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ON THE ROTATION OF THE UNIVERSE 

Stephen Hawking 

(Received 1968 September 19) 

Summary 

This paper discusses the possibility that the Universe could possess a large 
scale, homogeneous, vorticity. The limit that can be placed on the present 
value of this vorticity from the present observations of the microwave back- 
ground is between 10-14 and 7 x 10-17 rad yr_1 if the Universe is spatially 
closed and about 2 x io_46/(present density in g cm-3) rad yr“1 if it is open. 
If the observations were extended over the whole sky it might be possible 
to decide whether, in fact, the Universe is open. It is also shown that viscosity 
tends to reduce vorticity though not sufficiently to produce the present 
limits from arbitrary initial conditions unless the present density has the very 
low value of 2 • 5 x io~33 g cm-3. 

i. Introduction. Recent observations by Partridge & Wilkinson (1967) indicate 
that the microwave background radiation is isotropic to within 0*5 per cent round 
a circle near the equator. Whatever explanation one accepts of the origin of this 
radiation, it seems to be fairly generally agreed that it must have propagated 
freely towards us from a distance of the order of the Hubble radius. If one now 
assumed that the radiation would appear equally isotropic to other observers 
round other circles in the sky, it follows that, on a large scale, the Universe 
must be described by one of the Robertson-Walker models (Hawking & Ellis 
(1968)). Departures from such a model may be divided roughly into inhomo- 
geneities and large scale anisotropy. The effect of the former on the background 
radiation have been investigated by Sachs & Wolfe (1967), Wolfe (1968) and Rees 
& Sciama (1968) while that of the latter has been discussed by Thorne (1967) 
and Misner (1968) who considered certain spatially homogeneous models in 
which the matter has shear but not vorticity. One assumes spatial homogeneity 
because some such simplification is necessary to make the problem mathematically 
tractable and because there is some philosophical justification for it from the 
Copernian (or modesty) Principle that we do not occupy a special position in the 
Universe. However, one does not know that the vorticity is necessarily zero and 
so, in this paper, I shall consider more general spatially homogeneous models in 
which there is both shear and vorticity and shall discuss what limits can be placed 
on the values of these from the observations. 

By vorticity one means the rotation of ‘ nearby ’ matter about an observer 
moving with the matter, relative to an inertial frame defined by gyroscopes. 
(Here ‘ nearby ’ should be interpreted as meaning at distances of about a hundred 
megaparsecs, to be near compared to the Hubble radius but far compared to the 
length scales ot local phenomena such as the rotation of the Galaxy.) Thus in a 
sense, the whole Universe would be rotating, though, as the model is homo- 
geneous, there would be no centre of rotation. Such rotation, if it existed, would 
be of great interest for the dynamical effects it could have on the Universe and on 
the formation of galaxies and for its relation to Mach’s Principle. This states that 
the local inertial frame should be non-rotating with respect to distant matter. 

i 
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130 Stephen Hawking Vol. 142 

Quite how this comparison is supposed to be made is not clear. Nevertheless it 
would seem that this Principle is incompatible with the existence of a homogeneous 
non-zero vorticity. Unfortunately it is difficult to detect vorticity directly unless 
it is comparatively large as the only way of measuring the transverse velocities of 
objects at distances of a hundred megaparsecs is by the transverse Doppler effect. 
As this depends on v^jc2 it is not very sensitive and the best limit that can be 
placed on the vorticity by direct observation of galaxies is that it is less than 
7 x 10-11 rad yr-1 (Kristian & Sachs 1966) which corresponds roughly to a trans- 
verse velocity of the order of £ at a distance of the Hubble radius. It should be 
emphasized that this is a very high limit and that if the vorticity had this value, 
large scale centrifugal effects would be comparable at the present time to gravita- 
tional forces. However, it will be shown in this paper that the observed isotropy 
of the background radiation enables us to place a much lower limit on the possible 
present day value of the vorticity. Roughly speaking, the existence of vorticity 
implies that, relative to the space-like surfaces of homogeneity, the matter must 
have a peculiar velocity of magnitude equal to the vorticity times some charac- 
teristic radius of curvature of the surface of homogeneity. One might expect this 
peculiar velocity to produce a 24 h (dipole) component of anisotropy in the micro- 
wave background. Of course there will be contributions to the 24 h component 
from the motion of the Earth round the Sun, the Sun round the Galaxy, the 
Galaxy round the super-cluster etc. (Sciama (1967); Stewart & Sciama (1967)). 
Thus one could not be sure that the observed 24 h component was ascribable to 
vorticity but the fact that it is less than o-1 per cent (Partridge & Wilkinson (1967), 
indicates that the peculiar velocity resulting from vorticity is probably less than 
300 km s-1. As the characteristic radius of curvature will be of the order of the 
Hubble radius or bigger, it follows that the vorticity is less than about 7 x io~14 

