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ABSTRACT 
Spatially homogeneous universes with the anisotropic, Euclidean metric ds2 — dt2 — A2{f)d%2 — 

B2(t)dy2 — W2(t)dz2 are studied in some detail. Matter with the equation of state pM = ypM and a 
uniform magnetic field, in various combinations, constitute the stress-energy tensor T^. The general 
solution for the case with no magnetic field is derived. This solution is used to construct several semi- 
realistic cosmological models of our Universe, in which are investigated {a) primordial element formation, 
{b) the time when anisotropies become small, and (c) possible temperature anisotropy of the observed 
3° K cosmic microwave radiation. 

I. INTRODUCTION AND SUMMARY 

The discovery of the cosmic microwave radiation (Penzias and Wilson 1965; Dicke 
et al. 1965) and the investigation of its isotropy (Partridge and Wilkinson 1967 ; Conklin 
and Bracewell 1967; Penzias and Wilson 1967), the problem of the abundance of pri- 
mordial helium (Wagoner 1967 and references cited therein), and the possibility of large- 
scale primordial magnetic fields (Thorne 1966a) have all stimulated recent investigations 
of anisotropic cosmological models of our Universe (Doroshkevich 1965, 1966; Hawking 
and Tayler 1966; Kantowski and Sachs 1966; Thorne 1967; Doroshkevich, ZePdovich, 
and Novikov 1967; Misner 1967, 1968; Stewart and Ellis 1967). The work of Doroshke- 
vich (1965) and Thorne (1967) on spatially homogeneous and Euclidean universes with 
shear but no rotation dealt primarily with the axisymmetric metric 

ds* = dt* - A*(t)(dx* + dy*) - W*(t)dz*. (1) 

In this paper I extend their work to the most general Bianchi type I metric, 

ds* = dt* - A*(t)dx* - B*(t)dy* - W*(t)dz*. (2) 

In § II the equations governing the time evolution of this metric are derived for a 
stress-energy tensor consisting of matter with the equation of state pu = y pm and a 
uniform magnetic field. Some general properties of these equations are presented. In 
§ III the general solution when there is no magnetic field present is given and is evaluated 
explicitly for the “dust universe” (y = 0), the “radiation universe” (7 = |), the “hard 
universes” (some values of 7 in the range ^ < 7 < 1), and the “ZePdovich universe” 
(7 = 1). The solution for the “dust-plus-radiation universe” (pm = pd + pr, Pm = 
Pr/S) is found in § IV by suitably generalizing the equations of § III. § V is devoted to 
constructing semirealistic cosmological models of our Universe with no magnetic field. 
In these models I examine (a) primordial element formation, (b) the time when anisot- 
ropies become small, and (c) possible temperature anisotropy of the observed 3° K 
cosmic microwave radiation. 

The approach used in this paper was developed independently by Misner (1967, 

* Supported in part by the National Science Foundation [GP-7976] (formerly GP-5391) and by the 
Office of Naval Research [Nonr-220(47)j. 
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1968). The general solution for the axisymmetric case (A = B in eq. [2]) when there is 
no magnetic field was found independently by Stewart and Ellis (1967). The analytical 
solution for the “dust universe,, (7 = 0) was found previously by Robinson (1961) and 
by Heckmann and Schücking (1962). The general solutions for the “radiation universe,” 
the “hard universes,” and “ZeEdovich universe,” and the “dust-plus-radiation universe” 
are all new, so far as I know. 

II. ANISOTROPIC UNIVERSES 

a) The Equations 

The context of this paper is the general relativistic, hot big-bang theory of cosmology. 
With the metric of equation (2), the Einstein field equations with vanishing cosmological 
constant, give us1 

aô + aw + = +87t(pm + pb) , (3a) 

(ô' + w') + (ô2 + w2) + Jw = —Sw(pM + pb) , (3b) 

(a' + w') + (a2 + w2) + aw = + pb) , (3c) 

(a' + b') + (a2 + b2) ab = —&t(Pm ■“ pb) , (3d) 

where a prime denotes differentiation with respect to proper time t; 

(a,b,w) = (A'/A, B'/B, W'/W) (3e) 

are the Hubble expansion rates along the (#,y,£)-axes; pm and pu are the total density of 
mass energy and the pressure of the co-moving matter with the equation of state pM = 
7PM (0 < 7 < 1); and pb = Bz

2/8t is the energy density of the uniform, co-moving 
magnetic field Bz directed along the 2-axis. From the conservation equations, = 0, 
we find 

Pm/pm0 = (AoBoWo/ABWy+t, (4) 

where the subscript zero denotes the value of a quantity at some fixed proper time. Con- 
servation of magnetic flux in the (#,7)-plane gives us 

Pb/pb, = (A<ß,/AB)2. (5) 

To clarify the structure of the system of equations (3)-(5), we make the change of 
variables 

[A(t), Bit), W{i)] = Rit) exp [a(0, 0(0, «(0] > (6) 
with 

a{t) + ß(t) + co(/) = 0 . (7) 

We will call (A,BJV) the “expansion functions,” R the “mean radius,” and (a,ß,co) the 
“anisotropy functions.” Equations (6) and (7) imply 

ABW = Rz. (8) 

Finally, we define the independent anisotropy functions “perpendicular to” and “in” the 
(x,y)-plane by 

iv,<r) = ia + ß, a — ß) . (9) 

11 use geometrized units, where c ~ G =* 1. 
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Combining equations (3)-(9), we have our final system of field equations:2 

3(R'/Ry - (3V2 + <r'2)/4 = 8T[pM0(R/Ro)~3a+y) + pß0(W)-4e“2(’-,0)], (10a) 

r," + 3(R'/RW - (32r/3)pB0(R/Ro)-ie-2(',-'o) , (10b) 

a" + 3{R'/RW = 0 . (10c) 

b) General Properties of the Equations 

Equation (10c), or, equivalently, equations (3b) and (3c), implies 

{a — b)Rz = constant. (11) 

This means that as —> °o the expansion rate becomes isotropic in the (x,y)-plane (i.e., 
in the plane perpendicular to the direction of the magnetic field). From equations (3b)- 
(3d), we find 

[{a - w)Rz]' = [(b - w)RzY = 16tPbRz . (12) 

Since Pb varies as R~* as i? —> «>, equation (12) implies that we have isotropic expansion 
in all directions as Æ —» <». The only exception occurs when all the Hubble rates {a,b,w) 
are proportional to Rrz for all time and the magnetic field vanishes identically for all time. 
Then we need not, and indeed do not, attain isotropy as Æ —> (see § Hie for more 
details). 

