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ABSTRACT 

The problem of the dynamics of colliding galaxies is considered. A first approximation for the mo- 
tions of the centers of mass of colliding galaxies is developed. In this approximation, the galaxies are 
treated as spherically symmetric distributions of constituent point masses (the stars), and the effects 
of collisions are tentatively assumed to be negligible insofar as changes in the structures and internal ener- 
gies of the galaxies are concerned. On the basis of these results, an approximate theory has been developed 
to provide estimates for the exchange of energy between that corresponding to the center-of-mass motions 
of colliding galaxies and that corresponding to their internal structures and motions. For given initial 
conditions, the results concerning the energy exchange provide not only a consistency test for the first 
approximation for the motions of the centers of mass but also approximate lower-limits for the actual 
energy exchange—regardless of the validity of this first approximation. From the results obtained, it 
appears that the effect of collisions on the internal energies of galaxies is considerably more important 
than may previously have been believed and has probably been important in altering the internal ener- 
gies of non-negligible fraction of the galaxies in the observable universe. 

I. INTRODUCTION 

The dynamics of colliding galaxies is of interest in several connections in the study of 
the evolution of galaxies and systems of galaxies. There are two distinct, but related, 
aspects to the problem: the effects of collisions, or very close encounters, (i) on the 
center-of-mass motions of galaxies and (ii) on the internal energy and structure of the 
individual galaxies. 

It is clear that these two aspects cannot be treated independently in any detailed 
description of the problem—except in the limit in which the relative velocity of the cen- 
ters of mass of the two galaxies greatly exceeds the internal (stellar) motions within the 
galaxies. Thus, for example, for slower encounters, the variation of the relative velocity 
of the centers of mass of the two galaxies during the encounter can significantly influence 
the predicted changes in the internal energies and structures of the galaxies. For the 
purposes of making these and other estimates, it is of value to develop a first approxima- 
tion for the motions of the centers of mass of colliding galaxies which neglects changes in 
the internal structure of the galaxies resulting from the encounter but which goes beyond 
the point-mass approximation by taking into account in a certain scheme of approxima- 
tion the extended nature of galaxies. The motions so derived will be referred to as the 
center-of-mass motions in the first approximation. On the basis of the motions derived in 
this way and under the simplifying assumption that the internal motions of the stars 
within the colliding galaxies may be neglected during the collision, that is, in the impul- 
sive approximation, it is shown how estimates can then be made for the energy inter- 
change between the energy corresponding to the center-of-mass motions for the galaxies 
as a whole (the external energy, say) and the internal energy of the galaxies due to the 
stars comprising them. Depending upon whether or not the change so derived for the 
internal energy of a galaxy is small with respect to its initial value for any given initial 
conditions, conclusions can then be drawn concerning the extent to which the results 
predicted for the center-of-mass motions in the first approximation are valid and con- 
cerning the order of magnitude of the interchanges of external and internal energy due 
to the encounters. 

A basic function that appears in the theory developed here has been tabulated, and 
the theory for the center-of-mass motions in the first approximation and for the inter- 
change of external and internal energy has been applied in several illustrative cases. 
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COLLIDING GALAXIES 769 

Certain implications of the results obtained concerning the effects of collisions of galaxies 
are discussed. 

II. BASIC THEORY 

a) Motions of the Centers of Mass of Colliding Galaxies 

i) Assumptions.—In the theory to be developed here for the center-of-mass motions 
in the first approximation, it is assumed that the galaxies are spherically symmetric con- 
figurations of mass points whose over-all structures remain unchanged during the course 
of encounters with one another. Implicit here is the assumption that the individual in- 
ternal energies and angular momenta of interacting galaxies also remain unchanged 
throughout the encounters. It is further assumed that the only intergalactic forces are the 
gravitational ones arising from the mutual gravitational interactions of the mass points 
(i.e., the stars) making up the different galaxies. Under these idealized conditions, it is 
convenient to express the distribution of matter within each galaxy as a superposition of 
polytropic distributions having common radii. In practice, it appears that reasonable 
representations for the distributions of mass in galaxies having approximately spherical 
symmetry can be achieved through superpositions of the six polytropic distributions cor- 
responding to the integral polytropic indices: ^ = 0, 1, 2, 3, 4, and 5. The numerical 
work in the present subsection has been carried out for such situations. 

ii) Equations of motion for the centers of mass.—Under the assumptions made concern- 
ing the fixed forms of the galaxies during encounters, the problem of the motion of two 
spherically symmetric, gravitationally interacting distributions can be treated as one of 
two gravitationally interacting mass points whose potential energy of interaction is given 

by 2(, 
r 

where r is the distance between the centers of the two configurations having total masses 
SJÎi and 3DÎ2, and 'kfV) is a factor which corrects for the fact that one is actually dealing 
with extended configurations and not with mass points. Clearly, in the present approxi- 
mation the correction factor will be unity so long as the configurations do not overlap. 
In cases in which there is overlapping of the two configurations, ^(V) can be derived in a 
straightforward way in terms of the distributions involved. The theory for the derivation 
of ^(r) and the corresponding numerical results are given in the next subsection for the 
case in which the mass distributions can be represented as superpositions of polytropic 
distributions. 

