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ABSTRACT 

In this paper we calculate general expressions which are suitable for use in numerical stellar-interior 
calculations for nuclear reaction rates. We consider the density-temperature combinations which are 
called the weak-screening, strong-screening, and pycnonuclear regimes. Except in the pycnonuclear case 
we express our results in the form of “correction factors” with which one multiplies the ordinary thermo- 
nuclear reaction rate evaluated at the same temperature and density. By considering the extreme cases 
of Zi — Z2 and Zi » Z2, where Zi and Z2 are the atomic numbers of the two reacting nuclei, we are able 
to devise interpolation formulae which are valid for any ratio of charges Zi/Z2 throughout the entire 
weak- and strong-screening regimes. We also discuss strong-screening corrections to resonant nuclear 
reaction rates, and we give an explicit formula for the important special case of the triple-alpha reaction. 
Finally, by applying our results to the case of the proton chain, we show that the hydrogen abundance 
in the white dwarf Sirius B must be less than 3.5 X 10~5. 

I. INTRODUCTION 

Calculations of rates for thermonuclear reactions involving two charged particles have 
generally been based on the assumption that the Coulomb interactions with all the other 
nuclei and electrons can be neglected. At sufficiently low density p and high temperature 
T this is a good approximation, since the nuclei behave as an almost perfect, classical, 
ionized gas, and the small corrections due to the electrostatic interaction with the back- 
ground plasma can be calculated from the Debye-Hückel theory. This leads to the “weak- 
screening” approximation for the reaction rate. For an intermediate regime of p and T, 
most of the nuclei are bound in a Coulomb lattice structure, but the reacting pair of high- 
energy nuclei is still free. The electrostatic effects are then large, but can still be ex- 
pressed as a multiplicative factor in the reaction rate, called the strong-screening correc- 
tion factor. These two regimes have been discussed by Schatzman (1948, 1958) and by 
Salpeter (1954, hereafter referred to as S). At very high density and relatively low tem- 
perature, however, even the reacting nuclei are bound in the Coulomb lattice, and quite 
different methods must be used to evaluate the nuclear reaction rates. This “pycnonu- 
clear” regime was first discussed by Wildhack (1940), by a series of Soviet workers 
(Zekdovich 1958; Kirzhnits 1960; Abrikosov 1961; Kopyshev 1965), by Cameron (1959), 
and most recently by Wolf (1965) and by Van Horn (1965; hereafter referred to as V). 

It is the aim of the present paper to consider the relationships among these different 
regimes, to discuss the pertinent physics, and to derive interpolation formulae for the 
nuclear reaction rates in forms suitable for use in numerical stellar-interior calculations. 

In a completely general treatment of the Coulomb effects we would have to deal with 
eight different parameters : p, T, and the nuclear charges and atomic weights of each of 
the two reacting nuclei and of a “typical” nucleus in the medium. Even in the case of a 
homogeneous medium with nuclei of atomic weight A and charge Z, which is the situa- 
tion we shall discuss in most detail, we are still dealing with four separate quantities; 
however, in the survey given in § II we shall see that to a good approximation the results 
can be expressed in terms of merely two dimensionless parameters. In § III we next 
discuss the weak- and strong-screening cases, which can be done with fairly good accuracy 
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for arbitrary ratios Z2/Zi of the charges of the two reacting particles, and we give an 
interpolation formula connecting these two cases. In § IV we discuss the borderline region 
between the strong-screening and the pycnonuclear regimes. This is done separately for 
a homogeneous medium and for the other limiting case of Z2 <5C Zi, and an interpolation 
formula for general Z2/Zi is given which is accurate in the strong-screening regime and 
at least tolerable in the borderline region. The pycnonuclear regime at both zero and 
finite temperature is considered in § V, but only for the case of a homogeneous medium, 
as this limit is perhaps of less practical interest than the other regimes. In § VI we discuss 
resonant reactions and the somewhat special case of the triple-alpha reaction, and, 
finally, in § VII we give a brief summary and index the equations that contain the main 
results. 

II. PHYSICAL CONDITIONS IN A HOMOGENEOUS PLASMA 

a) Survey and Definition of Parameters 

We consider a plasma at density p and temperature T consisting solely of electrons 
and of bare nuclei with charge +Ze and atomic weight A, using H = 1.66044 X 10-24 g 
as the physical unit of atomic mass (so that A/Z — 2 for a C12 nucleus), and let —e and 
m be, respectively, the charge and mass of an electron. In these units the number den- 
sities Na of nuclei and Ne of electrons are given by: 

Na = p/p¿H ; ßA^ A{\+ Zm/AU) , ^ 

Ne ~ p/PeH > Me ^ Pa/Z , 

where pe(pá) is the mean molecular weight per electron (atomic nucleus). 
It is convenient to measure lengths and energies in terms of the characteristic quan- 

tities r* and 2£*, defined, in analogy with the Bohr radius and (twice) the Rydberg 
energy, as: 

h2 /m 1 \ h2 29.030fm 
r ” MZ2e2 ~ 'H AZ2J me2 AZ2 ’ 

(2) 

£* = ^ = ^ = AZikB5.7562 X 10s ° K , 
r \ mj n2 

where &b is Boltzmann’s constant and M = is twice the reduced mass for a pair of 
nuclei. The density of the plasma may thus be expressed in terms of r* and the dimen- 
sionless inverse-length parameter X, which we define by: 

1/1 P 
^Z2W 1.3574 X 1011 g cm"3 

(3) 

As we shall see, in most cases of practical interest the Coulomb effects for the electrons 
are relatively weak, and throughout this paper we shall therefore consider the electrons 
merely as a uniform distribution of negative background charge in which the nuclei move. 
In contrast, the electrostatic interaction energies of the ions can in certain regimes be of 
sufficient magnitude to cause the nuclei to freeze” into a Coulomb lattice structure. In 
analogy with the case of the hypothetical electron solid, which has been well studied in 
the literature of solid-state physics, we assume this lattice to be a body-centered cubic 
(bcc) structure, the structure having the greatest binding energy per nucleus. Ii a = 
(Na/2)~113 is the bcc lattice constant, the magnitude of the total electrostatic interaction 
energy per nucleus is given by (Carr 1961) : 

72p2 
£Coui(bcc) = 1.81962— = 1.81962AE*. (4) a 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
 6 

9A
pJ

. 
. .

15
5.

 .
18

 3S
 

No. 1, 1969 NUCLEAR REACTION RATES 185 

For some purposes, however, it is more convenient to replace the true, polyhedral lattice 
cell by the so-called Wigner-Seitz sphere, which is the sphere of radius as containing a to- 
tal distributed negative charge —Zef %Tra8

zNe = Z, plus one single ion of charge -\-Ze at 
the center. In the Wigner-Seitz approximation, the magnitude of the total Coulomb 
energy thus becomes: 

£c„ui(W-s) = t9ö^7 = TO (y)13 y- = 1.82788XE*. (5) 

(In the future we shall omit the superscript in referring to £coui(W"s).) This approxima- 
tion is in error only by a multiplicative factor of 1.00454 for a homogeneous bcc lattice 
and has the advantage of being a good approximation for a mixture of isotopes (or an 
alloy) where the actual lattice structure is in any case not known accurately. 

