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ABSTRACT 
The bottom of a layer of water is maintained at 0° C and the top at a temperature greater than 4° C. 

Thus a gravitationally unstable layer of fluid lies below a layer which is stably stratified. When convection 
occurs in the lower layer, the motions will penetrate into the upper layer. This system is analyzed to 
determine the extent of the penetration into the stable fluid. The perturbation method employed in the 
present paper is a modification of the technique discussed in an earlier paper and is applicable to a system 
in which the infinitesimal motions can be deduced only approximately. The results indicate that the 
system can become unstable to a finite amplitude disturbance at values of the Rayleigh number less than 
the critical value of infinitesimal stability theory. A simple physical explanation is put forth to explain 
the occurrence of a finite amplitude instability. Experimental efforts by Furumoto and Rooth (unpub- 
lished) have not been successful in determining whether or not a finite amplitude instability occurs. 

I. INTRODUCTION 

In natural phenomena the process of thermal convection ordinarily involves penetra- 
tion into a stably stratified fluid. Examples of this penetrative convection can be cited 
in several of the areas of study of geophysical fluid dynamics. The atmosphere is bounded 
below by the ground or the ocean, and, as these bounding surfaces are heated by solar 
radiation, the air near the surface becomes warmer than the upper air and therefore 
gravitationally unstable. When convection occurs, the warm air is carried aloft into 
regions which are stably stratified. In the oceans evaporation is the primary physical 
process which gives rise to gravitational instability near the surface. As the cool surface 
water is carried downward, it also enters regions that are stably stratified. In both 
meteorology and oceanography the extent to which convective motions penetrate into 
the bounding stable fluid is difficult to determine because the stability of the latter is 
determined by large-scale dynamical processes. Thus the study of penetrative convection 
is coupled with that of the general circulation of the entire fluid system, and any analysis 
of the penetration must either incorporate the large-scale processes as part of the analysis 
or take these processes into account by some assumed parametric representation. 

Penetrative convection in stars can, for the most part, be decoupled from other circu- 
lation processes. Here the surface layer is stable. At some distance below the “surface” 
the increase in temperature due to adiabatic compression causes negative hydrogen to 
form and the latter is opaque to photons. The temperature gradient therefore rises to 
a value greater than the adiabatic gradient and the region is unstable. Depending on the 
type of star, this superadiabatic gradient can extend far into the interior to a point where 
the very high temperature causes the gas to become completely ionized and the gradient 
no longer is superadiabatic. An unstable layer is formed, therefore, with stable fluid both 
above and below. Although the static state is determined by molecular processes alone, 
the analysis is complicated by the introduction of radiative processes into the energy 
equation, as well as by large variations in temperature, density, and pressure. 

It is desirable to isolate the phenomenon of penetrative convection to a system which 
is free of the difficulties encountered in the natural phenomena mentioned above. This 
isolation can be effected by any one of three laboratory experiments. 

The first (and the one treated in this paper) is an experiment with a layer of water 
with boundary temperatures of 0° C at the lower boundary and >4° C at the upper 
boundary. In the static state the temperature gradient is constant, and the layer of 
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maximum density is at the 4° C level. The fluid below the 4° C level is gravitationally 
unstable; the fluid above is stable. When convection occurs in the lower region, the mo- 
tions will penetrate into the stable fluid. This experiment is being performed by A. 
Furumoto and C. Rooth at the Woods Hole Oceanographic Institution. 

The second experiment, presently being carried out by A. Faller of the Woods Hole 
Oceanographic Institution, is a quasi-steady one in which a layer of air is bounded by 
two horizontally flat boundaries which are maintained at horizontally uniform tempera- 
tures. The boundary temperatures are steadily increased or decreased with time. Be- 
cause of the finite conductivity of air, the temperature at an interior point of the fluid 
lags behind the boundary value, and two layers—one gravitationally stable, the other 
unstable—are formed. When convection occurs, the motions of the unstable layer pene- 
trate into the stable layer. 

The third experiment is not a thermal experiment but, instead, involves the destabi- 
lizing effect of centrifugal forces when two concentric cylinders are rotated in opposite 
directions (the familiar Taylor experiment [1923]). The rotation of the inner cylinder 
causes the adjacent fluid to become unstable and to move toward the outer cylinder. The 
rotation of the latter creates a stable cylinder of fluid into which the unstable flow will 
penetrate.1 

Fig. 1.—A layer of water is bounded by two surfaces with temperatures 0° C at the lower boundary 
(s = 0) and >4° C at the upper boundary (z = h) The depth of the 4° C layer in the conductive state 
is denoted by d{< h). The linear temperature profile corresponds to the conductive state; the curved 
{dashed) temperature profile is a schematic picture of the horizontally averaged profile when convection 
is present. The density profiles are shown in the right side of the figure. 

