
19
 6 

6A
pJ

. 
. .

14
4.

12
03

S 

LOWERING OF IONIZATION POTENTIALS IN PLASMAS 
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ABSTRACT 
The average electrostatic potential near a nucleus immersed in a plasma is evaluated using a finite- 

temperature Thomas-Fermi model. The part of this potential directly attributable to the presence of 
the plasma is isolated and is used to evaluate the reduction in ionization potential for a wide range of 
parameters. A simple analytic solution, exhibiting Debye-Hückel and ion-sphere limits, is also obtained 
and is used as an interpola tory device. 

I. INTRODUCTION 

In a plasma of finite density the potential distribution in and near a given ion is influ- 
enced not only by its own bound electrons but also by free electrons, by neighboring ions, 
and (slightly) by neutral atoms. These perturbers produce effects of two kinds: their 
time-averaged effect is to alter the set of energy levels available to the ion in question, 
and their time-dependent effect is to broaden these levels both by shifting them back and 
forth adiabatically and by inducing transitions between them. The first effect, besides 
providing a natural cutoff to the bound-state partition function, effectively lowers all the 
ionization potentials and shifts the equilibrium occupation numbers in the direction of 
increased ionization. This effect, which is most important at high densities, is usually 
called ^pressure ^^00^^ The second effect, ^pressure broadening,” is not considered 
in this paper. 

Pressure ionization has often been treated by assigning to each ion a sphere occupying 
the ion’s share of the total volume and containing the ion and enough free electrons to 
make the sphere’s net charge zero (Mayer 1947 ; Armstrong, Sokoloff, Nicholls, Holland, 
and Meyerott 1961). In the simplest form of this “ion-sphere” approach, the free-electron 
density is assumed spatially uniform. Inside the sphere the potential due to the contents 
of neighboring spheres is neglected. Thus, close encounters between ions are disregarded, 
and the picture is basically that of a crystal lattice with strongly correlated ion positions. 
This strong positional correlation between ions (though not necessarily the uniform free- 
electron density) may be expected to hold at high densities and at low temperatures. At 
the opposite extreme is the case of nearly random ion positions; the first-order deviation 
from randomness leads to the Debye-Hückel potential (Debye and Hückel 1923; Griem 
1964), which is valid in the low-density, high-temperature limit. In this paper we develop 
a theory of pressure ionization which yields the ion-sphere and Debye-Hückel results as 
approximate limiting cases, and provides results over essentially the entire range of 
temperatures and densities for which appreciable ionization exists and the free electrons 
are non-degenerate. 

Our starting point is the fini te-tempera ture Thomas-Fermi (TF) model for the elec- 
trons, which has previously been employed (Marshak and Bethe 1940; Feynman, Me- 
tropolis, and Teller 1949; Latter 1955) to calculate the equation of state of high-tempera- 
ture, high-density material. In these calculations the entire electron distribution was 
described as a Fermi gas divided into ion spheres, and the resulting equation of state shows 
no effects of atomic shell structure. Keller and Meyerott (1952) extended the model to in- 
clude the ions in the vicinity of a given nucleus, thus relaxing the “frozen” nuclear positions 
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of the ion-sphere model; they solved the resulting differential equation for the total po- 
tential numerically, subtracted the potential of the nucleus and inner electrons, and inter- 
preted their results in terms of the perturbing potential experienced by bound electrons in 
various shells, i.e., the lowering of the ionization potential for each shell. Expressing the 
interactions between bound electrons in terms of screening constants, they then obtained 
the average occupation number for each shell as a function of temperature and density, 
using the perturbed binding energies. However, their treatment appears to include twice 
the interaction of a given bound electron with all bound electrons located further from 
the nucleus: once in the perturbing potential, and once in the screening constants. Conse- 
quently they obtained marked differences from shell to shell in the “effect of the sur- 
rounding plasma on the ionization potential,,, since these outer bound electrons were in 
effect included as part of the “surrounding plasma.” 

Accordingly, we have reformulated the model so as to isolate the potential due to the 
free electrons and neighboring ions; a free electron is one with sufficient energy to escape 
to infinity in the plasma. It is this potential which we identify with the “effect of the 
surrounding plasma,” regarding the bound electrons as part of the unperturbed ion; one 
result is that the perturbing potential is practically the same for all bound electrons 
except highly excited ones. 