rad yr-1. Of course one must also take into account the peculiar velocity of the 
matter where the radiation was emitted or last scattered. In a nearly isotropic 
universe this velocity will vary inversely as the average length scale. Thus if the 
radiation had been last scattered when the density was much higher than it is 

now (and this is the case in most suggested theories), the peculiar velocity would 
have been much higher and would have given rise to a Doppler shift in the radiation 
which varied with the angle of observation. The relation between this red shift 
and the angle depends on the particular type of homogeneous solution. In a high 
density, spatially closed, model this relation is more or less what one would expect 
in flat space and enables one to put a limit on the vorticity of about 7x1o-14 

(À—i)“1 rad yr-1 where À is the ratio of the present radius of the Universe to 
that when the radiation was last scattered. However, in a low density, open, 
model the relation is more complicated and present observations only place a 
limit on the vorticity of about 2x io-15 rad yr-1. The observed temperature of 
the radiation would have anisotropic components of the form, cot (O/z) cos 0 
and cot2 (612) cos zcj) for 6 greater than 5 minutes of arc, where 0 is the angle 
between the direction oí observation and a preferred direction. The first of these 
components would be related to the vorticity and the second to the shear. If 
such a pattern of variation were detected by making observations over the whole 
sky, it would be a definite indication that we live in an open universe (cf. Novikov 
(1968)). 

Misner has proposed a ‘ chaotic cosmology ’ programme the aim of which 
is to show that there are dissipation mechanisms which damp out practically all 
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No. 2, 1969 On the rotation of the Universe 131 

initial irregularities and anisotropies and cause any model which continues expand- 
ing to evolve to resemble the observed universe. As a first step in this programme 
Misner (1968) has shown that viscosity in the early Universe could reduce the 
shear from a very large value to the present very small one. In this paper it will 
be shown that viscosity also reduces homogeneous vorticity though it seems that 
it cannot do so sufficiently to account for the present observations starting from 
arbitrary initial conditions, unless the present density is less than the very low 
value of 2* 5 x 10-33 g cm-3. 

The plan of the paper is as follows. Section 2 outlines the approach to spatially 
homogeneous models of Heckmann & Schucking (1962). The equations of geo- 
desics and of world-lines are derived in Section 3 and an approximate method is 
given to calculate what the observed temperature of the radiation should be. 
In Section 4 the field equations are analysed using techniques similar to those of 
Misner (1968). In Sections 5 and 6 models of Bianchi types IX and V are con- 
sidered in detail. These generalize the closed and open Robertson-Walker models 
respectively. The effects of viscosity on the vorticity is considered in Section VII. 

2. Spatially homogeneous models. The models that will be considered in this 
paper admit a three parameter group of isometries simply transitive on a family 
of spacelike hypersurfaces. These surfaces will be labelled by a parameter t chosen 
so that g^t.^t.y = — i where a semicolon indicates the covariant derivative. 