Within the Coulomb lattice the nuclei undergo small oscillations about their equi- 
librium lattice sites. The oscillation frequency is of the order of magnitude of the ion- 
plasma frequency co^, defined by 

= h (4*-1 fg)1/2= 4 (~)1/2X3/2£* = 2.7426X1/2Ecoui. (6) 

If X is small, the zero-point oscillation amplitude is small at zero temperature. At finite 
temperature T, higher modes of oscillation of the ion lattice can be excited, and it is 
convenient to introduce a dimensionless parameter ß which measures the degree of the 
excitation. A dimensionless parameter r comparing Coulomb and thermal energies is also 
useful, and we define 

r ^ Æcoui ZV 
OMsT aMT ’ 

k(rel)(o)| /fopV/3 

37T21'3 \kBTj 
0.18084 

/fopV/3 

\kBT) (7) 

= 0.52972 
^3/2£*y/3 

~faf) 
0.032234\t2 , 

where vs
(Tel)(0) is a dimensionless number of order unity related to the screening poten- 

tial at zero separation, which is defined and discussed in § II¿>. 
The physically interesting parameters ß and T involve both density p and temperature 

T. It is also useful to define another dimensionless parameter r, which depends only on T 
(not on p), 

, 27V & 7.6696 X 1010 ° K 
4 kBT 

2^Z T ‘ W 

The parameter r is the natural variable in the thermonuclear regime, but of course any 
two of the four parameters X, r, T, and ß specify the physical state of the plasma in any 
regime. 

In all practical cases involving exothermic nuclear reactions between charged particles 
in stars, both of the following inequalities hold : 

r » 1 , X « 1 . (9) 

Physically, the first inequality means that the nuclear Coulomb repulsion dominates the 
thermal energy and the Coulomb barrier penetration is very slow ; the second inequality 
means that the Coulomb repulsion energy Ecoui is large compared with the quantum- 
mechanical zero-point energy ho)Vl and the zero-point vibration amplitude is small com- 
pared with the lattice spacing. The evolutionary cause of these two inequalities lies in 
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the fact that time scales for stellar evolution are very much longer than intrinsic nuclear 
reaction times : If the first (second) inequality were violated for any exoenergetic nuclear 
reaction at some evolutionary stage, the reaction would be proceeding at an extremely 
fast rate by means of thermonuclear (pycnonuclear) reactions; in reality, this reaction 
would already have gone to completion at an earlier evolutionary stage when the density 
was lower and r and X-1 were large enough for the nuclear reaction rates to be slowed 
down to astronomical time scales. These arguments would not necessarily apply to 
endothermic reactions involving the most stable nuclei near Fe56. However, for these 
heavy nuclei the factor AZ2 in equation (3) is very large and X is still quite small, even 
at densities as large as 1011 g cm-3, beyond which inverse ß-decays would convert these 
nuclei into neutron matter, anyway. 

Fig. 1.—Temperature-density plane for a pure C12 plasma showing the various screening regimes 
discussed in the text. In the hatched region the electron Fermi energy Ef,« and k^T are both too small 
for complete ionization. 

For the electrons in most stellar interiors we have quite the opposite situation, namely, 
that typical kinetic energies are large compared with the Coulomb interaction of an 
electron with the nearest nucleus. This difference is, of course, due to the large mass 
ratio H/w, so that the electrons can be highly degenerate and have a much larger Fermi 
energy than the thermal energy of the non-degenerate nuclei. In general, one can show 
that Coulomb effects for electrons are unimportant for a star of mass large compared 
with Zaz!2 Mch, where a = e2lñc = (137.037)-1 and Mch. = (2/aO2 1-4587 Mo is the 
Chandrasekhar limiting mass. For the charges Z of the main elements undergoing nuclear 
reactions in a star, this inequality is well satisfied, and we therefore neglect any non- 
uniformity in the electron density throughout this paper. 

Let us now consider the approximations which apply in the various regimes of interest. 
For a fixed density (and hence a fixed and small value of X) one can distinguish four main 
temperature regimes where the electrostatic interactions have a significant effect upon 
the nuclear reaction rates. These regions are indicated in Figure 1, which depicts the 
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log p-log T diagram for a plasma composed wholly of C12 nuclei plus electrons. At 
sufficiently high temperatures and low densities so that 22coui/0.9ÆbT = T <<C 1 (giving 
ß <£C X1/3 <k 1) the nuclei form a gas and weak screening applies, as discussed in S. For 
F » 1, on the other hand, the Coulomb forces dominate, and the nuclei form a condensed 
phase. At sufficiently low temperatures, F < Fw ~ 50 to 125, one has a genuine lattice 
with full long-range order (Brush, Sahlin, and Teller 1966; Mestel and Ruderman 1967; 
Van Horn 1968) ; but, strictly speaking, for 1 <K F < Fw one is dealing with a liquid. 
Even in the liquid phase, however, one has practically the same short-range order as in a 
crystalline solid, and since our nuclear reaction rates are mainly affected only by nearby 
nuclei, we shall assume for calculational purposes that a perfect lattice structure exists 
whenever F ^>> 1, even if F/rm is not large. With this approximation, the bulk of the nu- 
clei are then bound in the lattice structure whenever k^T <£ Eqom\ (although they may 
possibly be in highly excited vibrational levels with energies greatly exceeding the zero- 
point energy ~hœp). 

When the temperature of the Coulomb lattice is still sufficiently high, the energy of 
the Gamow peak EPk ^ tÆbF for the reacting nuclei is much larger than typical thermal 
energies. In this case Ep^/Econi ~ 'r/r ^ ß~l> s0 that for ß 1 the main contribution 
to the reaction rate comes from nuclei which have sufficient energy still to move relatively 
freely through the lattice. This is the so-called strong-screening regime. For somewhat 
lower temperatures, such that ß 1, almost all the nuclei are in the vibrational ground 
state, and even the reacting nuclei are now bound (but not necessarily in the ground 
state). In this pycnonuclear regime we shall find that, if 1 <<C ß3/2 <3C ln X"1, the typical 
reacting nuclei are bound but in highly excited vibrational levels; we shall refer to this 
as the “T > 0 pycnonuclear” case. These inequalities can be satisfied only for a very 
narrow range of temperatures, however, and for ß3/2 )$> ln X-1 1 we finally have the 
zero-temperature pycnonuclear regime, in which even the reacting nuclei are in the 
vibrational ground state and in which the nuclear reaction rate becomes dependent only 
on the density and independent of T, 

b) Approximations for the Screening Potential 

Let r be the vector separation between two given nuclei, and let R be the coordinate 
of their center of mass. If we neglect the interactions with other nuclei and electrons 
(which is valid in the extreme high-temperature [thermonuclear] limit where F —» 0), 
we have only the long-range, repulsive, Coulomb potential Z2e2/r acting between the 
two nuclei. For non-zero values of F, however, it is necessary also to take into account 
the interactions with the other particles, and the effective interaction potential for the 
given pair of nuclei, therefore, also includes a “screening potential” term F8(r) arising 
from the shielding effect of the rest of the plasma. In principle this potential should be 
evaluated by regarding r as fixed and carrying out a statistical ensemble average over 
R and over the coordinates of the remaining particles. In the weak-screening regime 
where F<<Cl, just such a “potential of mean force” can be evaluated by using the 
Debye-Hiickel approximation that is applicable here, and there are no difficulties in this 
limit. Even in the intermediate case of the strong-screening regime, where F ^>> 1 but 
ß <<C 1, little ambiguity arises, since the two reacting nuclei are unbound and the classical 
turning point is reached only for separations r much less than the lattice spacing a. 
Thus Fs(r) can be assumed spherically symmetric in the region of interest and can be 
evaluated by straightforward and simple arguments in this regime, also. The determina- 
tion of the potential in these two regimes is discussed in S and will not be considered 
further here. 