When there is no magnetic field, equations (3) give us the simple non-linear differen- 
tial equation 

(R"/R) + 2{Rf/RY = 47rpMo (1 - 7)(^o)-3(1+^ . (13) 

Solving this equation yields the “mean radius”./? and the “mean Hubble expansion rate” 
(Rr/R) as functions of proper time. Equation (13) is very useful in numerical calculations 
and is easily solved analytically for certain discrete values of y. 

III. SOLUTIONS WITHOUT A MAGNETIC FIELD 

a) The General Solution 

1 have been unable to solve equations (10) analytically with a magnetic field. Conse- 
quently, I am at present integrating those equations numerically to see the possible ef- 
fects of a uniform primordial magnetic field upon the evolution of our Universe (see 
Thorne 1967). 

In the absence of a magnetic field, equations (10) have the following general solution:3 

f[(i + t)/(i - 7)]/(y2 - (o < 7 < 1)1 
Xm — { r > (14a) 

1(1 + 12o)-1/2(W)3 (7=1) ) 

(<7 — 00)/W = o? — w/v 

[(l+7)/(l-7)](W2Üo1/2)ln|(y-i2o1/2)/(y + ßo1/2)| (0 < 7 < 1)) / 

, x Í ’ (14b) 

[3tm(1 + ßo)"1'2] ln (R/R,) (7 = 1) ) 

2 This approach was developed independently by Misner (1967, 1968). 
3 The general solution in the axisymmetric case was found independently by Stewart and Ellis (1967). 
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where 
;y = [(R/Ro)^ + £20]1/2, (15a) 

xm = normalized time = (/ + , (15b) 

ru — time scale = (1 + 7)“1(b7rpM0)“
1/2, (15c) 

£20 = anisotropy parameter = [31/<2(1 + 7)riif/4]2(37;o/2 + o-o'2) . (15d) 

Note that equation (14a) is the general solution to equation (13). The anisotropy param- 
eter Í20 lies in the range 0 < O0 < 

00. When fio = 0, we recover the standard (homoge- 
neous, isotropic), Euclidean Friedmann universes: 

(R/Ro) = #m2/3(1+7) . (16) 

The anisotropic universes of equations (14) may be characterized by two independent 
“anisotropy parameters.” Using equation (15d), we define the first by 

= — 2fio1/2 (0 < |eiif| < 00 ) • (17a) 

The second anisotropy parameter ^(0 < ÿ < 2tt/Í) appears when we satisfy equations 
(7), (15d), and (17a) by 

Tjif(ao/, ß<) ) cooO = +[2/3(1 + y)]\eM\X , (17b) 
where 

X = sin (^, ^ + 27r/3, \¡/ + 47r/3) . (17c) 

Finally, let us express the general solution (14) in terms of our original variables (see 
eqs. [6]-[9]). Equations (14a) and (15a) give the time dependence oiR(t) implicitly. The 
“expansion functions” (A,B,W) of equation (2) are recovered using equations (6), (14b), 
and (17): 

{A/AÜ,B/B0, W/W«) = {R/Ro)\ 
[HR/R^-^ + e^r2 + M 

r4(£/i?0)3(1-7> + ^2]1/2 - M ' 

x 

(0 < T < 1) , 
(18) 

log (A/Ao, B/B0, W/Wo) = {1 + [21 €m |/(4 + eM
2)1/2]X} log (R/R0) 

(t = 1) • 

We obtain the Hubble expansion rates (a,b,w) from equations (14), (15), and (18): 

(a,b,w) = [3(1 + y)TM(R/R»)T1{[/i(R/Roysa-'l> + 6m2] 1/2 + 2|eM|X} 

(0 < y < 1) . 
(19) 

In equations (17b)-(19), the upper/lower sign is for eM ^ 0; and (^, + 2x/3, <¡/ + 4ir/3) 
correspond to (A,B,W). From equation (4) the total density of mass energy pm is given 
by 

pm/pm, = CWr30^ • (20) 

In the following four subsections we examine in detail four classes of universes for 
which the integration of equation (14a) can be performed explicitly (i.e., for which the 
time dependence of the “mean radius” R{t) may be expressed analytically). 
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b) The Dust Universe 

The “dust universe” is defined by y = 0(i.e.,ÿi> = 0) ; the subscript D, which replaces 
the subscript M of previous sections, denotes “dust.” The explicit time dependence of 
R(t) may be written as 

R/Ro = [%d(%d + hn|)]1/3, (21) 
where 

xD = normalized time = (/ + Id)/tt> , (22a) 

td = time scale = (67rpz>0)
-1/2. (22b) 

The independent anisotropy functions of equation (14b) become 

<r/oV = n!Vo' = (td/ I €£> I ) In | xD/(xd + | | ) | • (23) 

The anisotropy parameters of equations (17) satisfy 

|e2>| = 2ß0
1/2 = [3td2(3vo'2 + cro'2)/*]112 (0 < < oo) , (24a) 

td((io', ßo'j o)q') = + (2|€d|/3)X . (24b) 

The expansion functions (.¿4,2?,IT), the Hubble expansion rates (a,h,w), and the total 
mass density pd follow from equations (18)-(20) as 

(Aß^W) — [xd(xdII)]1/3[(^n + |€d |)/#d]±2X/3 , (25a) 

(a,b,w) = [3td%d(%d + | €d | )]_1[2#d + hn|(l + 2X)] , (25b) 

Pd/pd0 = [xd(%d + I^dI)]“1 • (25c) 

In equations (24b)-(25b) the upper/lower sign is for €d ^ 0. This solution for the “dust 
universe” was found previously by Robinson (1961) and by Heckmann and Schücking 
(1962). 