The metric of such a model has the form 

8^= (2.1) 

where n^ = — ¿;/i is the normal to the surfaces of homogeneity, £ab is a 3x3 
matrix which depends only on t and EK ^ are three invariant covector fields in the 
surfaces of homogeneity. (Greek indices run from o to 3, Latin indices from 
i to 3.) They obey the relations 

_ £A ;/i = CbCA^B^C„ (2.2) 

where Cbca are the structure constants of the group of isometries. They will be 
of one of nine possible types first classified by Bianchi (see Taub (1951) for the 
canonical forms and Ellis & MacCallum (1968) for further details of classification). 
The nine types can be divided into class A or class B according to whether Caca 

vanishes or not. 
Since the Universe is so nearly isotropic, this paper will be mainly concerned 

with those groups that permit (but do not require) the metric to be that of one 
of the Robertson-Walker models. For & = +1, the group will be of Bianchi 
type IX with structure constants, 

Cbca = €abc> (2*3) 

where €abc is the permutation symbol. This group belongs to class A. For 
& = — i, the group can be of Bianchi type V or VII (Ellis & MacCallum (1968)) 

both of which belong to class B. It is this difference in class which accounts for 
the different nature of the predicted observations in an open universe. Type VII 
is similar to V but has an extra twist in the invariant covectors. Since the magnitude 
of this twist is an arbitrary parameter and since type V is simpler only it will be 
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132 Stephen Hawking Vol. 142 

considered in detail in this paper. The non-zero structure constants for type 
V are: 

C2i
2= -Ci22 = C3i

3= — Ci 33 = i. (2.4) 

For k = o, the group will be of Bianchi type I (all structure constants zero).* 
Such models have been considered by Thorne (1967) and Misner (1968) but are 
not of interest here since they do not allow the matter to have vorticity. 

One may define three invariant vector fields Ea^ in the surfaces of homogeneity 
which are dual to the EA

fl: 

EA
/lEBfi = 8ba. (2.5) 

Then 

EA
/lEA

v = (2.6) 

Any tensor field can be expressed in terms of its components with respect to the 
£'A/i, the Ea*1, and n^. If the field is invariant under the group of isometries, 
the components will be functions of t only. For example, the flow-vector of the 
matter can be expressed as 

U*1 = 11^+ EMÆa'S 

where 
t/o = — U^n^ and UA = UVEA

V 

depend only on t. Capital Latin indices may be lowered and raised by the matrix 

£ab = gpßK^E^ and its inverse £AB = gtlvEA^E^^ Following Misner (1968), 
the matrix £ab will be split into its volume and distortion parts : 

g KB = e2a (£2y?)AB, (2.7) 

where j8 is a symmetric, trace free 3x3 matrix and e^ is the series 2(r!)~1(2j8)r. 
Then an orthonormal basis Xy „ can be defined where „ = —n,, and 

Xifi = 

Components from 1 to 3 in this basis will be denoted by lower case Latin indices. 
They remain unchanged on raising or lowering while the o component changes 
sign. The Ricci rotation coefficients for this basis are defined by 

X\,v = (2.8) 
and satisfy rier+rrs4 = o. 

Therefore 

rrie = xy[llAx/x>+x^x/xf - x^x/xj, (2.9) 

where the convention has been adopted that square brackets around indices 
indicates antisymmetrization and round brackets, symmetrization. By equation 

(2.2), 

Fyo = — Toy = oc'Sy+oty, 

Fioo = — Fooí = o, (2.10) 

Fío; = —tí/, 

Ff/fc = FA(e~P)cCßCA [^Fi^G^Hk+^FJc^Oi^HJ — ^F^Gk^m], 

* It would also be possible for the group to be type VII for a special value of the arbitrary 
parameter in the group but such a model would not seem a natural generalization of the 
k = o Robertson-Walker model. 
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No. 2, 1969 On the rotation of the Universe 133 

where prime denotes differention by t, ay = represents the shear 
of the normals n^ and ry = {e^Yk[i(e~^)j]k represents the extent to which (e^Y 
does not commute with e^. 

3. Geodesics and world lines 

3.1 Geodesics. The parallelly transported tangent vector to a geodesic 
obeys 1^%V = o. In components with respect to the orthonormal basis this gives 

W'+r^^+rv^+rv^0 = o, (3.1) 

where /° = [W]1/2 for null geodesics and [i + W]1/2 for timelike geodesics. 
This equation has a simple form in terms of components with respect to the 

/a' = {l^CcA^hlve-^e-^cv. (3.2) 

From this it can be seen that /a is nearly constant for a time-like geodesic for 
which [W]1/2 is small, i.e. which has a low velocity relative to the surfaces of 
homogeneity. In type IX /a is exactly constant for timelike or null geodesics if it 
lies along a principal direction of ß. If it does not, it precesses like the angular 
velocity of a free body with unequal moments of inertia. Provided ß is small the 
rate of precession is slow. In type V, /a is constant only if it lies in the positive or 
negative 1 direction. If it does not, it turns towards the positive 1 direction. This 
happens whatever the value of ß and is a result of the fact that the invariant vector 
field, Eii1 is asymptotically radial about any point. 