It is clear that the common center of mass for two interacting galaxies will move with 
constant velocity. Consequently, we need consider only the relative motion of one of the 
galaxies with respect to the other. Further, it is clear that the relative motion will take 
place in a plane. If r and 6 are used to denote the polar coordinates in the orbital plane 
characterizing the relative motion and /x, /, and E, the reduced mass, the angular momen- 
tum and the energy, respectively, for the center-of-mass motion, then the Lagrangian 
equations for the problem give (cf. Goldstein 1950) 

and 

dt = 

dd = 

2p~l [E — Q(r) -/2/2Mr2] 

Idr 

fxr2 { 2/x“1 [E — Í2( r ) — Z2/ 2/xr2 ] }1/2 ' 

(2) 

(3) 

These can be used to determine the orbit and the variation of time along the orbit. The 
magnitude v of the velocity along the orbit is given by 

%fjLV2 = E — Í2(r) , (4) 

which is simply an expression of the conservation of energy for this problem. 
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iii) Determination of the function ^(r).—Consider two spherically symmetric distribu- 
tions in such a position that they partially overlap one another. Let us refer to the two 
configurations as the configuration 1 and the configuration 2, and let the quantities per- 
taining to these two configurations be characterized by the subscripts 1 and 2, respec- 
tively. The gravitational potential energy of the two configurations due only to their 
mutual interactions on one another is given by 

where Vfrf) is the potential due to configuration i at a distance ri from its center, is 
an element of mass at this point belonging to configuration 2, and r is the distance be- 
tween the centers of the two configurations. Let r2 denote the distance of a point from 
the center of configuration 2, let p2{rf) denote the mass density in configuration 2, and let 
ß denote the cosine of the polar angle in a spherical polar coordinate system with origin 
at the center of configuration 2 and with polar axis directed toward the center of con- 
figuration 1. If both configurations are considered to have the same radius R (this intro- 
duces no significant loss of generality in the present treatment) and if rh r<i, r, and (for 
the subsequent work) r" when measured in units of R are denoted by ti, r2, r, and r", 
respectively, then equation (5) reduces to the following : 

fi( r ) = — 2iirR? 
rr Jq J-l 

Vi( ri) p2( r2) x^dxzdß . (6) 

If it is now assumed that both configuration 1 and configuration 2 can be expressed as 
superpositions of polytropic distributions having unit radii in terms of the radii R of the 
galaxies, then equation (6) can be written as 

Ü(r) = — 2tR* ti= ( r2
2+ r2— 2 r2rß)1/2] 

X Pn2( r2) r2
2dX2dß 

(7) 

where Pn¿(r)t is a poly tropic distribution of index ni that is so normalized that its first 
zero falls at = 1. From the theory of polytropes (cf. Limber 1961), this expression for 
0(r) can be expressed as 

a(0 =(8) 
«1 712 

'i'C r, nh n-i) =^(f~)f0 
e»”!( r2) ^)dß^dx2, W 

■l>n1(r1)^l + 3pri//">e»1(r1), ( ti< 1 ) 
S l»ttj 

> (10) 

=-, (^>1) 
rr ) 

On, ( ri) = 0niU = riÉl.n,), (11) 

where pc> W4, and pni denote the total mass, central density, and mean density, respec- 
tively, for the polytropic distribution pni, where 0 is the usual Lane-Emden function, 
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£ is the usual polytropic radial variable, and £i, n is the value of £ at which 0n(£) has its 
first zero. 

The value for ^(r, ni 5, m = 5) follows as 

^(r, n! 5, ni = 5) = ri>ni(ri = r). (12) 

The tables for 0n(r) and #n(r) given by Limber (1961) have been used to calculate the 
function ^(r, ni, n*) for the cases of the polytropic distributions having integral indices 
ranging from 0 through 5. The computational errors appear to be less than 0.5 per cent. 
The results are given in Table 1. 

It will be noted from equation (16) that Í2 considered as a function of ^ and r is 
indeterminate for the case in which r = 0, since ^(0, tti, n?) = 0. However, in this case, 
Í2 may be conveniently obtained in terms of the dimensionless function [^(r, ^i, ^2)/t]r->o. 
This function has been tabulated in Table 2. 

è) Exchange of Internal and External Energy 

On the basis of the relative motions of the centers of mass of galaxies derived by the 
procedure discussed above, estimates may be made for the changes in the internal energy 
of the galaxies resulting from collisions. This change in the internal energies of the 
galaxies will result in an equal but opposite change in the energy corresponding to the 
center-of-mass motions of the galaxies and will, therefore, provide a measure for the 
extent to which the assumption of constant E in the theory for the center-of-mass motions 
in the first approximation is valid. The desired estimate for the change in the internal 
energy of the galaxy of mass 9K2 will be obtained from a study of the tidal force experi- 
enced by representative stars in it. It is expected that such a treatment should provide 
at least a rough estimate for the energy exchange. 

It is clear that the results will depend, in general, upon the initial conditions assumed 
for the stars as well as upon the initial conditions assumed for the center-of-mass motions 
of the two galaxies. The present analysis will be carried through on the assumption that 
the internal motions of the stars are negligible during the encounter; this is the so-called 
impulsive approximation. This approximation is reasonable and useful for several rea- 
sons. First, it appears that the relative speed of colliding galaxies will seldom be smaller 
than typical internal motions and will very often be considerably larger. In view of this, it 
appears unlikely that the impulsive approximation will introduce large errors. Second, the 
calculation for the change in the internal energy according to the impulsive approximation 
is independent of the velocity distribution of the stars, except insofar as rather general 
symmetry properties are concerned. Finally, the impulsive approximation greatly sim- 
plifies the calculations. For the purpose of the present calculations it will also be assumed 
that the velocity distribution at any point in the galaxy is an even function of the com- 
ponents of velocity, vx, vy, and vz with respect to the center of mass of the galaxy. 