The “dust universe” emerges from a physical singularity (big-bang creation) at t = 
— Id*- In the early stages (xd < |€d|) its expansion rate is highly anisotropic, but as 
Xd ^ 00 it becomes isotropic with (A,B,W) ~ R ^ Xd2/s* If e# > 0 and \f/ tt/6, or 
€d < 0 and ÿ tt/2, the initial singularity is of the cigar type (e.g., A—><a, B and 
W —» 0). If €d > 0 and \¡/ = it/6, or 6d < 0 and \¡/ = tt/2, the singularity is of the 
pancake type (e.g., Ay B and W —» constants). This universe is axisymmetric 
(A = 2? at all times; cases studied by Doroshkevich 1965, Thorne 1967, and Stewart and 
Ellis 1967) if ^ = tt/6 or tt/2 (all e#); and it is completely isotropic (A = B = W all 
times; standard, Euclidean Friedmann case) for €d = 0 (all \¡/), 

c) The Radiation Universe 

The “radiation universe” is characterized by 7 = J (i.e., pn = pn/3), where the sub- 
script^ denotes “radiation.” This universe is filled with either massless particles (pho- 
tons, neutrinos, or gravitons) with velocities distributed isotropically, or an extreme- 
relativistic gas of massive particles with isotropic velocities. The analytical solution for 
this universe may be written in two different, but equally useful and equivalent, forms. 

The first form follows directly from the results of § Ilia. The analytical form of R(t) is 

u = hi(R/Ro)F - (*R2/2) In \[2(R/R,) + F]/\eR\|} , (26) 
where 

F = [4(2?/R0)2 + €*2]1/2, (27a) 

xr = normalized time = (/ + Ir^/tr , (27b) 

tr = time scale = (3/32ttpr )1/2. (27c) 
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The independent anisotropy functions of equation (14b) are 

g — gp __ v — Vo _ 2tr , I /F — I €r I \ f (4 + €æ2)1/2 + 1^1 ~| I 
oV W I^äI [VF + jcii |/1(4 + €ä2)1/2 — |6ß|J| 

The anisotropy parameters of equations (17) satisfy 

|eÄ| = 2ßo1/2 = [4rÄ
2(3W2 + cro'2)/^1/2 (0 < |6Ä| < œ) , (29a) 

TR(a0',ßo',W) = +(|eÄ|/2)X. (29b) 

From equations (18)-(20), we have 

wa„3/s„w/w.)-(*/*.)i(^g|)[glg";j;;{]i“, 

(a,b,w) = (4tr)-1(R/Ro)-*(F T 21 €Ä IX) , (30b) 

Pr/Pr0 = 3Pr/Prq = (R/Ro)-* . (30c) 

In equations (29b)-(30b), the upper/lower sign is for 6r ^ 0. This solution is new. 
The “radiation universe,, emerges from a physical singularity at / = —/#*. In its 

early stages (R/Ro < |€ä|) the expansion rate is highly anisotropic, but as it 
becomes isotropic with (^4/^4o, B/BQy W/W« R/R^ « x#1/2. The types of singulari- 
ties are exactly the same as for the “dust universe.,, The “radiation universe” is axisym- 
metric (see eqs. [A4] of Thorne 1967) if = tt/6 or tt/2 (all €#); and it is completely iso- 
tropic for e¿2 = 0 (all \¡/). 

The second, completely equivalent, form of the solution for the “radiation universe” 
consists of two parts. The arbitrariness of coordinates in general relativity permits us to 
set 

ß0= +1, R/Ro = 2£/(£2- 1). (31) 

From equation (31) the range of £ is 1 < £ < <». This transformation gives us the 
€r > 0 part of our previous solution, and equations (26) and (30) take the form 

** = 2{[£(£2 + D/(f2 - l)2] - è ln I (£ + !)/(£ - 1) |} , (32a) 

(^/^4o, B/Bo, W/Wo) = [£/(£2 - l)r2X , (32b) 

(a,b,w) = (lór*)-^2 - l)/£?{[a2 + D/0:2 - 1)] - 2X} , (32c) 

Pr/Prq = 3pR/PR0 = l)/f]4 • (3 2d) 

This solution emerges from a physical singularity at £ = <». The expansion rate is highly 
anisotropic for £ ^>> 1, and becomes isotropic as £ —» 1. If ^ 7t/6, the initial singularity 
is of the cigar type. If ^ = tt/ó, the singularity is pancake. This universe is axisym- 
metric (see Doroshkevich 1965) if ^ = tt/6 or tt/2. This representation of the solution is 
peculiar in that it cannot describe the limiting case of the standard, isotropic Friedmann 
solution. 

The second part of this representation, in which we reproduce the e# < 0 part of the 
“radiation universe” solution, arises when we set 

ßo= +1, R/Rq = 2£/(l — £2) . (33) 
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The range of £ is now 0 < £ < 1. Equations (26) and (30) become 

^ = 2{[£(£* + 1)/(1 - e)2] - è ln I (1 + £)/(1 - £) |} , (34a) 

(A/Ao, B/Bo, W/Wo) = [£/(l - e)]t2X , (34b) 

(a,b,w) = (16tä)-1[(1 - £2)/£]3{[(l + £2)/(l - £2)] - 2X} , (34c) 

Pr/Pr0 = 3Pr/pr0 = YeKI — £2)/£]4. (34d) 

We emerge from a physical singularity at £ = 0. When £ <5C 1, the expansion rate is 
highly anisotropic, and as £ —> 1 it becomes isotropic. If ^ ^ 7t/2, the singularity is of 
the cigar type. If ^ = x/2, the singularity is pancake. When xf/ = t/6 or t/2, this 
universe is axisymmetric (see Doroshkevich 1965). Again we find that this representa- 
tion cannot describe the limiting isotropic case. 

d) The Hard Universes 

Equation (14a) could not be integrated explicitly for all y in the range 0 < 7 < 1, but 
two infinite sequences of explicit solutions were found in the range | < 7 < 1. I call 
these the “hard universes.,, They are characterized by p#/3 < pH < ph, where the sub- 
script H denotes “hard” throughout this subsection. 