3.2 Observations. The background radiation may be considered in a first 
approximation as coming in from a surface of homogeneity in our past correspond- 
ing to the last time the radiation was scattered. The observed temperature in a 
given direction will be Tr = Te(i + ^)_1 where 7e is the temperature of the 
surface and z is its redshift in that direction. This is given by 

1 + 0 = U^KJUrïK^ 

where Ur^ is the velocity vector of the observer, is the velocity vector of 
the matter at the emitting surface and is the tangent vector to the null geodesic 
from the observer in the given direction. Thus 

Tr = + (3-3) 

where Kr° has been taken to be minus one. The term KríUrí gives the dipole 
variation from the present peculiar velocity of the matter. The term involving 

(íTeW)172 gives the red-shift resulting from the expansion of the Universe. 
From equation (3.2) it follows that 

(KtKW«Y = -2K^ajJce^. (3.4) 

Thus if a is small, (KiKi)1l2 is approximately proportional to £_a as in Robertson- 
Walker models. The first order correction to this £_a law may be calculated from 
equation (3.4) using on the right the values that would have in an isotropic 
universe. The term K-^U-^ gives the Doppler shift arising from the peculiar 
velocity of the emitting matter. To first order it will be given by replacing K-r* 
by its value in an isotropic universe. 
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134 Stephen Hawking Vol. 142 

3.3 Energy momentum tensor. At the present epoch the dominant contribution 
to the energy-momentum tensor comes from non-relativistic matter, i.e. 

7> = ¡jLbU^Uv, 

where /x& is the baryon density and is the flow-vector. From the conservation 
equations it follows that the flow-lines are geodesics and that 

(fii)U0eSay = “/x&eaCABAC^c(^_2/?)BC- (3-5) 

Thus (ib is proportional to (Î70^3a)_1 in models of class A. T00 can be expressed 
as tf&£-3a(i + Vb) where ab is constant in class A and 

Vh = t/0-! = [[/a[/b^-2^-2/?)ab+i]1/2_i 

is the kinetic energy associated with the peculiar velocity of the matter relative 
to the surfaces of homogeneity. The anisotropic part of the spatial components 
of the energy momentum tensor is 

Ty-- T«Sy = -abe^ ^ (3.6) 
3 dPa 

where <x and C/a are held fixed in the partial derivative. This relation will be 
used in the next section to obtain a Lagrangian for the field equations. 

In the earlier stages of the Universe the matter will be dominated by photons 
and neutrinos. Because of Compton scattering, the photons will maintain an 
almost isotropic distribution about the flow-vector of the matter. Their energy- 
momentum tensor will be 

7> = 

where the energy density ¡ip obeys 

[^(C/°)4/%4a]' = -|MC/0)l/3CABAC/c^a(^2^BC (3.7) 

The radiation pressure will cause acceleration of the flow lines : 

^¡xpu^.vu
v = - = g^v+ 

By homogeneity, ¡iv.v = — fJLp'nv. Thus 

[/V/4[/a]' = ^1/4([/0)-1CcaBC/b[/^-2^-2^)cd. (3.8) 

This shows that for low velocities the magnitude of the velocity is almost inde- 
pendent of oc. The anisotropic part of the spatial components of the energy- 
momentum tensor is 

Ti}-- T«3y = - 2^-4“ (3.9) 
3 dPij 

where ap = /zp([/0)4/%4a is a constant in class A models and 

Vp = ([70)2/3-! = [[/a[/b^2^-2/?)ab+i]1/3_i. 