Of the three experiments, the first is probably the simplest to carry out in the labora- 
tory. The basic variable to be measured is the temperature, which is considerably simpler 
to determine than is the azimuthal velocity in the moving system of oppositely rotating 
cylinders. Also the steady-state character of the experiment is a definite advantage over 
the quasi-steady-state experiment. We shall therefore confine our attention to the first 
experiment. A schematic diagram of the system is shown in Figure 1. The static density 
and temperature profiles are denoted by “conductive.” After convection has set in, 
the horizontally averaged profiles are distorted to shapes which are sketched in and 
called “convective.” 

According to Furumoto and Rooth, the convective state involves a very broad region 
of water with temperature at or slightly below 4° C. The fluid near the upper boundary 
has a linear vertical temperature gradient which is essentially uniform horizontally. In 
the convective region there are (Bénard) cellular-like motions, and, for the experiments 
where the temperature at the upper plate was between 12° and 20° C, observations of 
the vertical structure indicate that more than one cell exists. Near the cold bottom plate 
the motion is considerably weaker, and the horizontally averaged vertical temperature 
gradient has the same value as that of the fluid near the upper boundary. 

Furumoto and Rooth have obtained limited quantitative measurements of some of 
the variables. In the plot of vertical heat transport, H, versus Rayleigh number, R (see 
eq. [25] for definition), it appears that a curve given by # ^ Rl,z can be drawn through 

1 The analogy between the water problem described above and the flow between two cylinders of 
opposite rotation was first pointed out to me by W. V. R. Malkus, who also encouraged Furumoto and 
Rooth to conduct the experiment. 
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the available data in the entire convective range. This is the form of the asymptotic 
law for large Rayleigh number in the ordinary (Bénard) convection experiment of a fluid 
heated from below and cooled from above. The fact that it holds even for slightly super- 
critical values in the present experiment is surprising because the H ~ Rl,z law is 
associated with fully turbulent Bénard convection. 

A second anomalous feature of this experiment which may have some bearing on the 
validity of the H ~ R1,z law for small R is the possibility of the growth of a finite ampli- 
tude disturbance at a value of the Rayleigh number smaller than the critical value which 
is derived from linear stability theory.2 One can give a simple physical argument for the 
occurrence of a finite amplitude instability. In the static state the density, p, has a 
maximum at the 4° C level, and the equation of state is essentially parabolic about the 
4° C point, i.e., p = p0(l — aT2), where T is the deviation of the temperature from 4° C 
and po is the density of 4° C water. Any process which tends to mix water of, say, 3° 
and 5° C generates 4° C water. This mixing creates water with maximum density 
throughout a layer of large thickness. If a finite amplitude disturbance were capable of 
effecting this mixing of water, it would generate a gravitationally unstable layer which 
would be deeper than the corresponding layer in the conductive state. Hence a finite 
amplitude instability could result if large-amplitude noise were available. It is possible 
that this finite amplitude instability could occur at values of the Rayleigh number con- 
siderably smaller than the critical value according to linear theory. In such a case, large- 
amplitude, subcritical motions would result. Furthermore, the convective process tends 
to create a deep layer of water with a horizontally averaged temperature close to 4°. 
However, this type of regime with sharp boundary gradients and a deep isothermal 
region is characteristic of fully turbulent flow. Hence one might expect the H ~ Rl/Z 

law to hold for moderate Rayleigh numbers. 
In the analysis which follows it is shown that a finite amplitude instability is possible 

for an experiment where the boundaries are idealized to aslip,, or “free” boundaries. 
(There is no reason to expect that this conclusion would be altered by a rigid boundary 
analysis.) The solution of the finite amplitude problem is pivoted about the linear sta- 
bility analysis. Because the results indicate a subcritical instability, the second-order 
solution can give no verifiable results of heat transport versus Rayleigh number. The 
E versus R relation, which might be observable experimentally, requires extension of 
the present analysis to the fourth or preferably the sixth order. 

The physical problem which is treated here leads to a mathematical problem for 
which exact solutions have not been found even in the stability analysis. The stability 
analysis can be handled approximately without too much difficulty by applying the 
Fourier series approach which Jeffreys and Jeffreys (1946) describe for treating the rigid- 
boundary Bénard problem. However, the finite amplitude problem cannot be solved by 
the method proposed by Malkus and Veronis (1958). The reason for this departure from 
the previously established approach is that the stability problem about which the finite 
amplitude solution is pivoted has been solved by using approximate eigenfunctions. In 
the iterative procedure for the finite amplitude solution the small errors in the stability 
analysis mount up, and considerably larger errors result even in the second order when 
the method of Malkus and Veronis is used. 