An essential physical limitation of the model is its neglect of fluctuations; only time- 
averaged, spherically symmetric potential and charge distributions are considered. Thus 
near a given “central” ion the position correlation between each perturber and the cen- 
tral ion is taken into account, as is the correlation between each perturber and the 
“mean” distribution of the other perturbers, but the correlation between individual 
perturbers is neglected. This neglect is shown by Keller and Meyerott (1952) to be justi- 
fied in the case of a multiply charged central ion surrounded by perturbers of smaller 
charge—e.g., in the astrophysically important case of a stellar mixture consisting mostly 
of hydrogen and helium in which the ionization potential of a heavy ion is sought. In 
other circumstances the validity of the model has not been proven, so our results are 
perhaps provisional; however, because of the relationship of the present model to the 
simpler treatments mentioned above, we have considered it illuminating to cover a large 
range of parameters for comparison purposes. 

II. FORMULATION 

Consider a nucleus Z fixed in a sea of electrons and point ions (we neglect the influence 
of neutral atoms) at a kinetic temperature T. We wish to find the time-averaged poten- 
tial distribution around Z, and we assume for the present that only this average is felt by 
any one particle; that the potential distribution is spherically symmetric around Z; that 
it is determined by the time-averaged, spherically symmetric charge density; and that it 
changes only slightly within one particle wavelength. We describe the electrons by non- 
relativistic Fermi-Dirac statistics and the ions by non-relativistic Maxwell-Boltzmann 
statistics. These assumptions are those of the finite-tempera ture TF atomic model, ex- 
tended to include the neighboring ions. The electrostatic potential 4>(r) is then deter- 
mined by the Poisson equation 

V24> 
1 d2 

r d 
j-2(r$) = — Are — 

where ne is the local number density of electrons, m is the local number density of ions 
of charge eZi, and 

ne(r) = »„( co ) 
F{[e$(r)/kT]-a 
F( — a) 

n i(r) =Wi(co)exp|^—2¿— 
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CO 
F(v) = / 

•'o 

t1/2dt 
e^+l ’ 

$(oo)=0, r$-^Z e as r—*0. 

The degeneracy parameter a is related to the free-electron density far from the ion ne(
œ) 

by 

ne( «>) 
2(2irmkT)3'2 2 

h3 Vit 
F( — a) . 

We consider only applications where a is positive and appreciably larger than unity; 
i.e., the density is sufficiently low that the free electrons are non-degenerate, and 

—7— F( — a) Si e-a« 1. 
V 7T 

Close to the nucleus, where > akT, there is a region of degenerate bound electrons 
which is, in fact, the ion core. The asymptotic ion densities m(^) satisfy the condition 
of electrical neutrality, H,iZini(co) = 7^(00). 

Under the substitutions 

y kT' 
1 

D* 
Awe2 

~kf~ 
y) (zí2+zí)«¿(°o ) 

(note that D is the Debye length including ions and electrons), the above equations take 
the non-dimensional form 

Id2, 1 VF(y — a) {z exp (—zy) ) 1 

xdx2^Xy) z* + lLF(-a) (z> J’ 

where ( ) denotes an average, weighted with over ion species, and s* = 
(z2)/(z). The second term on the right side may be simplified with small loss of accuracy 
by noting that it is comparable with the first only for fairly small y; in this region, 

(zexp(—Zy))_(2(l—zy + ...)) _1 

<2> (Z) ^ *“ ’ 

so that to this approximation the assortment of ion species present can be replaced by a 
single fictitious species with charge s*; 2* is never less than unity, even when (2) —> 0. 
Our basic equation for the potential distribution is then 

l_cP 
x dx 2(%y) ..qrrtF^- (1) 

with boundary conditions yC00 ) = 0 and xy —> Ze2/(DkT) = iTo as # —> 0. 
Up to this point, our development is essentially the same as that of Keller and Meyer- 

ott (1952). Our treatment differs from theirs in the development which follows; we do 
not consider bound electrons as contributing to the pressure lowering of the ionization 
potential, since the bound electrons are already present in the isolated ion. 