The effect of the neutrinos will not be considered in this paper except during 
the period around io10 °K when they produce a viscosity by collisions with 

electrons and positrons. The damping or otherwise of vorticity by this viscosity 
will be investigated in Section VII. 
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No. 2, 1969 On the rotation of the Universe 135 

The vorticity vector of the matter is defined as Thus 

= ^-3a
eABC[iCBcD^D^0+(3-10) 

OJ0 = (3-11) 

This gives the relation between the peculiar velocity and the vorticity. For low 
velocities, cuA = e~SaUA in type IX and to1 = o, a>2 = e~SccUz, co3 = —e~ZaU<z in 
type V. Thus for small [/, the magnitude of the vorticity goes as e~2a when the 
Universe is matter dominated and as e~a when it is radiation dominated. This 
latter rate of growth with increasing density is so slow that if vorticity were not 
dynamically important back to the time when the Universe was radiation domin- 
ated, it would probably not have been important at any earlier time. 

4. The field equations. In the orthonormal basis the components of the Ricci 
tensor are 

i?0° = 3a" + 3(a')2+(T^oty*, (4-1) 

Rf* = ^-“[(^ot^baCbc^^^cí-^(^)jcCaca], (4*2) 

Rij = Æy#+[a" + 3(oi,)2]8^+(c7i/ + 3a,(Ti;+cJiÂ;TA;y-TÎÂ;(T^), (4.3) 

where Ry* is the Ricci tensor of the surfaces of homogeneity; 

Rtf = -^-2“{2CbcaCDac(^)bí(^)d^ 

+ CbcaCefi>(^20be[2(^^)da(^)cí(^)^- (^20cf(^)aí(^)d,*] 

+ 2CabaCdec(¿ 2ß)^[{eß)ci(e ß)T>j + {eß)cj{e ^)dí]}. (4*4) 

The curvature scalar is 
R — 6a"+I2(o:')2+cr^cr^ + i?*. (4-S) 

Thus the field equations are* 

3(a')2-^cT^(T^ + li?# = SttT00 (4.6) 

^[(^^ObaUbc^^cí-^'(^“OjcCac^ = Stt T0% (4*7) 

Oif + ?>UOij+OilcT]c]-TlcjGlcj + Rij*-\R*hi1 = 8t7[T^- (4*8) 

— 6a,/ — 9(a')2 — ^Gij(7ij—\R* = SttTjcJc. (4.9) 

As in Misner (1968) the procedure adopted will be to use equations (4.6) 
and (4.8) to determine oc and ß as functions of t. Because of the Bianchi identities 
equation (4.9) will then be satisfied and equation (4.7) which relates the shear 
to the peculiar velocity of the matter, will hold at all values of t if it holds at one 
value. To analyse equation (4.8) for the ß motions it is helpful to derive it from 
a Lagrangian. The Lagrangian of General Relativity is \R + ^7TLm where Lm is 
the Lagrangian of the matter. There are, however, two obstacles to using this 
Lagrangian to derive the equations for the models under consideration. First, 
the foim of the metric does not allow g00 and <g

f0i to be varied. Thus the T00 and 
T0i equations cannot be derived directly from the Lagrangian though, in fact, 
their time derivatives may be obtained as conservation laws because of the in- 
variance of the Lagrangian under time translation and under the group of trans- 
formations of the EAp which leave the values of the structure constants unchanged. 

* The cosmological constant is taken to be zero and units are such that G = c = 1. 
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The second difficulty arises from the fact that a and ß are functions of t only. 
Thus, although the region in which the metric is varied can be chosen to be 
bounded in time, it may be unbounded in space. Such a variation would give the 
correct equations only if the divergence obtained in the variation of R were to 
vanish identically. This will be the case for models in class A. In general it does 
not seem possible to derive the equations for class B (Caca non-zero) models 
from a Lagrangian. However, for type V, a Lagrangian is not really needed since 

is zero and so equation (4.8) is relatively simple to integrate. 
For class A models the part of the action which determines the motions is 

where 
Lß(ß, ß\ i) = eZa(^(JijGij + %R* + ¿[irLm). (4-10) 

The explicit time dependence occurs through a and through the matter Lagrangian. 
The normal Lagrangian for a perfect fluid is 2p(i + e) where p is the conserved 
density, e is the internal energy and p(i + e) is the total energy density p,. In these 
models conservation of p may be expressed as 

pU°eSct = constant. (4-11) 

The variation in p induced by a variation in the metric is obtained from equation 
(4.11) where U° is regarded as being given by 

[/O = (l-ÇA^2a^2/î)AB)-l/2 

and qA(t) = (U°)~1UA is held fixed. However, from equations (3.7) and (3.9) 
the ß motions may be derived more simply by replacing Lm by 

- - 4fl^“4aFp. 