One infinite sequence of analytical solutions results when we set 

7/(1 — 7) = integer = n (0 < n < <*>) . (35a) 

Then we have the following sequence of 7,s: 

y — n/{n 1) = 0, f, . . . . (35b) 

The solution to equations (14) becomes (see Gröbner and Hofreiter 1949, p. 18) 

ocH 

n\ 

(n — v)\ 

X 
(n-V + \)\ (li^(n-v)Kn+l) 

(n + h)\ \RJ 

(36a) 

<T 
^7 = (2« + 1) 
Vo 

[4(i?/i?o)3/(n+1) + €ir2]1/2 - 1^1 I 

[4(£/£o)3/(”+1) + **2]1/2 + I^M J 
(36b) 

where 
Xh = normalized time = (/ + tn*)/th , (37a) 

th = time scale = [{n + l)/(2w + l)](6xp^0)~
1/2. (37b) 

The anisotropy parameters of equations (17) satisfy 

|e*| = 2ßo1/2 = [{2n + \)/{n + l)][3r^2(3W2 + <ro'2)/4r (0 < < co) , (38a) 

th(<lo >ßo',W) = +[2(w + l)/3(2w + l^le^lX . (38b) 

From equations (18)-(20) we find 

(A/A0, B/B0, W/Wo) = (i?/i?o) j 
[4(ig/jgo)3»"+1> + ^211/2 + |eg] > 

[4(i?/i?o)3/<"+1> + fff2]1/2 - |6„|\ 

±2(n+l) X/3 
, (39a) 
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(a,b,w) = [(n + l)/3(2n + l)THKR/Ro)-*mR/RoyKn+1) + eH
2]112 

(39b) 
+ 2|6i,|X} , 

Ph/PH0 = (n + l)PH/npHQ = (^/i?o)-3(2n+1)/(n+1) . (39c) 

In equations (38b)-(39b), the upper/lower sign is for en ^ 0. For n> 1 this series of 
solutions is new. 

This first sequence of “hard universes” emerges from an initial physical singularity at 
R/Ro = 0. In the early stages (R/Ro < | eH\2(n+1)/s), the expansion rate is highly aniso- 
tropic, but as fe —* 00 it becomes isotropic with (A^B^W) ^ R ^ to2(n+i)/3(2n+i)# 

types of singularities are exactly the same as for the “dust universe” (see § III6). These 
universes are axisymmetric if ^ = tt/6 or tt/2 (all e#) ; and they are completely isotropic 
for all time when e# = 0 (all \p). 

The second infinite sequence of analytical “hard universes” appears when we set 

7/(1 — 7) = integer + | = w + J (0 < m < °°) . (40a) 

This gives the following sequence of 7,s: 

7 = (2w + 1)/(2m + 3) = i, f, f, . . . . (40b) 

The solution to equations (14) is found to be (see Gröbner and Hofreiter 1949, pp. 
36-38) 

xH = 
_ 2(2m + 1) H fn/Æ Y/(2”,+3)IV-r'\ rr. /R r /r \ 6/(2m+3) 

i4W L4w + eH ml 

1/2 

m 

V Tvt- 1A„ (w - ») ! (\jh\VVR Ym-'’)n2m+3)'] 
x 21 {2m + 1 — 2»') ! ! \ 2 ) W J 

/lewl\2m+2 ( r /7?\6/(2w+3) "l1/2 \3/(2m+3) 1 -ri 
+ (-è)-«(Jf1) >»ÍY® +«!] +U) 0> 

; - i = 2(» + l/^) 1„ I + «’l‘B - l«»l I 
î?o \ I e.ff I / 

(41a) 

<r 

VO 

where 

[4(I?/^o)6/(2w+3) + £h2]112 + \eH 

(41b) 

%h = normalized time = (^ + tH*)/rn , (42a) 

th = time scale = [{2m + 3)/4(m + l)](67rp#o)
-1/2. (42b) 

The anisotropy parameters of equations (17) satisfy 

M = 2Qo1/2 = [{m + 1)/{2m + 3)][12th2(3W2 + <r0'
2)]1/2 (0 < le^l < -) , (43a) 

th{<lo ,ßo',W) — +[(2m + 3)/6{m + 1)]|€h|X . (43b) 

Equations (18)-(20) for the expansion functions {A,B,W), the Hubble expansion rates 
(a,6,w), and the total mass density ph are 

( \ ! \ P /p TP /TP \ rp /P [4(i?/i?o)6'» + + I €JT I 1 ±1^+3»31 ^ n, , {A/A^B/B^W/Wo) - {R/R^\j^(r/r^J^H) + ¡€¿|j > (44a) 

(44b) 

[4(i?/2?o)6/<2m+3) + eff
2]1/2 - \eH 

(a,b,w) = [{2m + 3)/12(™ + IKWi?»)“3 

X {[4(i?/i?0)
6/<2m+3> + €h2]1/2 + 216HIX} , 
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Pul pu, = (2m + 3)PhI(2m + \)ph, = (i?/i?0)-i2(-+i)/(2-+3) . (44c) 

In equations (43b)-(44b), the upper/lower sign is for €# ^ 0. For all m, this series of 
analytical solutions is new. 