Let us choose a Cartesian coordinate system whose origin is at the center of mass of 
the galaxy of mass WI2, whose #-axis is directed toward the center of galaxy of mass üDîi 
when the galaxies are at closest approach, and whose x-y plane is the orbital plane. Let 
the coordinates of the center of the galaxy of mass SDÎi be denoted by x, y, and z (by 
assumption 2; = 0). Let the coordinates of a representative star in ÜDfe be xr, y', z', and 
let its distance from the center of SOÎ2 be r'. If r" is used to denote the distance between 
the galaxy of mass SDîi and the representative star, then the tidal force, /, per unit mass 
on the star due to Sfti follows from the relations: 

dV! (x-x') dV 1 x 
dr u dr 

, /¿Fi(y-y') 
Jv {dr„ rn dr 

(13) 

(14) 
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dVi z' 
dr" r‘ 

Vol. 141 

(15) 

where Vi is the potential at the star due to fflîi. It follows from the theory of polytropes 
used in obtaining equation (8) that 

dVi 
dr 

d<í>ni 

dx 
(16) 

The change in velocity, At;', of the star with respect to the center of 9DÎ2 due to the 
tidal force as a result of the collision can be obtained from the relation 

At; 
/ + 00 

fdt. 
oo 

(17) 

In the most consistent procedure, f(t) would be evaluated on the basis of the center-of- 
mass motion in the first approximation. 

TABLE 2 

The Function [^(r, m, w2)/r]r-M> 

«i 
o 

1 20 
1 30 
1 38 
1 44 
1 48 
1 50 

30 
50 

1 68 
1 83 
1 95 
2 00 

38 
68 
00 
34 
64 
80 

44 
83 
34 
00 
81 
42 

1 48 
1 95 
2.64 
3 81 
6 00 
9 33 

50 
00 
80 
42 
33 

In the computation of the change in its internal energy, the galaxy may be divided 
into sets of stars, the stars in each set being characterized by their common distance r' 
from the center. For each such set (consisting of l sample stars, say) the average increase 
of the kinetic energy per unit mass, which is the same in the impulsive approximation as 
the average increase of the internal energy of the stars in that set per unit mass, 
<A«(r')> (say), can then be obtained from the relation 

<A«(r')> = !<A/2(r')>=^^[(A^;)2+(A^;)’+(A^;)2] (18) 

It is to be noted that for the assumptions made the change in the internal energy will 
always be positive; consequently, the change in the external energy will always be nega- 
tive. The change in the internal energy of the whole galaxy, AZ7 (say), is obtained by 
integrating (Aw(r')) over the mass of the galaxy. The gravitational potential energy of the 
galaxy of mass 9JÎ2 follows from equation (8) as 

8- »■ Us G4¿)í. 
(19) 

m n>m 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
65

A
pJ

. 
. .

14
1.

 . 
76

8A
 

No. 2, 1965 COLLIDING GALAXIES 777 

where Wflm is the mass of the polytropic component of index m and where the summations 
are summations over the different poly tropic components. Finally, from the virial the- 
orem, we have the following relation between Ü2 and the total internal energy, U, 

U = (20) 

The fractional increase of the internal energy, AU/\U\ of the galaxy can thus be esti- 
mated by means of equations (18)-(20). 

It is useful to note that a more crude estimate for the energy interchange can be 
derived much more easily in practice by assuming uniform rectilinear motion for the 
relative motion of the galaxies. Suppose that the galaxy SDîi is moving with a uniform 
speed V parallel to the y-axis, and its impact parameter, which is the same in this case 
as the distance of closest approach, is p, and let time, ¿, be reckoned from the instant of 
closest approach of the centers of the galaxies. For this case, the expression for the change 
in the velocity of the star due to the collision simplifies considerably, the resulting in- 
tegrals being standard integrals whenever the effects of interpenetration can be neg- 
lected. In the limit in which the dimensions of the galaxies are negligible with respect to 
the separation of the galaxies at closest approach, these last mentioned expressions re- 
duce to expressions given by Spitzer (1958) for the change in velocity of a star in a 
galactic cluster due to the tidal force of a passing interstellar cloud. For such cases, 
AU/\U\ for the galaxy of mass 5DÎ2 is given simply by the relation 

AU aG*mi2m2rc,22 

\U\ 3 ¿472^ ’ 

where r2
c, 2 is the mean-square radius of the galaxy of mass SDÎ2 and potential energy Í22. 

III. ILLUSTRATIVE EXAMPLES 

a) Mass Distribution within Galaxies 

Although the theory developed in the preceding section in its general form makes use 
of a superposition of polytropic distributions for the representation of the distribution of 
mass in galaxies, much preliminary insight into the problem of the motions of colliding 
galaxies can be gained by representing the mass distributions within galaxies by poly- 
tropes of a single index. Limber (1961) has prepared a short table that gives in a con- 
venient form the relative distribution of mass within polytropes corresponding to the 
indices ^ = 0, 1, 2, 3, and 4. Through a comparison of the results contained in this table 
with the available observational data on the distribution of mass within galaxies, it is 
possible to determine that polytrope of integral index that best describes the mass dis- 
tribution in any particular galaxy. Strictly speaking, since one cannot assign a sharply 
defined boundary to a galaxy, one can only make several different estimates for its radius 
and derive on the basis of each of these estimates for R that polytropic distribution of 
integral index that best represents the corresponding distribution. We can, of course, 
choose R arbitrarily, for the present purposes, so long as a sphere of radius R contains 
essentially all of the mass. 