Then subtracting out a term independent of j8, may be redefined as 

Lß = — e^Vg—ÜTrabVi)— ibirape^Vp 

where Vg = — ^e2a(i?* —The Hamiltonian is 

Hß = ^*013013 + eaVg + %7Tai)Vi)+ i6TTape-aVv. 
It obeys 

dHß dL ß dL ß t 

dt dt da 

(4.12) 

(4-13) 

The quantity Hße~Za may be thought of as the density of anisotropy energy since 
it occurs in the expansion equation in a similar way to the matter energy: 

3(a02 = 8w-3a + 87r^-4-[|-f Fp-Hi + ^)-2] + ^-3a~^#|/?=o. (4-15) 

5. Type IX 

5. i Dynamics. Back to the time when the background radiation was emitted 
or last scattered the universe would have been matter dominated and the de- 
partures from isotropy would have been small. Thus the dynamical effect of 
photons and neutrinos will be neglected and ß and Ul will be assumed small. 

The ß motions are derived from the Lagrangian 

Lß = \eZaGijOij-ea’Vg-%Trai)Vi). (5.1) 
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No. 2, 1969 On the rotation of the Universe 137 

This may be considered as representing the motion of a particle with time de- 
pendent mass in a time dependent potential V = ß_2aF^+ By equation 

(4.4), 
Vg = \tr(eW-2e-2ß+i), (5.2) 

(Misner (1967)). For small ß this gives a harmonic oscillator potential; 

Vg — ßijßij + °(ßs)- (5-3) 
For small U1 and ß, 

Vb = -e-z«UAUBßAB. (5.4) 

The effect of this is to shift the minimum of V from ß = o to 

ßAB = 47re_3a[^rAt/B-pAB^C^c]- 

The motion in the potential well will, in general, possess angular momentum 
about the centre. The T0i equations may be regarded as expressing conservation 
of this angular momentum. For small jS, they are, 

€ACT)[ßABßBc'— ßAB'ßBc] = S7Tabe~^aUB- (s • S) 

The matrix ß may be expressed in terms of an orthogonal matrix O and a diagonal 
trace-free matrix D; ß = ODOT. Then ß' = 0[CID +D'— DQ]0T where 
£î = 0T0' represents the angular velocity of the principal axes of ß. Thus 

(2Z) ÍXD — Z) 2 —Í1D2) ab = 477’^^—3a eABC^D c ^D) (S-^) 

showing that the principal axes rotate about the direction Odc^d* Solving for 
Q, 

= — 477^“3a[Dii — Z)22]_2OD3^D etc. (5*7) 

The kinetic energy of the motion in the potential well is For small ß 
this is 

|ír[2ßZ)£iD-2Íi2Z)2 + (JD
,)2] = 

+ 16 772^2^~6a[(Z)ii —Z)22)_2(Or)3f7D)2 +etc.]. (5*8) 

The total energy is given by 

e~SccHß= I^ab'íSab' + e~2ccßABßAB, (5-9) 

where Vb has been neglected since by equation (5.5), UA is of order ßß'. For a 
given value of UA, the minimum total energy is ^zirabe-^ (Uj^Ua)1/2, which 
would be achieved by a f circular ’ orbit, that is a motion in which the eigenvalues 
of ß remained constant while one principal direction lay along UA and the other 
two rotated about it. 

If oc were constant, the system would execute simple harmonic motion with 
period y"2ireœ in the five dimensional ß space. However, oc is, of course, varying 
with time and the average Hubble time (a') 1 less than the period of oscillation 
except when a is greater than ao —log (i + 27r-2) where ao is the maximum value 
of a. 

