directly with 
g0. Nonetheless, in principle for a particular mode of oscillation we could determine 
oír from 

OÍR = q go * 
CpT * 

(20) 
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For optical depths smaller than unity, the mean intensity should be unaffected by the 
perturbation and ur should reduce to the form given by Spiegel. At large depths, co« is 
quite small and may be neglected. The crucial superadiabatic layer is thus the only 
region where co# is difficult to determine. Since the superadiabatic layer is quite thin, we 
may explore the importance of this uncertainty by multiplying by arbitrary scale 
factor / in optically thick regions. Because of phase differences in the temperature fluc- 
tuation at adjacent layers we must also check complex values of /. Calculations were 
done with / between 0.1 and 10.0 and with phase angles between —90° and +90°. 
The results showed that the power output is roughly proportional to/"0-3 and is virtually 
unaffected for phase angles between ±45°. At phase angles of ±90° the oscillations 
were no longer overstable. The result that the power output is inversely proportional 
to / is due to the fact that when Tf is kept very small, the loops in the (T, 5)- and (P, 
F)-diagrams are also very small. The dissipating loops in the optically thin region are 
unaffected and eventually dominate. Nonetheless, we would have to increase / by about 
a factor of 50 to eliminate the overstability. It seems unlikely that SpiegeFs formula 
could be wrong by such a large factor. Also, the phase difference between the tempera- 
ture fluctuations at different layers generally is less than 45°. 

TABLE 2 

Required Dissipation as a Function of Horizontal Wavelength 

X/j = 4.83X103 km XÄ = 6.98X103 km XÄ = 12.57 X103 km 
M0DAL         
Number Flux Period Flux Period Flux Period 

1   -0.3 311 0.0 399 -3.5 532 
2   +7.4 256 6.5 313 -2.0 412 
3   +7.4 211 6.3 256 +1.2 335 
4   ... 5.0 219 +3.7 282 

Note.—Flux is in units of 108 ergs cm'2 sec“1; period is in seconds. 

V. CONCLUSIONS 

The most important finding of this study has been that the 5-minute oscillations 
are overstable and are capable of supplying the energy lost through radiation in the 
chromosphere and corona. Also important is the result that the oscillations should be 
confined to distinct lines on the diagnostic £o)-plane. These lines have not yet been 
found because of poor resolution in kh and co. The double peak observed by Frazier 
(1968) and the multiple peaks found by Gonczi and Roddier (1969) are compatible with 
the positions of the dispersion lines. More precise observations at longer wavelengths 
should permit an accurate determination of the entropy of the convective envelope. 

We may set minimal conditions which will permit the observation of the dispersion 
lines. First, the spatial analysis must be two-dimensional. Unless very high wavenumbers 
are observed in one dimension, the total wavenumber is not well established by one- 
dimensional observations such as are made with a magnetograph. Second, the observa- 
tions must be long enough, and of a large enough region, to resolve adjacent lines. At a 
wavelength of 8000 km the region must be roughly 60000 km in diameter and must be 
observed for roughly 1 hour. Third, these periods and wavelengths must be detectable. 
This condition requires velocity differences at points separated by 3000 km (4// of arc) 
to be measurable and successive observations to be no more than 1 minute apart. Al- 
though the shorter-wavelength oscillations should be easiest to resolve, the longer 
wavelengths will provide the most information about the structure of the solar envelope. 
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