When F 1 and ß ^ 1, however (i.e., in the pycnonuclear regime), the coupling of 
the motions of the different particles is so strong that no independent-particle model is 
an adequate approximation, the ensemble average cannot be carried out, and no simple 
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approximation for the potential is fully justified. In this case, two alternative prescrip- 
tions seem plausible for replacing the many-body problem by an effective potential 
Fs(r): (1) The “fully relaxed” approximation, in which we regard r as fixed and allow 
the remaining lattice points to polarize into the fully relaxed positions appropriate to the 
given value of r. This prescription öwestimates the magnitude of V8. (2) The “static 
lattice” approximation, in which all other nuclei plus the center of mass of the reacting 
pair are considered “frozen” at their respective equilibrium positions. This prescription 
wtóerestimates the magnitude of V8. The difference between these two prescriptions thus 
gives a measure of the present uncertainty in these pycnonuclear calculations (see the 
end of §§ IV and V). In this paper, however, we shall use mainly the fully relaxed pre- 
scription, since it is the one that applies in the strong-screening regime and is thus of the 
most practical interest. 

The screening potential can be evaluated in cases where T)>> 1 in the following way: 
The exact expression for the potential is given in a useful form (involving a sixfold sum 
over the displacements from equilibrium of all of the nuclei in the lattice) by Carr (1961). 
In the static approximation, as shown in V, this expression reduces simply to a triple 
“lattice sum” parametrized by r. For | ri2 — r | /V12 1, where ri2 is the vector separation 
between nearest-neighbor equilibrium lattice sites, the lattice sums can in fact be evalu- 
ated analytically, and the total potential for the relative motion of the two nuclei 
reduces to the anisotropic harmonic oscillator potential 

u-1 + v8~ 2.8642(^12 - O2 + 1.7095(^2 + uy
2) , (10) 

where we have subtracted off the (constant) value of the potential at the equilibrium 
position. In this equation vs is the screening potential Fs(r) expressed in units of ÀE*, u 
is the vector separation r expressed in units of a, with uz parallel to ri2 and with ux, 
Uy perpendicular to it, and Uu = 0.8660 ri2/Vi2 is the vector separation between nearest- 
neighbor equilibrium sites expressed in units of a. The energy-level spacings which 
result from this potential are hœz — 0.6752^^ for vibrations in the z-direction and 
hœXty = 0.5216/zcop for vibrations in the x- or y-direction. 

For values of | ri2 — r| which are not small compared with rn, we have evaluated the 
lattice sums numerically (still in the static approximation) for a number of values of uz 

with ux = Uy = 0. The results depend only on the parameter 77 = uz/ui2 = 1.1547^ 
and can be approximated with an absolute error less than ±0.0002 for all 77 between 
0 and 1 by the simple polynomial 

^(stat)^) = « 1.1547 - 1.1602(1 - 77) + 1.0394(1 - t?)2 

- 0.4001(1 - 77)3 + 0.0692(1 - 77)4. 
(id 

In principle, the first three terms in this expression could have been chosen to agree 
with the oscillator potential in equation (10), and the last two coefficients could have 
been obtained by requiring the correct difference in Coulomb energies between “initial” 
and “final” configurations, 2)s

(stat)(0) = —1.6064, plus the absence of a term linear in 77 
(symmetry of v8 about 77 = 0). In practice, however, we chose very slightly different 
values for the coefficients in equation (11) which provided a somewhat better approxima- 
tion for intermediate values of 77. The form of the total potential function over the entire 
range of separations in this static-lattice approximation is shown schematically in Fig- 
ure 2. 

In a later section we shall also need the derivatives of the screening potential; these 
were calculated in exactly the same way as equation (11), although to lesser absolute 
accuracy, and are given by: 
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^ = - 1.3333rr2 + 5.3333(1 + r?)“2 - 5.148(1 - r,) 
dUz 

+ 8.7676(1 - rj)2 - 20.6702(1 - t?)3 

+ 19.5412(1 - rj)4 - 9.4842(1 - r?)5 ; (12) 

s(stat) = _ 1.5396^-3 + 4.1888 + 6.1584(1 + ry)"3 

+ 0.9398(1 — t]) 6.3698(1 - rj)2 

+ 9.9108(1 - tjY - 8.9930(1 - t?)4 . 

In the fully relaxed approximation, an accurate calculation of the lattice sums would 
be very involved, but fortunately a fairly good approximation can be obtained easily as 
follows. For 9? ^ 1, all of the nuclei are very close to their equilibrium lattice sites, and 
one would expect little difference between the static and relaxed approximations. We 
therefore assume that the first three terms in a five-term polynomial expression for the 
relaxed screening potential fls

(rel) are the same as those in equation (11), since the coef- 
ficients of these terms are the ones which are determined by conditions near 97 = 1. The 
two remaining coefficients are then determined by the symmetry condition which still 
applies at 97 = 0, and by the difference in Coulomb energies between 97 = 1 and 97 = 0. 
This can be calculated approximately by the Wigner-Seitz method discussed in S : As 
remarked before, the Wigner-Seitz approximation to the Coulomb energy -Ecoui per lattice 
cell—-equation (5) for a spherical “cell”—is extremely close to the correct value for an 

d2 d2 \ 
dux

2 dUy2) 

r 

Fig. 2.—Schematic diagram showing the relation of the screened potential to the pure Coulomb 
potential. The screening potential Vs(r) and the total energy E are also shown, and the effect of screening 
in reducing the width of the potential barrier is apparent. 
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actual lattice structure. Thus the total electrostatic energy for the two unperturbed 
lattice cells (77 = 1) is accurately given by — 2£coui- On the other hand, when the two 
nuclei are close together (r¡ = 0), the lattice cell surrounding the nuclear pair in the fully 
relaxed case must also possess a high degree of symmetry and can therefore be approxi- 
mated by a Wigner-Seitz sphere of radius 21/3a„ as discussed in S. The total electrostatic 
energy of this cell of charge 2Z is then —25/3£c0ui, so that the energy difference between 
“initial” and “final” configurations for the fully relaxed case is, in units of \E*, 

Zi > Z2 and atomic weights Ai, A2 immersed in a background-plasma mixture that 
contains X¿ grams of species i (nucleus of atomic weight At plus Z,- electrons) per gram 
of material. The number densities of ions and electrons are then given in terms of the 
mass density by equation (1), but with the mean molecular weights now defined by: 