This second sequence of “hard universes,, emerges from a physical singularity 
at R/R, = 0. The expansion rate is highly anisotropic in the early stages (R/R, < 

I I (2w+3) /3) becomes isotropic with (Aß,W) ~ R ^ te(2m+3)/6(m+i) as ^ oo. We 
find exactly the same behavior as in the first infinite sequence of solutions (see eqs. [35]- 
[39]) with respect to types of initial singularity, the axisymmetric cases, and the limiting 
case of isotropy for all time. 

e) The ZeVdovich Universe 

ZeEdovich (1961; see also Harrison 1965) discussed the possibility of matter with the 
equation of state pz = pz (i.e., 7=1), where the subscript Z denotes “Zerdovich” 
throughout this subsection. This is the “hardest” equation of state permitted by causali- 
ty (Harrison et al. 1965). The analytical solution for the “ZeEdovich universe” is greatly 
simplified if we take as our first anisotropy parameter ô in place of ez, where 

Ô = [Í20/(1 + fio)]1/2 = -€z(4 + €z2)-1/2 (0 < |ô| < 1) . (45) 

Then the solution to equations (14) is 

R/Ro = xz113, (46a) 

or/(To = v/vo = TZ In \xz\ , (46b) 
where 

xz = normalized time = (/ + tz*)/Tz , (47a) 

tz = rationalized time scale = [(1 — 52)/247rpz0]
l/2. (47b) 

Our two independent anisotropy parameters now satisfy 

0= {1 + [4(1 - 0*)/3tz2(3vo'2 + <ro'2)]}-1/2 (0 < |5| < 1) , (48a) 

Tz(ao',/V,co0') = ± (21 ô I /3)X . (48b) 

From equations (18)-(20), we find 

(A/Ao, B/Bo, W/Wo) = xzll3xz
±(-2\ô\l3)x , (49a) 

(a,b,w) = [3(t + tz*)]-1^ ± 2|0|X) , (49b) 

pz!pz, — pz!pz, = Xz~2. (49c) 

In equations (48b)-(49b), the upper/lower sign is for 5^0. This solution for the 
“ZeEdovich universe” is new. 

The “ZeEdovich universe” emerges from an initial singularity (big-bang creation) at 
t = —tz** The expansion rate is always highly anisotropic, even as ¿ > <». The expansion 
rate need not, and indeed does not, become isotropic as / —» °°, because the Hubble rates 
(a,b,w) of equation (49b) are proportional to (R/Ro)~d for all time (see the discussion of 
§ II¿>). This universe reduces to the standard axisymmetric solution (see Doroshkevich 
1965) when p = tt/6 or tt/2 (all ô). It is completely isotropic for all time when 5 = 0 
(all p). This universe exhibits initial singularities of the cigar, point (e.g., A, B, and 
TF —» 0), and barrel (e.g., A = constant, B and W-+0) types, but has no pancake 
singularities. Table 1 displays the possible types of singularities and the ranges of ô and p 
within which each type is found. 
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IV. THE DUST-PLUS-RADIATION UNIVERSE 

By suitably generalizing the equations of §§ II and Ilia, we may consider universes 
with the anisotropic metric of equation (2) which contain non-interacting mixtures of 
several types of matter with the general equation of state Pm = y pm- To illustrate this 
extension, I have solved the case for universes which contain both dust and radiation 
simultaneously. These universes are anisotropic generalizations of the isotropic model 
discussed previously by Chemin (1965) and Jacobs (1967) (for similar isotropic models of 
this type see Alpher and Herman 1949; Alpher, Gamow, and Herman 1967). 

TABLE 1 

Types of Singularity in the Zel'dovich Universe* 

3-i/2<ô<1 . 

l/2<5<3-l/2 

|5|=l/2 

0<|5|<l/2 . 
-3-l/2<0<-l/2 

5=-3-1/2 . 

-l<0<-3-l/2 

CIGAR f 

0<^<27r/3—\ 
7t/3 + ^0 < ^ < 271-/3 / 
\f/Q~-ir/3 <\f/< 27r/3 — xpo 

Po<'P<TT — ,4'0 

7r/3<^<27r/3 

J0< ^ <7r/3 —^o\ 
l^o<^<27r/3 / 

POINT t 

27r/3—< ^ < tt/3+ 
/0<^<^o-7r/3 
\27r/3—¿'o < ^ < 27r/3 

All ^ except 
^==7r/6 (ô>0), 
\i'=7r/2 (5<0) 

All yf/ 

\Tr—\f/o<ij/<2ir/3 
0<i/'<7r/3 

BARREL§ 

IV'=27r/3 — 
[^ = 7r/3-f^o 
\¡/ = xf/Q—Tr/3 
\i'=27r/3 — 

yp = ir/6 (ô>0) 

\í' = 7r/2 (5<0) 

4/ = 'l/o 
\j/ = 7r — \¡/o 
>=0 
^ = 7t/3 

r^ = 7r/3 — 

* The effective range of ^ is 0 < < 2ir/3 We define by = arc sin (1/21<5|), and it has the range tt/6 < < tt/2 
t As we approach the singularity, ^4 -> oo, jB and W -+0. 
Î As we approach the singularity, A, B, and IF all —» 0 
§ As we approach the singularity, A = constant, B and W 0. 