For a<^ao, 

e3a = ^ e^ot2. (5*10) 
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Thus for small ß, 

Stephen Hawking 

m+2W+2 

dt* tdt 
_2_ ^aoí2 

i6 

■2/3 
i8 = o, 

Vol. 142 

(5-ii) 

(5-12) ß = y-3/2 [AJ 3/2( y )+BJ _3/2( F)], 

where ^4 and 5 are constant matrixes and Y = 3V2 [A £a°]~1/3¿1/3. Thus 

jS = .F[i —£a-ao+ . . . ] + G^_3/2(a_ao)[i+ ^a~ao+ . . . ] (5*13) 

where F and G are constant matrices. 

5.2 Observations. If the model were isotropic (i.e. ß = o) the equation of a 
null geodesic would be, Ka constant, K° = e~a [KaK^1!2. Thus by Section 

3.2, the observed temperature of the radiation will be to the first order, 

Tr = T^-1[i-+piURi(i-\)—pipi(ßR-ßv)ij\, (S-H) 

where pl is a unit space-like vector in the direction of observation and 

A = exp (0^-aE). 

If the radiation is left over from the primeval fireball the value of A will be between 

8 and 1000 depending on the thermal history of the inter galactic gas. 
The observations of Partridge & Wilkinson (1967) near the equator give 

values of o* 16±0*07 per cent for the 12 h component and 0-03+0-07 per cent 
for the 24 h component. Taking these values to be typical of any circle of observa- 
tion, one sees that Ur^X— i) must be less than io-3 showing that the assumption 
of small Ul was justified. By equation (3.10), the present value of the vorticity 
must be less than io-3 (A— 1) exp {— olr). Since exp olr must be of the order of 
the Hubble radius 1-3 x io10 light years, or greater, it follows that the vorticity 
is less than 7 x io-14 (A— i)-1 rad yr-1. 

The components of ßR — ß-R must be less than about 2X io-3. Knowing this 
it is not possible to place an upper limit on the present value of ß since F and 
G in equation (5.14) could be correlated so that ßR —ßn vanished at the present 
though not at other times. However, it seems more reasonable to believe that 
F and G are unrelated. Then F would be less than about 

2*5 x IO“3 (1-A“1)“1 exp (ao-atf), 

and G less than about 2X io-3 (A3/2—1). Provided that exp (ao—or), the ratio 
of the maximum radius of the universe to the present radius, is less than 100, 
it can be seen that the assumption of small ß was justified. 

6. Type V 

6. i Dynamics. In models of type V there is a distinguished two-plane in the 
surfaces of homogeneity defined by the covector £'b/îCaba. The invariant vector 
fields Etf and lie in this plane and may be chosen so that at the present time 
they have equal magnitude and are mutually orthogonal. The field E\p may be 
chosen to have the same magnitude and to be orthogonal to the plane at the present 
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time. This makes ßn zero. As before the effect of radiation will be neglected and 
Ul assumed small. With these approximations 

fib = a^e 3a, (6.1) 

3(a')2 = 87rtf&e-3a + 3£-2a, (6.2) 

3C71Í = Zirate-^Uu (6.3) 

<V + 3a,(7tf = °* (6*4) 

From equation (6.4), aij = Aije~3a where Ay is a constant matrix and An are 
given by equation (6.3). By rotating E^J1 and E^ in the distinguished two plane 

^23 can be made zero. For a low density model, that is one in which is much 
less than (a')2, the square of the reciprocal of the average Hubble time, e* = t. 
Thus 

ßij = % Aij[tR-2-t-2]. (6.5) 

6.2 Observations. These are more complicated since even in an isotropic 
model with ß identically zero, the components of the tangent vector to a null 
geodesic are not constant. Expressing K& as K\ = K cos 6, K2 = K sin 8 cos <£ 
and K3 = K sin 9 sin </>, one has from equation (3.2) that, for ß zero, K and <£ 
are constant and 9 obeys 

9' = — e~a sin 9. 
Thus for /¿&<^(a')2 

9=2 cot-1/£, (6.6) 

where / is a constant. Using this the observed temperature may be calculated 
according to Section 3.2: the isotropic component is TeA“1. The term Ur^Kr1 

gives rise to a dipole component 

TeX-^Ur1 cos 0+ Ur2 sin 9 cos </>+ Ur3 sin 9 sin <£]. 