The ratio /u/m« = <Z) thus defines the mean atomic charge of the nuclei in the plasma. 
We generalize the definitions of the various characteristic parameters introduced in the 
previous section, essentially by the replacement of A by 2AiA2/(Ai + A2) and of Z2 

by the product Z1Z2 in equations (2), (3), and (8) and in the definition of P. Our gen- 
eralized parameters then become 

(13) 

In analogy with equation (11), we then have 

v,<”»(v) = -1.1547 - 1.1602(1 - 1;) + 1.0394(1 - v)2 

- 2.5690(1 - v)3 + 1.6971(1 - v)* • 
(14) 

in. WEAK AND STRONG SCREENING 

a) General Considerations 

In this section we shall consider the case of a pair of interacting nuclei with charges 

(15) 

* _ a* gp p* 
r ~ 2AlA2ZlZ2 He2 ’ 

r 
277T2 E* ^ AiA^ZJ 7.6696 X 1010° K 

4 UbT Ai + At T 
(16) 
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where we have introduced in the definition of T the explicit dependence upon the charge 
Z contained in a Wigner-Seitz sphere. In these units we have £ <3C 1 for all cases of inter- 
est, the “classical turning-point’’ nP is always close to its value E~l for a pure Coulomb 
potential, and we have the double inequality rtp ^>> 1, where rn is the so-called 
nuclear interaction radius. 

In the present section we shall evaluate (as in S) a simple correction factor with which 
one multiplies the ordinary thermonuclear reaction rate to take account of the electro- 
static screening of the nuclear Coulomb potential. This reaction probability (per second) 
is the product of (Ï) the probability of the two nuclei penetrating through the potential 
barrier to the nuclear radius rn (ii) the nuclear “cross-section factor” S(E), defined by 
Burbidge et al. (1957), which gives the probability that penetration to rn actually leads 
to the desired exothermic nuclear reaction, and (iii) a statistical-mechanics weight factor 
which gives the probability for the two nuclei to approach each other with energy be- 
tween E and E dE and which is directly proportional to the Boltzmann factor, 
exp {—E/k^T) — exp {—^E/nir2), and inversely proportional to the partition func- 
tion. 

The barrier-penetration probability (i) is given by the square of the wave function 
evaluated at the nuclear radius, which can be derived from the WKB approximation 
(see § VI of Van Horn and Salpeter 1967, hereafter referred to as VS). This approxima- 
tion gives the wave function at the nuclear radius, ^(tv), (asymptotically a plane wave 
of unit amplitude and energy E) in the form of multiplying factors (which depend on 
the angular-momentum quantum numbers l, m, as well as rn and E) times a simple and 
dominant exponential factor: 

IT 

|lKrK) I2 - exp jér»1'2 - + V,(r) - E]dr\ , (17) 

where Vs{r) is the effective screening potential and nP is the turning radius, at which the 
integrand vanishes. The strongly energy-sensitive part of the nuclear-reaction-rate in- 
tegral thus becomes 

fdES(E)e-e(E) ; g(E) = + Vs(r) - E]dr + ^ rlE , (18) 

where we have included the Boltzmann factor. 
In all practical cases the wave function at the nuclear surface is very small, and the 

integral in equation (17) is correspondingly very large. Since also the factor 
exp [—g(Z£)] thus has a sharp maximum at the energy EPk (the Gamow peak) where 
g(E) is a minimum. In many cases the nuclear cross-section factor S(E) varies slowly 
enough with energy so that one can use the non-resonant approximation for the reaction 
rate integral : 

CO 
fdES(E)e'olE) « (ir/2g,,

pk)S(EPk)e-s(Æl>k) , (19) 
0 

where g"Pk is the second derivative of g(E) at £ = EPk. For a pure Coulomb potential 
(Fs = 0) one thus finds explicitly 

2/VÇ - E) dr = Epk = = lrkBT ; g(£pk) = r. (20) 

In some cases, however, S(E) has a large and sharp maximum at a resonance energy 
Er. In such cases one evaluates an additional “resonant reaction rate,” for which the 
dominant exponential factor is exp [—g(£r)]. This factor is negligibly small unless Er is 
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within a factor of 2 or 3 of Epk, and we shall therefore assume that Er and Epk are of the 
same order of magnitude. Except in § VI, however, we shall deal exclusively with the 
non-resonant case throughout this paper. 

b) Screening Correction Factors 

We summarize first the case of weak screening, where YZi <3C 1 so that the Coulomb 
interaction energy, even for the larger of the charges Zi, is small compared with thermal 
energies. In this case all ions are free and carry Debye-Hiickel screening charge clouds 
which freely interpenetrate. The effect of the plasma is then to introduce an additional 
^potential of mean force,, kBTUw{r) between the reacting nuclei, where £/«,—»0 for 
r Xd and Uw^ —» UW(<S) = Uw for r <3C Xd, and where Xd = [kBT/4:Te2Ne(l + <Z>)]1/2 

is the Debye screening length. As is clear from the preceding discussions, we are mainly 
concerned with radii of the order of rtp in calculating the reaction-rate integral. Since 
Xd ^ asTzr112 ^>a8y> nP, however, we have Uw(r) « Uw(0) = Uw for all relevant en- 
ergies, and the whole effect of the weak screening is simply to multiply the thermo- 
nuclear reaction rate by exp Uw. As shown in S the multiplicative weak-screening correc- 
tion factor exp Uw for the most general chemical composition is given by: 

(21) 

where/'//is the logarithmic derivative of the Fermi-Dirac distribution function/ with 
respect to its argument and is unity for non-degenerate and zero for fully degenerate 
electrons. 

We consider next the strong-screening regime where Yz\ 1 so that most nuclei are 
bound, but where also Yz^Zi/Zx^t (i.e., Epk^>^Coui) so that the reacting nuclear 
pair is unbound. Because of the second inequality, we again have nP <$C as, and the 
screening potential Vs{r) can again be replaced by Fs(0) for energies of the order of Epk. 
The main effect is then a multiplying factor exp [--Fs(0)/^bF], which is simply the 
Boltzmann factor for the Coulomb energy difference between the “initial” and “final” 
configurations. For the case of the homogeneous lattice discussed in § II, this factor 
becomes simply exp (z/0lV2.0310) = exp (/3r), where ß is given by equation (7) for a 
homogeneous lattice. Since the Wigner-Seitz approximation does not depend on the 
actual lattice structure, however, we may immediately write this factor in a form ap- 
propriate for arbitrary values of the charges Zi, Z2. From equations (5) and (16) we 
have, as shown in S, 

- V8(0)/kBT = U8, = 0.9(rzi+z2 - Yzi - Yz2) = ßr, (22) 

where we have redefined the parameter ß for the general case as: 

[(Zi + Z2)
5/3 - Zi6'8 - Z2

5'3] /4.2S79 X 107 ° K 

[ZfZiAxAt/iA! + ¿s)]1'8 (! ;)(r 
p/Mi 

6203 X 1010 g cm 

\ 1/3 

~Z) 

(23) 