In the “dust-plus-radiation universe” the total density of mass energy and the total 
pressure are given by 

Pm — pd “f" pr > (50a) 

Pm = pa = pn/3 , (50b) 

where the subscripts M, Dy and R denote, respectively, “matter,” “dust,” and “radia- 
tion.” Linearity of the conservation equations, = 0, implies 

Pd/pdq = (R/Ro)~z and Pä/pä0 = (R/R^Y*. (51) 

Equations (3), (6)-(9), and (10b)-(12) of § II remain unchanged, and the Einstein field 
equations for the “dust-plus-radiation universe” can be solved by precisely the same 
procedures as were used in §§ II and III. In place of equations (14), the general solution 
becomes (using eqs. [6]-[9], [10b, c], and the generalization of eq. [10a]) 

x = %KR/R,n{R/R«)2[{R/R») + So] + (e2/4)}~ll2d(R/R0) , (52a) 

(a,M = T\e\Xf(R/Ro)-1{(R/RomR/Ro)+S0] + (¿m^diR/Ro) , (52b) 
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where 
x = normalized time = (/ + f)/rD , (53a) 

td = time scale = (óxp^J-1/2, (53b) 

6*0 = initial-mixture parameter = prJpd0 - (53c) 

In equation (52b), (a,ß,co) are the anisotropy functions defined by equations (6) and (7). 
The first anisotropy parameter is (see eqs. [15d], [17al, and [24a]) 

|€| = 2fío1/2 = [3ri>2(3W2 + oV2)/4]1/2 (0 < |e| < œ) . (54) 

As before, the second anisotropy parameter is ^ (0 < ^ < 2tt/3). 
The integrals of equations (52) can be evaluated analytically in terms of elliptic inte- 

grals (see Abramowitz and Stegun 1965, p. 17; see also Gröbner and Hofreiter 1949, pp. 
60-61 and 75 ff.). When this is done, the full analytical solution for the “dust-plus-radia- 
tion universe,, takes on the complicated form 

(A/Ao,B/B0, W/W0) = (R/Ro) exp M,co) , (55a) 

x = {(R/RomR/Ro) + So] + (ÉV 4)}1/2 

- Som([(2/m2){£($^) + [(1 + cos <£)/sin $](1 - k2 sin2 $)1/2} (55b) 

— (r + î cot ô)^^,^)]] , 

- <i - O- [n(í, -j t) - sD,(i, i)]|, 

(a,b,w) = [STDiR/Royr^^iR/RomR/Ro) + s0] + 

+ 21 e IX]] , 

Pm/pd0 = (R/Ro)~4[(R/Ro) + So] and 

Pm/pd0 = (So/3)(R/R(i)~i, 

where 

(55c) 

(55d) 

(55 e) 

_ / sin 20Y/2 

= ( J 
= arc cos m/R«) 

m/R 
ol-Zj , 0<$<x; 
o) — r] + s tan 9) 

6 = h arc tan 
(^+ - ¥_) 

31/2(^+ + Ar-) ]• » < e < = -[ 

j = 
31/2 

(Ÿ+ - *_) ; ^ = I sin 01 ; f = [ 

2 ’ 

s tan 6 — r 
s cot 6 + r 

(fr+ + ^-) , So 
2 

1 

^i-[Ci)^(f)]±(*)+(iTr- 

In equations (52b) and (55), the upper/lower sign is for e ^ 0. This solution for the 
“dust-plus-radiation universe” is new* 
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This solution exhibits qualitatively the same behavior as the solutions of § III : The 
universe is created at a physical singularity at R/Rq = 0 with a highly anisotropic 
expansion rate, but as time passes the anisotropy is slowly wiped out. In its late stages 
(R/Ro > So and x > | e|), the solution approaches the isotropic, dust-filled Friedmann 
universe, where {AyBJV) ^ R^ x2/s; and in its very early stages (R/Ro < S0), it 
behaves like the anisotropic “radiation universe” of § Me. The types of initial singulari- 
ties are exactly the same as for the “dust universe” of § IM. The axisymmetric case occurs 
when ÿ = tt/6 or tt/2 (all e); and we recover Jacobs’ (1967) isotropic solution when 
6 = 0 (all \¡/). 

V. SEMIREALISTIC ANISOTROPIC COSMOLOGICAL MODELS 
FOR OUR UNIVERSE WITHOUT A MAGNETIC FIELD 

Having discussed a number of exact solutions of Einstein’s field equations, we now 
turn our attention to the problem of building semirealistic models for our own Universe 
out of these solutions. 

a) Constructing the Models 

Our semirealistic cosmological models contain only dust with a present mass density 
p2>o = 2.3 X 10~29 g cm-3 (the amount necessary to have space be Euclidean rather than 
open or closed), and the observed 3° K cosmic microwave radiation with its present 
density of mass energy, päo = 6.8 X 10-34 g cm-3.1 neglect possible contributions due to 
unobserved neutrinos and gravitons: Doroshkevich et al. (1967) showed that non-inter- 
acting neutrinos or gravitons are driven into extremely energetic beams when an aniso- 
tropic universe expands out of a cigar singularity; but Misner (1967,1968) subsequently 
found that the anisotropic heating of the neutrinos is strongly damped by neutrino 
viscosity in the relativistic electron-positron gas which must exist in the early stages of 
any hot, big-bang cosmology. 

In addition to ignoring the effects of neutrinos and gravitons, our models also ignore 
the heating of the photon gas when the relativistic electron-positron pairs recombine. 
Consequently, our models can be valid only in the temperature range T < 1010 ° K; and 
they might not be valid even there because of our neglect of neutrinos and gravitons. 
(In the isotropic model of Jacobs 1967, T « IO10 ° K occurs about two seconds after the 
initial singularity.) We also disregard matter with 7 > i, since we expect to encounter 
it—if ever—only when pbaryon > 1014 g cm“3, and this occurs long before the pairs re- 
combine. 

To construct our models we could use the dust-plus-radiation solution of equations 
(55), but this would be extremely cumbersome because the equations are so complicated. 
Instead, we join smoothly the “dust universe” of § III6 to the “radiation universe” of 
§ IIIc at the point where pD = Pr (i.e., at R/Rq = 50 = Pr0/pd0 — 3 X 10“5). The 
smooth transition is accomplished by making the expansion functions (A,B,W) and the 
Hubble expansion rates (afi^w) continuous across the junction. The models resulting 
from this method differ from the analytical “dust-plus-radiation universe” models only 
in the immediate vicinity of the transition, and the difference is negligible (cf. Fig. 1 in 
Jacobs 1967). We obtain the following solution for our model, (i) For t > ¿transition the 
“dust universe” solution of equations (25) applies with the following specifications: 

0 < |éd| < and 0 < < In/Z , 

ÍD = y [(4So3 + 6S2)1'2 - 4M + In 
25o3/2 + [45o3 + eB

2]1/2 

pz>0 = 2.3 X 10 29 g cm 3 and td = (^pd0) 
1/2 = 5.9 X 109 years . 