De Vaucouleurs (1953) surveys the available evidence concerning the luminosity dis- 
tribution in elliptical galaxies and gives a model for a globular galaxy which is in reason- 
able agreement with the luminosity distribution and other known properties of the 
elliptical nebulae. The mass distribution within the spiral galaxy M31 is available from 
the work of Brandt (1960). Although spiral galaxies are certainly not spherically sym- 
metric, they can be treated in this way in a first approximation for the present purposes. 
In Table 3, the fraction of the total mass interior to a sphere of radius r has been tabu- 
lated for each of these galaxies for two or three different estimates of their boundaries. 
The polytropic indices included in this table for each value of r/R are estimates for the 
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indices of poly tropic distributions having the same fractional mass interior to r/R as 
have the observed distributions and have been derived from the table given by Limber 
which was referred to above. It appears from this comparison that the mass distributions 
in these astronomical objects can be represented to reasonable accuracy as poly tropic 
distributions of index w = 4. 

In the remainder of this section the motions of colliding galaxies are determined in the 
present scheme of approximation for the case in which both galaxies can be represented 
as polytropic distributions of index w = 4 having common radii. The results obtained for 
this particular form for the mass distributions should be illustrative of the motions pre- 
dicted in the present approximation for colliding galaxies, and the comparison of these 
results with those for the case in which the two galaxies are treated simply as mass points 
should provide useful estimates for the errors that can be expected from the latter 
procedure. 

TABLE 3 

Distribution of Mass within Galaxies 

Typical Elliptical Galaxy 

i? = 1 kpc 

mr)/m 

R — l 5 kpc 

mr)M 

R = 2 0 kpc 

mr)m 

Spiral Galaxy M31 

R = 100 kpc 

mr)M 

12 = 125 kpc 

mr)M 

0.1 
.2. 
.4 
.6 

0 8. 

0 30 
.50 
75 
87 

0 95 

4 0 
3 5 
3 0 
2 5 
1.9 

0 41 
64 
86 
95 

0 99 

4 2: 
3 8 
3 5 
2 9 
2 7 

0 50 
0 74 
0 93 
0 99 
1 00 

4 3: 
4 0 
3 8 
3 8 
4 0 

0 35 
63 
84 
92 

0 97 

0 44 
70 
87 
93 

0 98 

b) Determination of the Motions 

i) Choice of natural units and parameters,—For the case in which the two interacting 
galaxies can be represented as polytropes of index w = 4 having common radii, the theory 
developed in Section II can be readily used to determine the relative motion. We shall 
determine the motion of the galaxy of total mass SDii with respect to that of total mass 
9K2. It is convenient to take the conditions at the point of closest approach as the initial 
conditions, for the purposes of the integration. Let us designate the separation of the 
centers of the two distributions at their closest approach by r0 and let us measure the 
polar angle 6 from the line connecting the two galaxies at their closest approach. Finally, 
let Fo be the relative speed of the mass SDîi with respect to the mass 9K2 at the point of 
closest approach. 

In order to reduce the number of independent parameters involved in the integrations, 
the units of distance, time, and mass may be chosen so that 

R = 1 y Fo = 1 , /X = 1 . (22) 

In the work that follows in the present subsection, it is to be understood that these units 
are being employed except where an explicit statement to the contrary is made. In the 
chosen units, the initial conditions are specified once r0 and a parameter a, where 

a es GMM2 y (23) 

are specified. 
The relevant range of the parameter r0 is clearly given by 0 < r0 < 2, since for 
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To >2 the problem reduces to that of the familiar 1/V2 force. As a matter of fact, in the 
present case where we are dealing with objects having a relatively high degree of central 
concentration, it is only for values of r0 significantly smaller than unity that significant 
deviations from the results predicted by the simple mass-point approximation are ob- 
tained. From equations (22) and (23) we see that a can vary between 0 and the value 
corresponding to circular motion (cf. eq. [31]) depending upon the magnitudes in absolute 
units of SDîi, 9ÏÎ2, R, and Fo. For fixed values for the masses and dimensions of the galaxies 
in absolute units, an increase in a has the effect of decreasing the initial relative speed in 
absolute units. 

ii) Integration procedure.—Given values of r0 and a in the chosen units, the motion is 
determined by equations (2) and (3) expressed in terms of the chosen units. We note that 
at the point of closest approach dd/dr and dt/dr become infinite, so that the straight- 
forward numerical integration of these is not possible. However, for r ^ r0, '¡'{r) can be 
expressed to sufficient accuracy in terms of the first two terms in a Taylor series expan- 
sion about the point r0. In terms of this expansion, the equations can be integrated 
analytically to determine that part of the orbit near the point of closest approach. These 
series solutions are used until dd/dr and dt/dr derived from the exact equations begin to 
differ appreciably from those derived from the series expansion. Thereafter, the integra- 
tion is continued by numerical means until ^(r) ^ 1. 

At a distance of about r = 0.5, ^(r) becomes essentially unity to the accuracy to 
which we are working. Thus, from this point outward, the motion is that corresponding 
to the simple two-body problem for the case in which the mass distributions can be 
treated as mass points. Accordingly, the corresponding motions in this part of the orbit 
can be obtained analytically. For the present purposes it is convenient to treat mass 
points as polytropic distributions of index n = 5 with finite radii. In this way, the special 
unit of length being employed introduces no difficulty in the treatment of mass points. 