In addition to the factor exp U8q, which gives the correction due to the difference in 
Coulomb energies, in the strong-screening regime we must also take into account the 
difference in the partition functions between the initial and final configurations, which 
we do in the following approximate way. For small displacements xa8 of a nucleus from 
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the center of its Wigner-Seitz sphere, the potential can be approximated by the harmonic 
oscillator potential jZ2e2#2/as, and the partition function for the sphere is then (relative 
to the partition function for a perfect gas) 

1 r /9V/2 i“1 

fMdx exp (-|rzx2) « [1 +í
3
¡jrz + i y Tzw\ , (24) 

where the latter approximation is entirely adequate for our purposes. With this approxi- 
mation for the two initial spheres and one final sphere, our prescription for the complete 
strong-screening correction factor eu* is then given by: 

U8 = U80 + U8l 

TT = (1 + o.3rzl+Z2 + 0.266r3/2
Zl+Z2) (25) 

exp un - ^ + 0 3rzi + 0.266rzi
3/2)(l + 0.3rz¡¡ + 0.266IV'2) ’ 

which includes the logarithmic correction factor U8l in addition to the dominant term 
U8o originally derived by Salpeter (1954). 

For the special case of and abundances Xi<<CX2, the screening factor has 
been evaluated in S also for intermediate values of Yz\ and agrees fairly well with the 
simple interpolation formula where 

U8W = U8Uw/'s/(U* + VJ) . (26) 

For cases with Z\ ~ Z<¿ as well as Tzi ^ 1 no accurate expressions exist at the moment, 
but we shall use equation (26) throughout the weak- and strong-screening regimes for 
all values of Z\ and Z2; the uncertainty in U8V) is probably ^±30 per cent when 
U8~ Uw~ l. In the typical strong-screening case, where the double inequality 1 <3C 
U8<<Ct holds, U8W is very close to U8 and probably uncertain by less than 5 per cent. 

IV. PYCNONUCLEAR CORRECTIONS TO STRONG SCREENING 

In the strong-screening regime the dominant thermonuclear factor e~T in the reaction 
rate formula is replaced by exp (—r + U8o) = exp [—r(l — ß)]. As we have seen, the 
derivation of this result is based on the assumption that 0 <3C 1. In § V we shall discuss 
the typical pycnonuclear cases with 0 1, but in the present section we derive a poly- 
nomial in 0 which multiplies r in the exponential factor to give approximately the 
correct reaction rate when 0 < 1 (but not necessarily 0 <$C 1). 

We consider first the case of a homogeneous lattice, for which equation (23) becomes 
0 = r2\|z>s

(rel)(0)| X 4/27TT2. As discussed earlier, we shall use only the fully relaxed 
approximation for the screening potential Fs(r); i.e., V8 = XE\(rel)(r7 = r/ru), with 
z>s

(rel) given by equation (14). In this case, the WKB integral in equation (17) becomes: 

2fV[r~' + V8(r) - E\dr = V3\~l/2 fVll-lMrj-1 + v8(v) - e]drj 
0 0 

s \-UV(e) , 

where rjtP = npAi2, and equation (18) can be rewritten as 

- g(\E e) = J(<d + (27^ t2X) e > 

(27) 

(28) 

so that g depends only on the parameter e = E/\E* and on the combination r2X a 0 
{not on r and X separately). The integral /(e) depends only on the dimensionless quan- 
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tity €, and we have evaluated this integral as well dJ/de for a number of different 
values of e, with the results listed in Table 1. For each of several different values of 0, 
we then found the value €Pk of e at which dg/de vanishes and evaluated the minimum 
value g(Epk)/r for each ß. We shall present below an approximate interpolation formula 
for this tabular function of ß, but for illustrative purposes we discuss first an analytical 
limit for 0 1. 

For <3C 1, the function vs(rj) can be approximated by K(0) + brj2], with b a positive 

TABLE 1 

Barrier Penetration Integrals /(e) for Equal Charges Zi = Z2 of Reacting 
Nuclei in Static and Relaxed Approximations, and forZi = (Z) >Z2 

0 001 . 
003.. 

.009631 
01. . . 
01362.. 
01926 

.03. 

.03046. 
04307.. 

.06091. 
09631 

.1. . . 

.1362. 

.1926 . 

.3. 
0 3046 

Zi=Z2 

Static 

2 6436 
2 6390 

2*6258' 

2 5946 

2 5094 

2 3340 

Relaxed 

2 5224 
2 5176 

2 5034 

2 4698 

2 3784 

2Í962 

Zi»Z2 

1.9506 

Í 9472 
1 9428 

Í.9344 
1.9258 
1 9146 
1 8940 

Í 8732 
1 8462 

i 7982 

0 4307 
0 5... 
0 6091 
0 
0 
1 
1 
1 
2 
3 
5 
7 

10 0 
15 0 
20 0 
30 0 

Zi=Z2 

Static 

2 2022 

2 0944 
2 0028 
1 9778 
1 9234 
1 7906 
1 6142 
1 4198 
1 2228 
1 0412 
0 9222 
0 7710 
0 6758 
0 5588 

Relaxed 

2 0660 

Í 9636 
1 8786 
1 8410 
1 8060 
1 6868 
1 5298 
1 3570 
1 1798 
1 0134 
0 9024 
0 7590 
0 6678 
0 5542 

Zi»Z2 

1 7492 

Í 6836 

constant. If b/[e — fls(0)]3<<C 1, the integrand in equation (27) can be linearized in 6, 
and the integral evaluated to give 

/(e) ~ V[« - vM) S1 + TH - ,8(0)]4 ’ (29) 

accurate to first order in b/[e — ?>s(0)]3. Using this expression and equation (28), to- 
gether with the definition of 0, we find for 0 <3C 1 

€pk « k(0) I (3j3 l) , T g(«pk) « 1 ß + ^ 1^(0) |3 03 • (30) 

With b and fls(0) of order unity, the error in this expansion for g(€pk)/r is only of order 
06. The first term represents the ordinary thermonuclear rate, the term — 0 is the strong- 
screening factor, and the term in 03 is a new correction. 

As a generalization of equation (30) we have fitted a ratio of polynomials with two 
adjustable parameters to some of our numerical evaluations of g(epk)/r as a function of 0. 
Our proposed generalization of equation (22) for the homogeneous case is then to replace 
USo = 07* by USp for values of 0 up to about 0.6, where 

Usp^ 
2.1503 + 47.809\ 

1 + 17.103 J 
(31) 
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The purely numerical error in this polynomial fit to our numerical values for (r — g) is 
about 1 per cent or less for all ß < 0.6. The uncertainty in (r — g) due to having used 
the fully relaxed potential in the evaluation of /(e), however, is considerably greater, as 
can be seen by comparing the static and relaxed cases in Table 1. For this reason the 
polynomial in equation (31) could be in error by 20 per cent or so at the largest values 
of ß for which this equation is applicable, compared with only about 5 per cent for ß 
itself. 