(56a) 

(56b) 

(56c) 
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(ii) For / < ^transition the “radiation universe” solution of equations (26), (27), and (30) 
holds in the form 

Urn = \[rF - (eÄV2) ln | (2r + F)/|«Ä | | ] , 

{A/At, B/Bt, W/Wt) = r 
i/F + I es |\["(4 + €ie2)1/2 — lelilí 
(VF - |eÄ|A(4 + eB

2)1/2+ I I J ) 

±x 

(a,b,w) = (4rftr
3)-1(F + 2|eÄ|X) , 

Pr/prt = r~4, 

where the subscript T denotes “transition” here, and where 

F = (4r2 + e«2)1'2 and r = (R/Rt) . 

The constants which enter into equations (57) are given by 

Pb0 = 6.8 X 10~34 g cm-3 and S0 = prJpoa = 3.0 X 10-6, 

Tr = (35o3/2/4)td = 730 years , 

(Rt/Ro) = So and prt = pd0/50
3 = 8.5 X 10 16 g cm 3, 

I es I = S0-
3l2\eD\ 

(At,Bt,Wt) = S0[ 

and same for all t, 

(«o2 + 45o3)1/2 + Ml±2X/3 

(íd2 + 45o3)1/2 - I en I J 

(57 a) 

(57b) 

(57c) 

(57d) 

(57e) 

(58a) 

(58b) 

(58c) 

(58d) 

(58e) 

Finally, the time of the transition is given by 

/transition = [ (450
3 + e^2)1'2 - (^r^) In 

25o3/2 + (45o3 + en2)1/2 

I 6D I 
(59) 

b) Some Representative Semirealistic Models 

When we examine the temperature anisotropy of the 3° K cosmic microwave radia- 
tion in the following subsection, we will find that, for two opposite extreme assumptions 
about intergalactic space, the recent observational data limit the range of | cd | to 

Í10-4 for H11) 
0 < I en I < j . (60) 

(IO-7 for H i J 

Here, H11 signifies that the “dust” has consisted almost entirely of ionized hydrogen since 
the time Rq/R — 10 (i.e., a redshift of z ~ 9) when galaxies presumably formed, while 
H i means that the ionized hydrogen recombined when the photon temperature dropped 
below about 3000° K and the entire “dust” content of our Universe has remained neutral 
hydrogen ever since then. We will also find that observations of the microwave radiation 
place no restriction upon the range of \f/. 

In Figure 1 we compare our anisotropic model with p = 0 and €D = +10~5 to the 
corresponding isotropic dust-plus-radiation model of Jacobs (1967). In Figure 2 we do 
the same for the anisotropic model with p ~ t/2 and e# = —10~10. These two explicit 
models demonstrate all the essential features of our semirealistic models. Note how (i) 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
 6

8A
pJ

...
15

3.
.6

61
J 

674 Vol. 153 KENNETH C. JACOBS 

the time when anisotropic expansion is important decreases as | €d | decreases, (ii) the 
time when T > 1010 ° K decreases rapidly as | €d | increases, and (iii) the number density 
of baryons is much lower at any given time in the anisotropic case than in the isotropic 
case, during the period of primordial element formation (T « 109 ° K). Put differently, 
the average rate of expansion out of the initial singularity is much greater in the aniso- 
tropic case. This fact greatly affects primordial element formation. 

Fig. 1.—Semirealistic anisotropic cosmological model of our Universe with \p = Q and eD = +10“6 

(dashed lines) compared with the isotropic, Euclidean dust-plus-radiation model of Jacobs (1967) (solid 
lines). We show the “expansion functions” (A/Aq, B/Bq, W/Wq), the “mean radius” (R/Ro), the nor- 
malized Hubble expansion rates (a/do, b/bo, w/wo, and H/Hq), and the normalized total density of mass 
energy (ptot/pD0), as functions of normalized time (1/td). The constants which appear are #o_1 = 8 8 X 
109 years, pd0 = 2.3 X 10~29 g cm-3, td = (óttpd,,)“1/2 = 5.9 X 109 years, and the “initial-mixture 
parameter,” So = Pä0/pd0 = 3 X 10-8. The relativistic electron-positron pairs recombine at R/Rq ~ 
KP10; primordial element formation occurs near R/Ro « 10~9-10-8; the anisotropic model enters the 
“dust universe” phase (t > 20 years) at the left-hand set of vertical bars, while the isotropic model enters 
at the right-hand set (t «~730 years); the anisotropies become small for I/tq > 10-5. 
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c) The Temperature Anisotropy of the Cosmic Microwave Radiation 

The characteristic temperature of the cosmic microwave radiation depends upon 
direction in our anisotropic models. Applying Liouville’s theorem (see, e.g., Thorne 
19666, Appendix B; Thorne 1967) to the propagation of non-interacting photons in our 
metric (eq. [2]) gives the temperature distribution as a function of the observation direc- 
tion (in spherical coordinates): 

To(d,<l>) = Ts[(Ao/Asy sin2 0 cos2 0 + (Bo/Bs)2 sin2 0 sin2 <j) 
(61) 

+ (Wo/Ws)2 cos2 0]~1/2. 

o o 

Fig 2.—Comparing the anisotropic model with p — tt/2 and eD = —10~10 {dashed lines) to the iso- 
tropic model of Jacobs (1967) {solid lines). We show the same quantities as in Fig 1, and the normalizing 
constants are the same as in Fig 1. Anisotropies become small in the “radiation universe,, phase (at 
I/td ~ 10-14) so that the transition to the “dust universe” phase occurs at ¿ « 730 years for both the 
isotopic and the anisotropic cases {vertical bars). As in Fig. 1, we have recombination of the relativistic 
electron-positron pairs at R/Rq « 10~10 and primordial element formation near R/Rq « 10~9-10^8. 
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Here the subscripts 0 and S denote, respectively, the value of the quantity “today” and 
“at the time of the last scattering” of the microwave photons by matter, I define the 
effective time of the last scattering by 

fmridt = i, (62) 
ls 

where X(/) is the photon mean free path at time L If our Universe has been filled with 
ionized hydrogen since galaxy formation at Rq/R > 10 (case H n), we have Thomson 
scattering and 