With the above understanding, the basic equations can be integrated analytically for 
the case ^(r) — 1, r 7^ 0, and all such motions can be described in terms of three 
parameters: the values of r and 6 at the points of closest approach, r0,1 and 00,1 (say), 
and the value for the parameter a, ai (say). The relations that give r, 0, and t in this case 
in terms of r0,1, 0o, 1 and ai are 

0 — 0o,i = cos-1 ± 
/ r0,i2— raA 
\rro,i— raj1 

(24) 

X1/2 ai ./Fr + aA , T7 ~ ... . , . N 
¿ - ¿0 = -p F(-_ yyñ cos Loa-'aJ ’ ( 7 < °’ elllPtlc orblt} 

t — t0 = + roa^P2), ( F = 0, parabolic orbit) (25) 
2 aF 

_ X1/2 i ai / roa — «i \ 
0 y ~1~ F3/2 m \ F r + ai + X1/2 F1/2/ ’ 

where 
2air2 2 X = r2 h 2air — roa2, 
roa 

( F > 0, hyperbolic orbit ) 

F= 1 
2ai 

roa 
(26) 

and where t0 is the arbitrary zero point from which time is being measured at closest 
approach. 

The continuation of the (4-4) orbit (for descriptive simplicity, the case in which both 
configurations are polytropes of index n = A will be referred to as the [4-4] case) for those 
values of r for which ^(r) ^ 1 is clearly to be found among the orbits included in equa- 
tion (24). The orbit that does provide the desired continuation can be determined from 
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the requirement that at the fitting point (any point for which ^(r) ^ 1), the orbital 
values for 0(r), d6/dr, and d2d/dr2 be continuous. It follows from this requirement that 

foa 

dd/ar \ dB/d 

r2 sin( B — B^t\)dB/dr 

and 
1 — cos( B — 0o,i) + r sin( 0 — B0,i)dB/ dr 1 

1 
cti = >-0,l[l — cos( 0 — 00,1 ) + r sin( 0 — Bo,i)dB/dr i 

(27) 

(28) 

(29) 

where the right-hand sides of these last three relations are to be evaluated at the fitting 
point. The desired continuation of the (4-4) orbit is then obtained from equation (24) for 
the values for r0, i, 0o, i, and ai so obtained. The time dependence given by equations (25) 
can be transformed to the units appropriate to the (4-4) orbit through the requirement 
that the velocity be continuous across the fitting point. 

No numerical integration is required in order to determine the speed along the orbit. 
In the units adopted, equation (4) reduces to 

F-[1+2*(îr1-î7r)r 

from which the relative speed can easily be obtained. 
iii) Numerical results.—The procedure just described has been carried through nu- 

merically for eight different pairs of values r0 and a. The values of r0 chosen have been: 
0.0, 0.1, 0.2, and 0.3. For each of these values of r0 the calculations have been carried 
through for two choices for a. One of the values for a was so chosen that it corresponds to 
the (4-4) escape orbit, i.e., to the (4-4) orbit corresponding to zero total energy. This a 
has been denoted by aesc (4-4) ; from the requirement that the total energy E be zero, it 
can be readily shown that aesc (4-4) has the value /'0/[24r(ro; n\ = 4, ^2 = 4)]. The second 
value for a for a given r0 has been so selected that it corresponds to the escape orbit for 
the given initial conditions for the corresponding (5-5) case, the case in which the mass 
distributions are treated as polytropes of index n = 5. This latter a has been denoted by 
«esc (5-5) and has the value r0/2. Finally, it is of some interest to determine for a given 
value of r0 the value of a, aCir (say), corresponding to circular motion for the (4-4) orbit. 
This follows readily by equating the gravitational force to the centripetal force for the 
case of circular motion. In the units employed here, we obtain in this way 

acir= [*(ro)/fo]-(d*/¿r)r=r/ 
(31> 

In Tables 4, 5, 6, and 7 are tabulated the angle 0, time t, and speed F, as functions of 
the distance r, between the centers of the two configurations for the (4-4) motions for the 
cases aesc (4-4) and aesc (5-5) for the values: 70 = 0.0, 0.1, 0.2, 0.3. It will be noted that 
there are two different columns giving the time dependence. They differ only in the choice 
of the zero point. In the first of these columns the zero point is taken as the point of 
closest approach, while in the second the zero point is taken as the time when r = 2 at 
first contact. 

For each of the eight (4-4) orbits, the corresponding motions for two related (5-5) 
orbits of particular interest have been derived. For the first of these, the (5-5)/ case (say), 
the conditions for the (4-4) and (5-5) motions are taken to be identical at the point of 
closest approach for the (4-4) orbit. The results for this case follow from equations (24) 
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and (25) for r0t i, 0o, i, and ai equal to the values of r0, 0o, and a for the (4-4) orbit. These 
results are included in Tables 4-7. The unit of time is that for the corresponding (4-4) 
motion, and time is measured from the common point, the point of closest approach for 
the (4-4) orbit. 

The second of the two (5-5) orbits related to a given (4-4) orbit is that which provides 
the analytic continuation of the (4-4) orbit for r > 2. The relevant parameters for these 
(5-5) orbits, the (5-5)n orbits (say), were determined in the course of deriving the 
analytic continuation for the (4-4) orbits. The data describing the (5-5)n orbits cor- 
responding to each of the (4-4) orbits are also included in the aforementioned tables. 
Here, too, the unit of time has been so chosen that for r > 2, the velocities at correspond- 
ing points along the (4-4) and (5-5)n orbits are equal. The zero point for time for this 
case has been taken at the point where r = 2 at first contact. 

The various orbits referred to above are illustrated in Figures 1 and 2. Since the mo- 
tions are symmetric about the point of closest approach, the tables contain 0, /, and V 
as functions of r for only half the orbit, beginning with the point of closest approach. 

Fig. 1.—^Relative orbits of SJfi about SJL for the case a — aeBc (4-4). The (4-4), (5-5)i, and (5-5)n 
orbits are represented by solid, dashed, and dotted curves, respectively. For the case ro — 0.0, the (5-5)i 
orbit degenerates to a point at the center. 
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From the results obtained for each pair of values for r0 and a, we can derive the cor- 
responding motions in absolute units for a twofold infinity of cases. Let us define the 
conversion factors for transforming the chosen units to absolute units by means of the 
following relations; 

r (absolute units) = KrX r (chosen units) , 

and t (absolute units) — KtXt (chosen units) , (32) 

(absolute units) = X 5DÎ (chosen units) . 