In equation (31) the pycnonuclear correction term in U8P was derived only for the 
special case of equal charges of the reacting nuclei (Z2 = Zi). In the opposite limiting 
case where Z2/Zi<<C 1, one can also carry out an explicit calculation quite simply. To 
first order in Z2/Zi we need consider only the interaction of the smaller point-charge Z2 

with the larger point-charge Zi and its Wigner-Seitz sphere (the rearrangement energy 
of the background charge of the smaller sphere is only of order Z2

5/3). We then get for 
the screening potential in either the fully relaxed or the frozen approximation 

V8(r) = 
ZiZ2e

2 

a8 (32) 

where a8 oc Zi5/3 is the radius of the larger Wigner-Seitz sphere. With this potential/(e), 
€Pk, and g(epk) were evaluated numerically for a number of values of e and ß with the 
results given in the third column of Table 1, and a good polynomial fit, analogous to 
equation (31), to the resulting values of (r — g) was found to be 

U8P ~ 
0.84ß3 \ 

1 + 1.45/33/ ’ 
(33) 

for values of ß up to about 0.5. 
We do not have any explicit calculations for intermediate values of Z2/Zi, but we 

shall adopt the following interpolation formula between equations (31) and (33). For 
any Z2 < Zi, and ß < 0.5, we take 

(0.84Z! + 3.46Z2)ß
3 + 95.6Z2ß

9 ] 

(Zi + Z2) + (1.45Zi + 32.8Z2)ß
3J 

(34) 

While this prescription is somewhat ad hoc, it is a simple formula, and the ratio of 
polynomials is unlikely to be in error by as much as a factor of 2 even for intermediate 
values of Z2/Zi. This expression used in place of USo in equations (25) and (26) thus 
leads to a single formula for the screening correction for all values of ß up to about 0.5. 

V. PYCNONUCLEAR REACTION RATES 

In this section we discuss the calculation of pycnonuclear reaction rates, i.e., cases 
with ß ^>> 1, but only for the simplest case of a perfectly homogeneous lattice. We ex- 
plicitly neglect any effects of dislocations or other lattice defects (see § W, however). 
In the pycnonuclear regime, one cannot simply derive correction factors to the thermo- 
nuclear formulae but must calculate the rates ab initio as a function of the excitation 
energy E of the reacting pair of nuclei, which are now bound. Details of the calculation 
are given in V and we only summarize them here. 

Since the classical turning point rtp where rn is the nuclear radius, the probabil- 
ity per second ÿ of a reaction between two given nuclei can, as shown in V, be written 
in the form 

P = (rlW* exp (-4^/*) I Mrn) |2, (35) 
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where S is the usual cross-section factor (Burbidge et al. 1957) and rn is in units of r*. 
The wave function \I/E(rn) in this equation is the full, normalized wave function for the 
relative motion of the two reacting nuclei in the lattice, with excitation energy -E, 
evaluated at the nuclear radius. The general, temperature-dependent pycnonuclear reac- 
tion rate for a bcc lattice (each nucleus has eight nearest neighbors, and we neglect 
reactions with all other nuclei) is then given by 

P = 8_£_ 
2maH 

{p )av reactions cm 3 sec 1, (36) 

where (^)av denotes the thermal average of the pairwise reaction probability. 

a) Pycnonuclear Rates at Zero Temperature 

We consider first the case in which the temperature is so low that even the two reacting 
nuclei are in the ground state, and the thermal average in equation (36) reduces simply 
to the ground-state term (for limits of this regime see § V6). Since we always have 
X <<C 1, the zero-point vibration energy Eq ~ %o)p <<C 22coui, and each nucleus is restricted 
to a very small region about its equilibrium lattice position: nP ^ n2. Under these con- 
ditions, the wave function at the nuclear surface can be calculated by the three-dimen- 
sional WKB approximation discussed in VS, which leads to 

pE«(rn) = 0.553X7/8(r*)-3/Vn“
1/4 exp [-IX“1^/ - \^K) + 2rn^\ . (37) 

The WKB integrals J and K have been calculated numerically for densities in the range 
1.7 X 10“5 g cm-3 < p/ixAA*Z* < 1.7 X 104 g cm-3, and the results are given (with an 
absolute uncertainty of + 0.004) by the expressions 

J - \lliK = j 
2.638 - 3.6X1/2 

2.516 - 3.8X1/2. 
(38) 

In both equations (38) and (39) the upper line refers to computations in which the 
static approximation for the potential function was used, and the lower line, to computa- 
tions in which the relaxed approximation was used. With these results, the general 
expression for the zero-temperature pycnonuclear reaction rate becomes 

Po = — AWS (T^T) 1046X7/4 

Pa \4.76/ 

r /2.638M . (39) 

X exp 1/2 ( 2 516/J reac^ons cm 3 sec 1 ’ 

where p is in g cm-3 and the cross-section factor 5 is in units of MeV barns. The nuclear 
energy generation rate in ergs g_1 sec-1 is obtained directly from equation (39) by multi- 
plying by KQ/p), where Q is the energy release per reaction. 

b) Pycnonuclear Reactions at Non-Zero Temperatures 

At finite temperatures, when reactions between nuclei in excited states of the lattice 
become important, (rn — nP) is no longer small compared with ru, and the oscillator 
wave function is not a good approximation in the forbidden region (although we shall 
still use the oscillator potential in the allowed region). In this case, the three-dimensional 
WKB wave function must be used for all r, and the transition between the allowed and 
forbidden regions requires the use of the connection formulas given in VS. Since we are 
mainly interested in highly excited states of the lattice whenever the temperature de- 
pendence is important at all, we shall use a quasi-classical normalization of the WKB 
wave function in the allowed region, taking \pE(r)\2 dzr as the fraction of the total 
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allowed volume of phase space for particles with energies E to E-\- dE in the volume 
element dzr near position r. With this approximation, the wave function at rn (as shown 
in V) can be written in the form 

IM'») I2 = ~ a-V»-1'2 exp [4^ - + K(e)] , 

Wtp Ul2 

i/(e) = f^[v(u) - e]du , ±K(e) = fH+du + % In u , 

(40) 

where the “curvature coefficient” of the WKB wave function is in units of a-1, rn is 
in units of r*, e = E/\E* < 1 is the dimensionless energy parameter, and the oscillator 
frequencies coX(2/)2 are defined in § 116. 

We have evaluated the WKB integrals /, K numerically over the range 0.001 < 
e < 30, with the results listed in Table 1. These results were approximated by the 
following polynomial expressions : 

Ktat = Tffe + 1-3235 - 0-3575e + 0.0225e2, 0. U (41) 

|/rel = + 1.2619 - 0.3809e + 0.0446e2, %K = 0.3 In e - 0.2 . 

For e < 0.3, equation (41) represents the values of the /-integrals to within an absolute 
uncertainty of +0.001 and the K-integral to about 10 per cent accuracy for e < 0.9. 

The general, temperature-dependent pycnonuclear reaction rate can now be calcu- 
lated from equations (35), (36), (40), and (41). The thermal average of the reaction prob- 
ability p is 

(p>Av = exp [- (En - Eo)/kBT]p(En)/U(T) , 

n(T) ^ exp [- (En ~ Eo)/kBT) , 
(42) 

where II is the partition function, and the sums extend over all quantum states n of the 
“relative particle.” To evaluate the sums, we approximate the energy levels by the 
energy levels of the anisotropic harmonic oscillator (equation [10]) and (since the energy 
of the Gamow peak is large) the sums by integrals. We then obtain 

IJ“1 = (1 — __ e-^yfkBT^l _ e~^dkBT^ ? 