A(/) = (2.67 X 10-18 light years)/pd(í) (g cm-3) . (63) 

Since ts » /transition, we use the “dust universe” solution of equations (25) and (56) to 
obtain, from equations (62) and (63), 

/s(H n) ^ (4.86 X 10_2)td = 2.86 X 108 years , (64a) 

^o/^(Hn) ^ 7.52 . (64b) 

If the ionized hydrogen recombined when the photon temperature dropped below about 
3000° K and was never reionized thereafter (case H i), we find 

/Ä(H i) = (To/Ts)mTD ^ 1.86 X 105 years . (65) 

To see what limits the observed anisotropy of the cosmic microwave radiation places 
upon our anisotropy parameters | e# | and \f/} we write 

Ta ^ T0(d = tt/2, 0 = 0); TB ^ T0(d = tt/2, 0 = w/2) ; 

TV ^ To(e = 0) . 
(66) 

Then we define the present mean-square temperature anisotropy as 

(Ar/TV = 3(Ta + Tb + Tw)~2[(Ta - TbY + {Ta - TwY + {Tb ~ TwY\ • (67) 

Finally, from equations (25), (56), and (67) we find, for all that 

|éd| < (f)1/2(feAu)(Ar/r)o. (68) 

Therefore, although the range of | eD\ is limited by the observed temperature anisotropy 
and the assumed dust content of our models (cases H i and H n), there are no restrictions 
on i. Recently, Partridge and Wilkinson (1967) found that the magnitude of the 12-hour 
harmonic of the temperature anisotropy around the celestial equator (which corresponds 
approximately to our parameter (AT/T)^) is 

(Ar/r)0 = (1.6 + 0.7) X 10"3. (69) 

It should be noted that equation (67) defines a measure of temperature anisotropy over 
the entire sky, while all observations to date have been performed only over one great 
circle and small portions of other great circles on the celestial sphere. Also note that our 
models generate no 24-hour harmonics of temperature anisotropy ; any observed 24-hour 
harmonic will probably reflect the Earth’s motion relative to the local co-moving frame 
of the cosmic microwave radiation. Equations (68) and (69) imply that 

[(9.6 + 4.1) X lO“6] /HlI\ 
0< M < •! [for case ). (70) 

~ [(6.2 + 2.7) X 10-8J \Hi/ 
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Precise observations of the temperature anisotropy have been carried out only on or 
near the celestial equator (Partridge and Wilkinson 1967) and at declination ~ 40° N. 
(Conklin and Bracewell 1967). The Partridge-Wilkinson observations lead to the result 
of equation (70), and the Conklin-Bracewell observations lead to roughly the same limits. 
Less precise measurements at selected points over the entire sky have been performed by 
Penzias and Wilson (1967), and they provide the weaker limits over the entire sky: 

(1.8 X IO“3) /H n\ 
0< le^l <] \ for case ( )• (71) 

~ (l.2 X 10~6J \ Hi/ 

If our Universe is approximately axisymmetric (e.g., A(t) ^ B(t) for all /), there is a 3 
per cent probability that the celestial pole is so close to the axis of symmetry that only 
the weak limits of equation (71) apply to | e# (. It is easy to see that there is a pressing 
need for precise experimental investigation of temperature anisotropy along several great 
circles on the celestial sphere. 

d) The Time when Anisotropies Ceased To Be Large 

From equations (25), (64), and (65) we see that anisotropies are important in our 
models (e.g., and Hubble expansion rates in different directions (a,^,w) differ by more 
than a factor %) for 

2 t<\eD\rD (72) 

if anisotropy becomes small during the dust phase (i.e., | e# | > 6.6 X 10~7). Then equa- 
tion (70) implies that equation (72) applies only to case H n (ionized hydrogen). If 
anisotropy becomes small during the radiation phase (i.e., \eD\ < 6.6 X 10~7), equa- 
tions (57) and (58) tell us that anisotropies are important for 

t < (1.5 X 106)€d2td . (73) 

The criterion of equation (73) applies to both cases H i and H n. 

e) Primordial Element Formation in Our Models 

In a hot, big-bang cosmology, primordial element formation takes place near T ~ 
109 ° K. In our semirealistic anisotropic models, as in the standard isotropic models, this 
temperature is always encountered in the aradiation universe” phase. To calculate the 
final relative abundances of the primordial elements formed, we need to know the average 
expansion rate, R!/R, as a function of the density of total mass energy, ptot (cf. Thorne 
1967, eq. [B.18] and the associated discussion). Such a relation, together with the equa- 
tions 

Pd/pdq = (R/Ro) 3 and ptot/PR0 = (R/Ro) 4, (74) 

tells us how the number density of baryons varies with time. Solving equation (14) or, 
equivalently, using equation (57a), and employing equations (25) and (56)-(58), we find 

(R'/R) = (1.35 X 107)ptot
3/W + (3.1 X 10-21)ptor1/2]1/2 sec"1, (75) 

where ptot is measured in grams per cubic centimeter. But this is exactly the same as equa- 
tion (B.18) of Thorne (1967)! Therefore, all of the results on primordial element forma- 
tion in axisymmetric universes, as calculated by R. V. Wagoner and reported by Thorne 
(1967), apply directly to our more general anisotropic models. 

I wish to thank Dr. K. S. Thorne for his encouragement and advice throughout the 
period that this work was being done. I also thank my other colleagues in general rela- 
tivity at the California Institute of Technology for many enlightening and fruitful dis- 
cussions. 
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