We do not want to treat the ion whose nucleus is Z entirely by the TF model, but we 
want to isolate and evaluate the effect of the free electrons and neighboring ions on the 
potential distribution. Since the density distribution of these perturbers depends some- 
what on the bound-electron distribution, we must assume a bound-electron distribution 
in order to find the free-electron distribution and the neighboring ion distribution. Having 
done so by means of the TF model, which approximates the average bound-electron dis- 
tribution, we may apply this same perturbing potential to better models for the unper- 
turbed bound-electron states, such as those of the isolated ion. 
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The perturbing potential satisfies a Poisson equation in which only the free-electron 
and ion densities appear, and in dimensionless form this equation is 

x dxiK 1 z*+ll F( — a) 
(2) 

where v = e$f/kT and 

F(y — a,y ) 
tll2dt 

et+*-v-\- 1 * 

[Note that F(y — a,y)/F(y — a) is the ratio of free-electron density to total electron 
density in the TF model; we define a free electron as one whose kinetic energy exceeds 
e4>.] Unlike y(x), which contains the nuclear potential, is finite at the origin, and 
z/(0) = 0. If we choose the zero of potential such that z;(oo) = 0, z>(#) will be negative; 
we let ■—î)(0) equal /. Then 

v (x) = — J + f — — f S(t)t2dt, (3) 
•/o x Jo 

where S(x) is the right-hand side of equation (2), containing the solution y(x) of equation 
(1). Hence, / = /oœS(x)x dx. We can put equation (3) in a more convenient form: 

= + i f"s{t)tdt, (4) 
X j Q X j X J X 

in which the first term, dominant at large x, may be identified as the asymptotic Coulomb 
potential of the total excess of free electrons over neighboring ions. It will be seen shortly 
that the total potential y{x) vanishes exponentially at large x. Now the potential due to 
the nucleus and bound electrons alone, y{x) — v(x), has an asymptotic Coulomb form 
which depends only on the net ionic charge; this observation permits us to find the net 
ionic charge in terms oi $Q°S(t)t2 dt. 

In the solution of the foregoing equations, the following expansions (Keller and Fen- 
wick 1953) are useful; they are valid when a is somewhat larger than unity, so that 
eay>\ and the free electrons are non-degenerate (only this case is treated in what 
follows) : 

^ ev[l — 2~3,2ev~a( 1 — e-»)+...] ()-««) 

4 

3 Vir 8(y — a)2 (y»a), 

Fjyjz 'hll 
F( — a) 

+ ev (l — erfVy) 
1 1 

2 y 4y‘ 
(y»!) 

= l+y 
3 \/ TT 

y3/2 + §y 1^2 (y«l). 

From these and the form of equation (1), we can distinguish four regions of progressively 
smaller x (larger y). 

Region A.—The limiting form of equation (1) for large x, where y <3C l/s*, is 

1 
x 

d2 

dx2 {xy) = y ? 
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with the solution y — (C/x) e~x, which is the form of the Debye-Htickel potential. In 
the region where this holds, the charge densities of ions and electrons nearly cancel, and 
most of the electrons are free. 

Region B.—Proceeding inward, if s* >>> 1, there is a region where l/s* <3C y 1; and 
the densities of the ions and of the bound electrons are small compared with that of the 
free electrons, which is approximately constant and equal to its asymptotic value. In 
this region, equation (1) becomes approximately 

with the solution 

1 d2 

x dx2 (xy) 
1 

2* +17 

y — X 
X2 

6(2* + !)’ 

in which A and B are arbitrary constants which must be fixed by boundary conditions. 
The ion-sphere model with uniform free electrons yields a solution of this form. 

Region C.—In the next region, 1 <<C y <$C a, the bound electrons outnumber the free, 
but the occupation of the bound states is well below their capacity; and the local kinetic- 
energy distribution is still approximately Maxwellian. The free-electron density is now 
larger than its asymptotic value. Here, 

Id2, . 1 
” ) — “hTTT x dx2 2* + 1 

ey. 

Region D.—Finally, in the ion core, y )>> a and most of the electrons are in fully oc- 
cupied states. Equation (1) becomes approximately the zero-temperature TF equation. 
As the nucleus is approached, the bound-electron density diverges as or372 and the free- 
electron density as x~l12 (fictions peculiar to the TF model); the total potential y{x) 
approaches + const. + 0(x1/2), and the perturbing potential v(x) approaches 
-/ + 0(*3/2). 

The procedure for obtaining should now be clear. There are basically three 
parameters in the problem: 2*, a, and Kq. More convenient than the last of these, for 
purposes of inward integration, is C, the normalization constant of the solution in region 
A. We can choose 2*, a, and C, integrate equation (1) inward to get y{x) and hence 5(^), 
and obtain v(x) from equation (4). The net ionic charge 2 is given by 

and we recall that the perturbing potential at the origin is found from 

— v(0) =J= fœS(t)tdt. 