2e-(En-Eo)/kBT p(ßn) _ (43) 

+ 
1 

7tV2 h{r*Y 
\e ,+^0 ,k*Tf exp (- 6^ - \-wj + x)«^ 

Note that the effective level spacing for vibrations transverse to the line of centers is twice 
the true level spacing, since odd-parity wave functions do not contribute to the reaction 
rate. As in thermonuclear calculations, the integral in equation (43) can be evaluated by 
the saddle-point method, giving 

\E* 
6 k*T 

- A“1'2/ + tf] ede ~ 
f 2ir\1/2 11/2 

L/"(ipk)J 
6pk 

X exp [- ipk ~ - \-ll2J(epk) + ^(€pk)] , (44) 

€pk 
(«S) '-p (- 3-386 iS) - CiS “p <- ■ 
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where /"(epk) is the second derivative of J with respect to e at ePk, and the upper and 
lower lines in the definition of epk apply to the static and relaxed approximations, respec- 
tively. This approximation for €Pk is accurate to 10 per cent in the exponent over the 
entire range of validity of equation (41) for/, and better than that for the smaller values 
of €pk* 

With the help of equation (44), the ratio of the full, temperature-dependent pycno- 
nuclear rate to the zero-temper ature rate can be written as 

P(r) _ /0.0430\ r /1.2624N 

Po \0.0485/ A L ^V2.9314/ J 

■1/2 

X exp j - 7.272/83/2 + X"1'2 (J 433}) e~8 783303/2[l - (J 4^4) e“8 7833^72] J , 

(45) 

where, as usual, the upper and lower lines refer to the static and relaxed approximations, 
respectively. The first term in the main exponential factor in equation (45) is just the 
Boltzmann factor for the contributions from the excited states (relative to the ground 
state). The remaining terms in the exponent represent the increase of the rate above its 
zero-temperature value due to the additional contributions from energies in the vicinity 
of Epk. These terms are only of order unity even when X_1/2 exp (—8.78jS3/2) > 1, i.e., 
when Epk > Eo, but are included here for completeness. As equation (45) clearly shows, 
the temperature dependence of the pycnonuclear reaction rate is important only over a 
rather limited range of temperatures; for ß3/2 > (In \_1/2)/8.78, the zero-temperature rate 
is entirely adequate, while for ß < 1, equation (31) applies. 

c) Effects of Lattice Imperfections 

The pycnonuclear rates above apply only in the limit of a perfect, crystalline lattice. 
In practice, any real lattice structure will possess a sizable concentration of defects, 
which strongly affect the actual nuclear reaction rates. We emphasize that these effects 
will be important only for the pycnonuclear regime, however. In all other cases, the 
reacting nuclei are not bound but can move freely through the plasma, and the reaction 
rates are completely unaffected by defects or impurities. 

Consider first a lattice homogeneous in chemical composition but containing struc- 
tural defects. In this case, the nuclear reaction rate is considerably greater than the 
rate given by equation (45) because roughly half of the nuclei involved in the de- 
fects are crowded into regions of increased density (or X). According to equations (39) 
and (45), the local rate at the defect is then increased by a factor of approximately 
exp (+1.3 X-1/2 ÔX/X), where ÔX is the local excess of the parameter X above the mean. 
The pycnonuclear reaction rate immediately after formation of the crystal will thus be 
strongly time-dependent, even for a fixed density and temperature. Initially the rate is 
dominated by reactions in the defect regions (if sufficient numbers of defects exist), but 
as the dislocations “anneal out” due to the preferential reactions, the rate gradually 
decreases to the expression for a perfect lattice. 

The formation of product nuclei, generated by the reaction under investigation, can 
have another consequence. Relaxation of the reacting particles about a newly generated 
product nucleus may result in an increase of 40 to 100 per cent in the local density 
(ÔX/X equals 0.2 to 0.5), which strongly enhances the probability of subsequent reactions 
among these particles. In this case, also, our rates therefore represent a lower limit. 

For very low concentrations of reacting nuclei (themselves imperfections in a lattice 
of non-reacting elements) we have the opposite situation, as has been discussed by 
Kirzhnits (1960) and by Kopyshev (1965) for the first reaction in the proton chain. 
Under these conditions, the proton pair has to overcome an “activation energy” IF, 
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thermally or by barrier penetration, due to the repulsion from interposed “host nuclei,” 
and the rate per proton pair is much lower than in a pure-hydrogen lattice. 

VI. RESONANT RATES AND THE TRIPLE-ALPHA REACTION 

Throughout most of this paper we have dealt only with the case of “non-resonant” 
nuclear reactions. In this section we shall discuss briefly the effect of the electrostatic 
corrections on the contribution to the reaction rate from a sharp resonance in the com- 
pound nucleus, but only for the case of strong screening, where Tz > 1 and ß < 0.5. 
The relevant resonance energy Er (relative to the two nuclei Zi, Z2 at infinite separation) 
is comparable to the energy Z£pk of the Gamow peak in situations of interest, as discussed 
in § III, but of course does not depend on the temperature. 

We shall distinguish two classes of resonances, depending on whether the incident 
reaction channel dominates or not. We consider first the most common class, where the 
partial width due to the incident channel is a small fraction of the total width of the 
resonant state in the compound nucleus because of the small probability of Coulomb bar- 
rier penetration in the incident reaction channel. In such cases, we merely have to sub- 
stitute for the usual barrier-penetration integral the full expression given by equation (27) 
evaluated at the resonant energy and including the effect of the screening potential 
Vs(r). Because of the different energy zero-point for Er and for the incident energy X£*e 
of the “relative particle” in the plasma, we have to substitute e'r = [€r + fls(0)] = 
(er — v0) for e in equation (28), where €r = Er/\E*. Note that while Er is a property 
solely of the compound nucleus, the parameter er depends also upon the density. 

For a homogeneous lattice, the numerical evaluation of /(e) is given in Table 1. We 
have fitted a simple polynomial expression to this tabular function of e for e > 1 and 
have used this expression to write the strong-screening effects for the resonant rate in 
the form of a multiplying factor exp (Usr) with 

Usr = 
T 

\/ (Aer) 
(46) 

The first term, USQ = ßr, defined in equation (22), comes from the change of energy 
zero-point and is simply the Boltzmann factor of our previous strong-screening potential; 
this factor is independent of the resonance energy Er. The second term in equation (46) 
comes from the polynomial fit to /(e) and takes the place of the second term in equation 
(31) for the non-resonant rate; it depends on er (and thus on the density) but is independ- 
ent of the temperature. 