It then follows from the definition of the units chosen that 

= I? (absolute units), Kt = ( absolute units ), K<$i = /x ( absolute units ). (33) 
v o 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
65

A
pJ

. 
. .

14
1.

 . 
76

8A
 

No. 2, 1965 COLLIDING GALAXIES 791 

If a in absolute units is expressed in terms of its value in the chosen units by 

a (absolute units) — KaX a (chosen units) , (34) 

then from equations (23) and (33) the conversion factor for a follows as 

Ka — RjjlVq2 (absolute units) . (35) 

c) Estimate for the Energy Interchange 

The most self-consistent procedure for estimating the energy interchange on the basis 
of the foregoing work is to derive the energy interchange on the basis of the center-of- 
mass motions in the first approximation. However, for the purpose of the present pre- 
liminary survey of the problem of energy interchange, it appears more reasonable and 
useful to emphasize a somewhat different approach. As was noted earlier, the derivation 
of estimates for the energy interchange on the basis of uniform rectilinear center-of-mass 
motions is a much simpler problem in practice than is the corresponding derivation that 
uses the center-of-mass motions derived according to the first approximation. Further, it 
is readily seen that results derived for At//1Z71 on the basis of uniform rectilinear relative 
motions for the galaxies for given p/R scale in a very simple way insofar as the masses 
fflîi and m, the common radius R, and the initial relative speed V of the two galaxies are 
concerned; this is not the case for calculations of At//11/1 based upon center-of-mass mo- 
tions in the first approximation. Thus, for example, if the two colliding galaxies are each 
treated as polytropes of index 4 having common radii, then insofar as the numerical cal- 
culations are concerned A t//11/1 needs be calculated only as a function of the one parame- 
ter p/R. It follows that if for given initial conditions, the value of At//11/1 that would be 
derived on the basis of the center-of-mass motions in the first approximation can be 
approximated by the value of A t//11/1 derived on the basis of a uniform rectilinear center- 
of-mass motion related in some simple way to the motion in the first approximation, then 
a considerable reduction in computational work will have been achieved. Since the great- 
est contribution to AZ7/Z7 is expected to result from the motion near the point of closest 
approach, it seems reasonable to expect that the values for AC//as derived on the basis 
of the first approximation and on the basis of uniform rectilinear center-of-mass motion 
will be approximately the same so long as the same separation and relative speed at 
closest approach are used in the two calculations. This prediction will be tested for one 
particular case of a very close encounter and will be found to be satisfied to a reasonable 
approximation. 

Here, as in the preceding subsection, it will be assumed that the two galaxies can be 
treated as polytropes of index 4 having common radii. Let us first derive estimates for 
AC//1 C/| on the basis of uniform rectilinear motions. Representative stars are chosen in 
sets of six in such a way that the stars in each set lie on the points of intersection of a 
sphere of given radius centered at the center of galaxy 9K2 with the axes of the Cartesian 
coordinate system introduced earlier. The stars are chosen at intervals of 0.1 R, and the 
results for AC//| C/| are given numerically for the case in which the two galaxies have 
identical masses and radii equal to 1011 SDîo and 10 kpc, respectively, and where the rela- 
tive velocity of the centers of mass is 1000 km/sec. For each of seven different values of 
the impact parameter, the root-mean-square values for the change in the velocity of the 
stars in the different representative sets are given in Table 8; also given in the table are 
the corresponding values for AC//| C/| for the galaxy as a whole. The circular velocities 
corresponding to the distances from the center of these representative sets are included 
in the table for purposes of comparison. It is clear from the work in Section II that for a 
given p/R, the scaling of At//11/1 in $îi, SDfe, R, and V, goes as 

At/ 1 m2 i 
I t/| ^ V2R2 Q2

CC 9ÏÏ2 V2R’ 
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so that the numerical values given can be readily converted to other choices of 9Ki, 
Rf and V by means of equation (36). 

The dependence of energy exchange on the impact parameter for values of p/R that 
are not too small can be obtained from equation (21). If the galaxies are represented as 
polytropes of index 4, then rc = 0.188 7?, and equation (21) reduces to 

AU 

\U\ 
0.0314 

Gæîi2i?3 

9W2ÿ4F2‘ 
(37) 

For the case in which 9Ki and SDfe are equal, equation (37) can be rewritten in terms of the 
maximum circular velocity, vciT', for the galaxies as 

AU ^ Ed/2/?4 

I i/| ^ V2p* ' 
(38) 

In Table 8 the dependence upon p of the values of AZ7/1Z71 are compared with those pre- 
dicted by equation (37). It is seen that the dependenceof AU/\U\ on ^ is described with 
reasonable accuracy^by equation (37) or (38) for p/R > 0.5 and is in error by less than a 
factor of 3 for p/R% 0.2. 

From the results derived here on the basis of uniform rectilinear relative motion, it can 
be readily shown that it is the very close encounters, in spite of their low frequency of 
occurrence, that contribute most to AU/\U\ in the life of a typical galaxy. Thus, the 
contribution to AZ7 by encounters corresponding to values of the impact parameter less 
than or equal to a specified value for p/Rm units of the change in U due to encounters for 
all value of p/R is given by 

rv/R 
/ {p'/R)^U{p’/R)d{p'/R) 

- • (39) 

fC°{p'/R)MJ{p'/R)d{p'/R) 

Table 8 also gives AUp¡r/AU^ for several different values for p/Rior the case of uniform 
rectilinear center-of-mass motion. The importance of very close encounters for the inter- 
change of energy is readily apparent from the results given in this table. 