In application to a specific case, there are four physical parameters: T, 2*, and a for 
the plasma, and the net charge of the central ion. We take 2 as the net charge after 
ionization; e.g., 2=1 refers to the process of removing an electron from a neutral atom. 
Given T, 2*, a, and 2, the quantity —v measures the lowering of the ionization potential 
in units of kT, where —vis the quantum-mechanical expectation value of —v, averaged 
over the orbital from which the electron is being removed. As we will see from the 
numerical results, this quantity is closely equal to J for all orbitals except highly excited 
ones. What is usually needed, then, is J for prescribed T, 2*, a, and 2. Our dimensionless 
formulation replaces T and 2 by the single parameter K; the numerical results show that 
J is practically independent of a for fixed 2* and K; and the resulting interpolation prob- 
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lem for / as a function of 2* and K can be simplified by means of an approximate but 
physically suggestive solution, which we discuss in the following section. 

III. APPROXIMATE SOLUTION 

A very simple approximate solution for equations (1) and (4) is readily obtained by 
assuming that only regions A and B need be considered, i.e., that an adequate approxi- 
mation to the perturbing potential is obtained by placing all the bound electrons at the 
origin and taking the free-electron density to be approximately uniform. Then equation 
(1) is just 

1 (xy) =rTYr[l - x dx2 
+ 1 

For large 2* we approximate the right-hand side by 

y when (2* + 1 ) y < 1 (region ^4) , 1 when (2* + 1 ) y > 1 (region B) ; 
2 -j-1 

and, letting xi denote the transition point, we require the potential and its derivative to 
be continuous at xi. At small x, y—+ (K/x) — /+..., where to this approximation 
the first term is the Coulomb potential of the central ion and the next is the perturbing 
potential evaluated at the origin, i.e., the reduction in ionization potential (in units of 
kT) produced by the free electrons and neighboring ions. Using the solutions in regions 
A and B, which are, respectively, 

C 
y = — e~x {x >Xi) 

x 

x 6 (2* + 1 ) 
(x< Xi), 

and the continuity conditions 

Ce~~x' = K — Jxi 

we get 

Xi* 
ó^ + ir 

Ce~xi = J 
Xi' 

2(2* +1) ’ 

J 3* + 1 0 2 ) 2(3* + l)l-(Xl+1)2 1]’ 

K 
Xi 

2* + t(1 + *1+t) = 3(3*1+i)[(*1+1)3-1]-/’ 

or, eliminating Xi, 

J = {[3(2* + 1)K + 1]2/3 - l}/[2(2* + 1)], (5) 

which for small (2* + 1)K becomes J = K, and for large (2* + 1)K becomes J = 
[2(2* + l)]”1 [3(2* + l)iT]2/3. Defining the ion-sphere radius a for an ion of net charge 2 
by the usual convention 47ra3/3 = z/rtei^) an(i recalling the expression for the Debye 
length (D), 

D*~ kT +1)w‘(00)> 

we see that the parameter 3(2* + 1)K is just 

2 e2 _ 3z _/öV— IQn sphere volume 
2 ) DkT 47rD3we(oo) \d) Debye sphere volume * 
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When this parameter is small, 

when it is large, 

These values of J are, respectively, the results of the Debye-Hückel and ion-sphere 
models, which result if one retains only region A or only region B a priori. Very roughly, 
one may say that the model giving the smaller depression of the ionization potential is 
the closer to the truth. (The prescription, which has sometimes been employed, of 
applying the sum of the corrections corresponding to the two models thus can seriously 
overestimate the depression of the ionization potential.) 

Ecker and Kröll (1963) have derived an approximate result resembling our equation 
(5) in yielding Debye-Hückel and ion-sphere limits, but their ion-sphere radius is inde- 
pendent of 2, giving J ~ z. Our result, in contrast, gives J ~ z2,z in the ion-sphere limit, 
corresponding to an ion-sphere radius proportional to zl,z—which is consistent with 
electrical neutrality of the sphere. 

IV. NUMERICAL SOLUTIONS 

In order to obtain values of J which are more accurate than those provided by equa- 
tion (5), we have solved equation (1) numerically and evaluated v(x) from equation (4) 
for a number of values of 2*, a, and C. The calculations were executed on an IBM 7044 
digital computer; equation (1) was replaced by a difference equation which was solved 
inward from large x. Automatic mesh adjustment was employed to handle the steep 
behavior of y(%) near the origin. The complete Fermi-Dirac function F{y — a) was 
replaced by Arpigny’s (1963) accurate polynomial representation; the incomplete func- 
tion F{y — a,y) was replaced by the error-function approximation (Keller and Fenwick 
1953) noted in § II. The integrals in equation (4) were then evaluated by Simpson’s rule. 
For each s*, a, and C, the output included the values of K, ATo, and /, and tables of 
y{x) and v(x). The quantity 