For arbitrary values of the charges Zi, Z2 of the reacting nuclei, X is given by equation 
(16), and er becomes 

1 /Zi/Xel.3574 X 1011 g cm_3\1/3 Er (,7) 
€r ZiZA P J 49.600 keV 1 ' 

For the special case of Zi^>Z2 we have also carried out the numerical evaluation of 
/(e), with the results again listed in Table 1. This case leads to an approximation like 
equation (46), but with the bracket replaced by [1.30er~

3 + 28.2er""6]. For any value of 
the two charges (but with Zi > Z2) we then propose the simple ad hoc generalization 

rr _ rr * rOOZi + 1.14Z2 28.2Zx - 34.4Z2 150Z2 1 , 
Usr Us* V(X6.) L (Zx + Z2)er

3 + (Zx + Z2)er
6 ^ (Zi + Z2)er

9J * ^ ; 

In principle the expression USl given by equation (25) should be added to I7sr, but Usr 

is usually much the more important of the two. 
If the resonance energy Er is unusually large, or if the radiative partial widths for the 

outgoing channels of the resonant state are particularly small, one has the opposite 
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extreme class of resonances in which most of the total width of the compound nucleus 
state is contributed by the incident channel. In these cases, the partial width of the in- 
going channel (including the screening factor in the barrier penetration) drops out of the 
resonant rate completely upon integrating the Breit-Wigner cross-section over energy, 
and the second term in equation (48) must be replaced by zero. The first term, however, 
comes entirely from statistical mechanics (and the difference in energy zero-points dis- 
cussed before) and remains. For this class of resonances, therefore, Usr is simply replaced 
by U8q given in equation (22). Although this expression does not depend explicity on 
the value of €r, these results as well as equation (48) are valid only if (er — ^o) €0, 
since the energy of the resonant state is otherwise lower than the ground state energy 
€o of the lattice. Since €0 tfo, this condition can be written approximately as 

3.04Zi + 1.26Z2 

> z1 + z2 • (49) 

We finally turn to the triple-alpha reaction, the net effect of which is the conversion 
of three He4 nuclei into one C12 nucleus. This is accomplished in two steps: the formation 
of the “Be8 ground state” at a resonance energy Er = 94 keV, followed by the reaction 
between the Be8 and the third He4 nucleus through a resonant state in the C12 compound 
nucleus at energy Er = 278 keV. In each of these two reactions the partial width for the 
incident channel strongly dominates the total width (in the first reaction there is no 
radiative channel, and in the second the radiative widths are small and the a-particle 
width is large). The screening effects increase the ingoing widths further and merely 
strengthen the inequality, so that we may use equation (22) for each of the two successive 
reactions, as discussed in the preceding paragraph. For the total triple-alpha rate we 
thus obtain a multiplying correction factor exp (Usza), where 

UsZa = 2.916r2 - 3 ln (1 + 0.3F2 + 0.266IY/2) + ln (1 + 1.87r2 + 4.15r2
3'2) (50) 

and r2 is the Coulomb-thermal parameter for He4 nuclei, as defined by equation (16). 
Since inequality (49) must hold for each of the two reactions, and since this requirement 
is the more stringent for the first reaction, we require only p < 6.9 X 109 g cm-3 for the 
validity of equation (50). 

VII. SUMMARY 

We have discussed in this paper the changes in the rates of thermonuclear reactions in 
cases where the density is so high that it becomes necessary to take account of screening 
corrections to the Coulomb interaction potential between a pair of reacting nuclei and— 
in the extreme case—of the zero-point energies of the nuclei. For sufficiently high temper- 
atures and low densities such that Ecoui kBT, electrostatic corrections are quite small 
and the screening is “weak.” In this case, the true reaction rate is simply equal to the 
usual thermonuclear reaction rate (calculated for the same temperature and density) 
multiplied by the weak-screening correction factor eu™y with Uw defined by equations 
(15), (16), and (21). At somewhat lower temperatures (or higher densities) where £coui » 
kBT but where we still have £Pk Æcoui, the electrostatic interactions are strong enough 
to cause the formation of a condensed phase. In this regime the reaction rate is given by 
the strong-screening correction factor eu* times the thermonuclear rate, where Us is given 
by equations (15), (16), (22) or (23), and (25). In the intermediate cases where Eccmi ^ 
kBT, we suggest the simple interpolation formula (26) for the logarithm of the correc- 
tion factor. At the other extreme limit where ~ Æc0ui kBT, we approach the bound- 
ary of the “pycnonuclear” regime. In this intermediate region we suggest another simple 
interpolation formula given by equations (23) and (34) for general values of the charges 
of the two reacting nuclei. 
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When the temperature is so low that £pk < -fîcoui, even the two reacting nuclei are 
bound in the Coulomb lattice. In this regime it is possible to distinguish two subcases, 
depending on whether JSPk is large compared with Eq or not. In the former case, the 
temperature is so low that the energy required to penetrate the Coulomb barrier comes 
entirely from the zero-point motion of the nuclei in the lattice, and the reaction rate—• 
given by equations (15), (16), and (39)—becomes independent of the temperature. In 
the temperature range Eq < E^ < ¿coui the temperature-dependent part of the reaction 
rate must also be included, and this is given by equations (15), (16), (23), (39), and (45). 

We have also considered the problem of calculating resonant as well as non-resonant 
reaction rates in the important strong-screening regime. For reactions in which the inci- 
dent channel width is only a small fraction of the total width of the resonance in the 
compound nucleus, the resonant correction factor eu*r is given by equation (48), with 
er = Er/\E* where Er is the resonance energy. This replaces the factor eu*o in the strong- 
screening correction formula. For resonances in which the incident channel dominates, 
however, Usr reduces merely to the term USo given by equation (22). Both of these cases 
are subject to the restriction expressed by equation (49). A particularly important ex- 
ample of the latter class of cases is the triple-alpha reaction, for which we give the 
explicit expression for the correction factor in equation (50). 

Finally, as an example of the application of these calculations, we compute a limit 
for the hydrogen content of the white dwarf Sirius B. From the mass and luminosity of 
1.05 Me and 2.8 X 10~3 Lo given by Harris, Strand, and Worley (1963) we compute 
the extreme lower limits of central temperature and density by assuming a composition 
of pure He4 and using equation (7) of Van Horn (1968) and the tables of Hamada and 
Salpeter (1961). These values are pc = 2.2 X 107 g cm-3, Tc = 8 X 106 °K, and the 
corresponding values of the parameters r, X, and ß are r = 16.87, X = 0.0341, ß = 
0.313. Under these conditions, the center of Sirius B is in the borderline region between 
the strong-screening and pycnonuclear regimes, the pycnonuclear correction to ß given 
by equation (31) is —0.043, and the correction factor becomes eu*p = 94. Since the 
strong-screening formula for the reaction rate is affected by the hydrogen abundance 
only in the multiplicative factor of XH

2 and not in the exponent, as mentioned pre- 
viously, an upper limit to the mean hydrogen content of Sirius B can be evaluated simply 
by equating the screened thermonuclear energy generation rate to the rate necessary to 
support the observed luminosity. The result is XH < 3.5 X 10-5 if the composition is 
mainly helium; if the star is composed primarily of heavier elements, as seems more 
likely, the central temperatures and densities are higher, and the upper limit on XH is 
even further decreased. We stress again that this limit is not dependent on the hydrogen 
concentration, so that the high concentrations found by Kirzhnits (1960) are not per- 
missible. 
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