The foregoing calculations have been carried through on the assumption that the 
relative motion of the centers of mass of the two galaxies is uniform rectilinear motion. 
These calculations, therefore, do not attempt to include the effects of the change in the 
relative velocity during an encounter. To examine the importance of such effects, it 
seems reasonable to carry through calculations for AU/\ U\ on the basis of the center-of- 
mass motions according to the first approximation. This has been done for the case 
ro = 0.2, a = 0.1 of the preceding subsection. This case corresponds to a value of the 
impact parameter of about 0.5 R. If the masses of the two galaxies are taken to be 1011 

solar masses and their common radii to be 10 kpc, it follows that the relative speed at 
closest approach and at infinity are about 940 km/sec and 380 km/sec, respectively. 
Representative stars have been chosen here just as for the calculations oí AU/\U\ on the 
basis of uniform rectilinear motion, and for the representative stars at 0.1 R and 0.3 R, 
the Cartesian components for the change in velocity, Avf have been derived. It has not 
seemed necessary to carry out the calculations for sets of representative stars beyond 
0.3 R for the present purposes since the contribution by such stars to AU/\U\ is small, 
more than 90 per cent of the total mass lying interior to 0.3 R. The results so obtained 
are given in Table 9. For the purposes of comparison, the corresponding values for 
Cartesian components of At;' for the case of that uniform rectilinear relative motion cor- 
responding to the same separation and relative velocity at closest approach (i.e., p/R = 
0.2, V = 940 km/sec) have also been included in the table. It is seen that both for the 
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representative stars at 0.1 R and 0.3 R, the contribution to AU/\U\ for the two cases 
differ by a factor of about 1.5 or less. This result supports the prediction made above 
concerning the values îox AU/ \ U \ derived according to the two different center-of-mass 
motions. 

We are now in a position to make a few further comments concerning the useful- 
ness and accuracy of the first approximation for the center-of-mass motions. First, al- 
though in the discussion just presented, it has been shown that the motion in the first 
approximation need not be used directly in the calculation of the energy exchange, a 
knowledge of the motion in the first approximation has been necessary in order to deter- 
mine that uniform rectilinear motion corresponds to the same separation and relative 
speed at closest approach as does the motion in the first approximation. Now, although 
the center-of-mass motion in the first approximation is not the true motion, it appears to 
provide a better approximation to the true motion than does the motion derived on the 
basis of point masses. In any case, the difference between the motions predicted by the 
first approximation and by the treatment according to point masses should indicate for 
the first time the order of the uncertainties involved in the latter approach. With the 
computed estimates for the energy exchange, as well, we should be able to go well beyond 
this in drawing conclusions concerning the true motion. 

IV. IMPLICATIONS OP THE RESULTS AND DISCUSSION 

a) Effects of Collisions on the Structure of Galaxies 

It will be seen from the results obtained for the energy exchange in the previous section 
that for close encounters the increase in internal energy of a galaxy due to an encounter 
with a second galaxy can easily be of the same order as its initial internal energy. When- 
ever this is the case, the theory for the center-of-mass motions in the first approximation 
will not provide an accurate description of the center-of-mass motion since the assump- 
tion that the energy corresponding to the center-of-mass motion of the galaxies is con- 
stant would not then be even approximately correct, in general. The above theory, how- 
ever, does provide something of a lower limit for the energy exchange in the sense that a 
more accurate treatment, that takes into account the decrease in the external energy due 
to this energy transfer, will lead to still greater values for the energy exchange. The above 
results, therefore, show that the effects of increases in the internal energy of galaxies as a 
result of close encounters can markedly influence the structure of galaxies. They also 
support Zwicky’s (1957) contention that on close encounters galaxies can disrupt each 
other and populate the intergalactic space not only with gas and dust but also with stars. 
When it is realized that double and multiple systems of galaxies are quite common, it 
appears likely that major changes in the internal structure of galaxies due to collisions are 
important for a non-negligible number of the galaxies in the observable part of the 
universe. 

Previous rough estimates for the energy interchange have been carried out by Spitzer 
and Baade (1951). It is of considerable interest to compare their results with those ob- 
tained here. Making a very rough estimate for the fact that the galaxies are not mass 
points, Spitzer and Baade concluded that in a hundred collisions the internal energy of 
an elliptical galaxy would increase by about 2 per cent, so that the effects of one hundred 
collisions on the size and shape of a galaxy would be negligible. In their calculations, 
Spitzer and Baade assumed that the velocities of the stars in the colliding galaxies range 
up to 200 km/sec and that the relative velocity of the galaxies was 2400 km/sec (as in the 
Coma cluster). Since AU/\U\ varies as vc\/

2/V2, it follows that the results given in Table 
8 should be reduced by a factor of about 20 in order that a comparison may be made 
with Spitzer and Baade’s estimate. When this is done, the present treatment predicts for 
the above velocities an increase in internal energy of about 3 per cent in a hundred col- 
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lisions, even if a collision be defined in the most liberal way so as to include the situations 
of negligible interpenetration. Now, a collision in Spitzer and Baade’s sense is an encoun- 
ter in which there is an appreciable overlapping of the distributions of the interstellar 
matter within the two galaxies and hence, presumably, of the stars. Since for a polytrope 
of index w = 4, about 90 per cent of the mass is inclosed within a radius equal to 0.3 R, 
it is perhaps more appropriate for the purposes of the present comparison to define a 
collision as an encounter in which the spheres containing this fraction of the mass inter- 
penetrate. If a collision be defined in this way, it follows that an increase oî AU/\U\ by 
about 30 per cent is to be expected in one hundred collisions. Thus, insofar as a compari- 
son of Spitzer and Baade’s very rough model with the presently suggested (and still 
highly idealized) model is meaningful, it appears that the changes in the internal energy 
that result from collisions of galaxies may be considerably larger than might have been 
inferred from a superficial examination of the results given by Spitzer and Baade. 