The term gives a component, 

- rE(i +a2A-2)-i[C/Ä
1(ß2A-2- i) + 2aA-i(C/^2 cos cf>+ UR

3 sin <£)] 

where a = cot 0/2. In a low density model A would probably be about 103 if the 
radiation was left over from the primeval fireball. Thus for 0 greater than 5 minutes 
of arc, the anisotropic part of this component would be 

— 27eA-1 cot - [Ur2 cos (f)+ Ur3 sin </>]. 
2 

The anisotropic part of the component arising from [K^K-e1]1^2 would have the 
approximate form for 0 greater than 5 minutes of arc, 

4TeA-1 exp ( —2a^) j^cot2 ^ log A(^4n —^22 cos2 ^ — ^33 sin2 </>) 

0  . „ 
cot - (X — i)(A 

This pattern of variation is very different from that in a spatially closed model 
and would provide a possible new cosmological test if observations could be made 
over the whole sky. Near the direction 0 = o there could be veiy marked de- 
partures from the mean temperature and the cos </> and cos 2</> behaviour of these 
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departures should make it possible for them to be distinguished from the effects 
of inhomogeneities. No conclusion on this question can be drawn from the measure- 
ments of Partridge & Wilkinson (1967) since their observations were confined to 
one circle and the chances would be that this would not pass very near the direction 
6 = o. Assuming that the circle has some ‘ typical ’ orientation, one can place 
limits of about 2*5 x io~36/(present density in g cm-3) on Ur2 and Ur3 of about 
10-3 on Ur1 and of about 10-4 exp (zocr) on A22 and A^z, showing that the 
assumption of small U1 and <7 was justified. With a present density of io~31 g cm-3 

the neglect of in equation (6.2) would not be justified all the way back to the 
time when the radiation decoupled. However, the effect of including this term 
would be to increase slightly the observed temperature anisotropy and so to give 
even lower limits on Ur1 and Ay. 

The vorticity depends only on U2 and U3. Thus the limit on the present 
value is 2 x io~46 (present density)-1 rad yr-1. 

7. Viscosity. The limits obtained on the vorticity and on the peculiar velocity 
of the matter imply that they are small back to the time when the radiation 
dominates over the matter. At earlier times it follows from equation (3.8) that the 
peculiar velocity is practically independent of a and so should remain small unless 
the universe becomes very anisotropic. The question then arises as to whether 
this effectively zero value represents the initial condition or whether the peculiar 
velocity was once large but has been reduced by dissipative processes. To investi- 
gate this possibility, the effect of viscosity on the peculiar velocity will be con- 
sidered. 

The anisotropic stresses from viscosity can be represented as — 2^o-(m)^ where 
77 is the coefficient of viscosity and 

<Hm)ltv= (7.1) 

is the shear tensor of the matter. They cause acceleration of the flow-lines: 

I = - J- ixp.JliJV + 2ria(m)
)'(,.phxii. (7.2) 

To first order in ßy and U1, this gives, 

(e-«UAy = -7?[i677^[/a+|^
-VC/e(CcabCbec + CcabCceb 

- CbcbCcea- CbcbCaec)]- (7*3) 

In the early stages the first term on the right gives the dominant contribution 
which tends to reduce the peculiar velocity and the vorticity. 

In Misner (1968) it was shown that there would have been a large viscosity 
produced by collisions between neutrinos and electron-positron pairs when the 
temperature was about 2x 1010 °K. However, this viscosity would last only for a 
time of about (64 tt-t?)-1. Thus the peculiar velocity would be reduced by a factor 
of e0*25 only. There would also be a viscosity during the decoupling of the matter 
from the photons. Again however, the viscosity would only act for a short time so 

iÓttJ* rjdt 

would be small. It appears, therefore, that viscosity is not very effective in 
reducing a peculiar velocity which is small compared to the speed of light. 
If it is large, the damping is much more rapid and it seems possible that neutrino 
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viscosity could reduce (UW1)1!2, from an arbitrarily large initial value to order 
unity. It would then remain of order unity until the matter decoupled from the 
radiation and this would be compatible with observation only if the universe 
were open and the present density were less than the very low value of 

2* 5 x 10-33 g cm-3. 

Otherwise, one would have to appeal to Machian initial conditions to explain the 
observations. 
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