F = 2(z* + 1)/ {[3(2* + \)K + 1]2/3 - I}“1 

was also computed {F is the ratio of J to the approximate J given by eq. [5]) in 
order to facilitate interpolation; K and / range through several orders of magnitude, 
but F is of the order of unity. The calculations covered the range 1 < 2* < 100; 
2 < a < 12; 10“4 < AT < 3; this range, we think, covers all possible cases of interest 
in non-degenerate LTE (local thermodynamic equilibrium) plasmas. Some calculations 
in this range led to ATo/AT = (nuclear charge/net ionic charge) > 103 and were accord- 
ingly rejected as unphysical; these occurred for C and a both large. Since large C gen- 
erally corresponds to high density and large a to low density, it is not surprising that 
prescribing both quantities can lead to physically unrealizable cases. 

We first discuss the behavior of / as a function of 2*, a, and AT. In Figure 1 we plot 
the correction factor F against (2* + 1)AT with 2* as a parameter. The dependence of F 
on a is all included in the shaded areas and so is generally negligible. (In terms of the 
qualitative discussion in § II, this means that region D is an insignificant contributor to 
the perturbing potential; i.e., very few free electrons are found inside the ion core.) 
The over-all closeness of F to unity shows that the simple equation (5) is usually a fairly 
good approximation, especially for large 2*; however, better values of J can be obtained 
from Figure 1. 

We consider next the shape of the perturbing potential v(x). If v(x) were independent 
of x throughout the volume where y(x) > F, then all orbitals whose (depressed) ioniza- 

/ 
Z6‘ 

DkT 
K; 

2 akT' 
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tion potentials exceed YkT would experience essentially the same perturbation of their 
various ionization potentials, since their classical turning points lie inside the constant-?; 
region and their wave functions are small outside it. Similarly, because v(x) is monotonie 
in x, the expectation value of v{x) for a given orbital will be (approximately) bounded by 
the values of v(x) at the outer turning point and at the origin; and at the outer turning 
point y(x) > I/kT with / = perturbed ionization potential. Orbitals for which v(x) ~ 
z;(0) where y(x) = I/kT accordingly have —v, the depression of the ionization potential 
in units of kT, closely equal to /. We therefore ask for the behavior of v(x)/v(Qi) as a 
function of y(x). Two specific values of y are of particular interest: y = a, which cor- 
responds roughly to the outermost orbital in the ground state of the ion; and the value 
of y for which v(x) = 0.9 ?>(0), which corresponds roughly to the highest excited orbital 
for which JkT is a close (a few per cent) approximation to the depression of the ionization 

Fig 1.—Depression of the ionization potential, in units of the depression given by eq. (5). Dotted line: 
F = 1; dashed curve: Debye-Hückel model; dot-dash curve: ion-sphere model; solid curves: numerical inte- 
grations of full Thomas-Fermi model, for various z*; the shaded areas contain the range of variation of F 
with a. The abscissa, (s* -f l)i£, is J of the ratio (ion-sphere volume/Debye-sphere volume); K is also 
ze2/DkT, which is the Debye-Hückel depression in units of kT. 

potential. We find in nearly every case which we have cömputed that v{x) deviates from 
v(Q) by considerably less than 1 per cent where y(x) = a, and that y(x) is considerably 
less than unity where v(x) = 0.9 ?;(0). Therefore, the perturbing potential is indeed 
nearly constant for any orbital whose depressed ionization potential exceeds kT (and the 
wave function of such an orbital will be essentially the same as in the isolated ion). 

The highly excited orbitals with I <&kT can be neglected in most applications such 
as calculation of the LTE equation of state of the plasma, since it is easily shown by 
classical phase-space arguments that their contribution to the total plasma partition 
function is much less than that of the adjacent continuum of free states. A similar state- 
ment holds for their contributions to the opacity (Stewart and Pyatt 1961). Thus, the 
equation of state can be obtained (starting from a and kT) as follows: Guess 3* in order 
to get the Debye length; for each 3, compute K and (from Fig. 1) J; in each ionic species 
lower all ionization potentials by JkT and delete all ionic configurations in which the 
least tightly bound electron is then free; use the Boltzmann-Saha equations to find a 
revised 3*, and iterate. 
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We are indebted to David R. Yates for his meticulous and effective execution of the 
numerical work. 
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