b) Dynamics of Double Galaxies 

It is known from classical dynamics that an encounter between two mass points sub- 
ject only to their mutual gravitational interaction cannot lead to the formation of a closed 
binary system without the aid of a third body. It will be seen from the foregoing discus- 
sion, however, that two colliding galaxies can form a binary system by virtue of the de- 
crease in their center-of-mass energy during an encounter. For the case in which the 
collision is one involving two galaxies with common mass 1011 9Ko and common radius 
10 kpc and for the initial conditions such that the relative speed at infinite separation is 
380 km/sec and the impact parameter is 0.5 R, the energy, E, of the center-of-mass 
motion is only about half the computed increase in the internal energies of the two gal- 
axies. Thus, although the two galaxies will clearly be moving on hyperbolic orbits with 
respect to one another after the encounter if it is assumed that energy of center-of-mass 
motion is conserved, a more accurate treatment is likely to show that the two galaxies 
with the given initial conditions will form a double system as a result of the encounter. 
It also follows that double galaxies, however formed, will revolve around each other with 
mean separations that will continually decrease in time. Given long enough, the com- 
ponents of a double galaxy will disrupt one another and give rise to a single loose system. 
Natural extensions of the present work should provide estimates for the rate at which 
this evolution will proceed. 

c) Dynamics of Clusters of Galaxies 

One application of the present theory involves the study of the escape of galaxies from 
clusters as a result of close encounters with other galaxies within the cluster. In order to 
decide whether or not a galaxy can escape from a cluster by virtue of the change in 
velocity it has undergone as a result of an encounter, one has simply to compare the 
velocity of escape from the cluster at that point with the velocity of the galaxy after the 
collision. Since the treatment of galaxies as mass points leads to predictions of greater 
changes in the relative velocities as a result of encounters than does the more accurate 
first approximation developed here, predictions based upon the former treatment may 
require significant modifications. The differences may well be important in the study of 
escape of galaxies from at least certain clusters. Here, however, it must be emphasized 
that the first approximation for the center-of-mass motions will, itself, be a reasonably 
accurate approximation only if the value for AU/\ U\ calculated for this case is of a 
smaller order than unity. From the above discussion it is clear that \î AU/\U\ is of order 
unity, then the increase in the internal energy will take an appreciable amount of energy 
out of the center-of-mass motion and will act further to reduce the probability that a 
galaxy will escape from a cluster as a result of a close encounter. 
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It may also be of interest to note that, if one is dealing with a cluster in which sig- 
nificant fractions of the galaxies are interpenetrating one another at any typical instant, 
then the virial theorem for a cluster in quasi-equilibrium, 

(40) 

(cf. Goldstein 1950, eqs. [3-28]), reduces to 

2) 
dVi Xu) 

pairs 
(41) 

where the sums in the first and second terms are to be taken over all the galaxies and over 
all pairs of galaxies, respectively, and where rij denotes the distance between the centers 
of the i\h andjth galaxies, where SDîi is the mass of the ith galaxy, and Vi is the magnitude 
of the velocity of the ¿th galaxy with respect to the center of mass of the cluster. For a 
pair of interpenetrating galaxies, ^(r^) lies between 0 and 1, and d^{x)ij/dXij is a positive 
quantity. Hence it follows from equation (41) that in equilibrium the members of the 
cluster will have smaller velocities than those predicted in the approximation that treats 
the galaxies as mass points. As a rule, the number of galaxies in a cluster that are under- 
going interpenetrating collisions at any instant appears to be very small; hence the 
modified form of the virial theorem given by equation (41) will probably hardly differ 
from the familiar one in most cases. 

It appears that the equations for the relaxation time of a cluster derived by Chan- 
drasekhar (1942) will give fair estimates when applied to clusters of galaxies, at least 
insofar as the order of magnitude is concerned. Nevertheless, the derivation of the expres- 
sion for the relaxation times is significantly less good when applied to galaxies than when 
applied to stars for three different kinds of reasons. First, of course, the theory for the 
relaxation time has been developed for encounters involving the gravitational interaction 
of mass points. Since the mean separation of neighboring galaxies in clusters is not more 
than about an order of magnitude greater than the dimensions of the galaxies, encounters 
involving the overlapping of galaxies and hence deviations from inverse square forces 
will be important in clusters of galaxies. Second, the conversion of center-of-mass energy 
into internal energy may be an important additional factor in the case of a cluster of 
galaxies. Finally, because of the differences between the masses, mean separations, and 
mean relative velocities for the case of clusters of galaxies and for the case of clusters of 
stars, the neglect of “non-dominant” terms at three different points in Chandrasekhar’s 
derivation of the relaxation time, 7#, is not justified insofar as applications to clusters of 
galaxies are concerned. For values for the relevant parameters appropriate to clusters of 
galáxies, the neglected terms are of the same order as the “dominant” term, the only 
term retained in Chandrasekhar’s analysis. For these reasons, the usual expression for the 
time of relaxation must be used with some caution in considering clusters of galaxies. It 
seems unlikely, however, that the effects described above will change the relaxation time 
by more than an order of magnitude. 
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