II. EQUATIONS EOR PENETRATIVE CONVECTION 

The appropriate equations for the study of the finite amplitude problem are the 
Boussinesq form of the Navier-Stokes equations and the heat equation: 

^7+Wv= - — Vp-^k+vV2v, (1) 
dt Po Po 

2 We shall refer to such values of R as “subcritical.” 
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V* t> = 0 , 

^+t;-vr = *v2r. 
ot 

(2) 

(3) 

In the vicinity of the 4° C point the equation of state can be adequately represented by 
the quadratic form3 

p = po[l — a(T — To)2] , (4) 

where r0 = 4° C, a « 7.68 X 10_6/(° C)2, and p0 is the density at 4° C. Equation (4) 
is very accurate near the 4° C point and involves a 10 per cent error at 14° C. In the 
experiment, however, water of higher temperature is in the stable region, and one may 
anticipate that errors in the equation of state for higher temperatures affect the results 
negligibly. 

Substituting equation (4) in equation (1) yields 

dv 
dt 

+ v-Vv = 
Po 

Vp-g[l -a(T-TQ)
2]k+vV2v . (5) 

It is convenient in the subsequent development to divide the temperature into a mean 
and a fluctuating value, where the mean corresponds to a horizontal average and is a 
function of z alone in the steady-state experiment. Thus, denoting the horizontal average 
by a bar or by an angular bracket, we have 

T = T(z) + T(x, y, z, t) , (6) 

where, by definition, <r(x, y, z, /)> = 0. 
A horizontal average of equation (3) gives the equation for the mean temperature. 

-'S+s«”2'»-0 

or, upon integration with respect to z, 

dT 
— K —b (wT) — ¿7 = Const., 

dz 

(7) 

(8) 

where H is the vertical kinematic heat flux (downward in this problem). A vertical aver- 
age of equation (8) produces another equation for H: 

« —r+ (wT)m — H, (9) 

where {wT)m means an average over the entire fluid. In equation (9) AT = 4° C and 
d is the height of the 4° C layer above the bottom boundary so that &T/d is the (con- 
stant) temperature gradient when only conduction occurs. 

From equations (8) and (9) we derive the following relation between the mean gradient 
and the fluctuation quantities w and T: 

dT AT / rp\ 
k = k—r+ (wT) — \wl ) 

dz d 
(10) 

3 In tables of physical constants the equation for the density of water at atmospheric pressure as a 
function of temperature is given as a polynomial in T with 0° C as reference temperature. When 4° C 
is used as reference temperature, a has the value given here. 
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This can be integrated to yield 

'AT (wT) 
r-r0= -Ar+(^--^^) z+- f\wT)dz. 

\ d K / kJq 

645 

(ii) 

We substitute equation (6) into equation (5) and incorporate the mean part of the 
temperature into the pressure (total term denoted by p) to arrive at 

i^+„.Vt;= -lVf+ [2ga(T-To)T+ gaT^k+vV^v. 
at po 

(12) 

We take the z component of V X V X (eq. [12]) and use equation (2) to eliminate the 
horizontal velocities u and v in the linear terms and finally have 

where 

v2 = ^l + ^i 
1 dxi dy2 

(jt ~"V2) ^w^2Sa(T-T0)V¡T+ gaV^T2 + L, 

and (vVfl)l — VKvVw). 
dzldx dy J 1 

(13) 

Subtracting equation (7) from equation (3) yields 

ÔT V7‘2rP dT 1 
Tt~KVT=~Tzw~h' 

(14) 

where h = v*vT — {d/dz){{wTy}). 
We can eliminate the pressure from the horizontal equations of motion and make use 

of the continuity equation to relate the horizontal velocity components to the vertical 
velocity in the linear terms. Thus 

(fr,v)(v|„+5fï;) 

d2 / s d2 ^ , 
(v'Vu) —-7—Vfl). 

dydzj dxdy'~ " dx2 

The boundary conditions at z = 0 and z — h are given by 

u = v — w = 0 for rigid boundaries , 

== w = 0 for free boundaries, 
dz dz 

and, since we consider the boundary temperature fixed, 

71 = 0 at z = 0, z — h . 

(15) 

(16) 

(17a) 

(17b) 

(18) 

Equations (13)-(18) form the fundamental set of equations for the analysis. For the 
subsequent development we find it convenient to non-dimensionalize the equations in 
the following fashion. Write 

r=hrf, T = 
V K  J'/ ¿ ^ 

2h*gaAT ’ k x d' 
(19) 
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646 G. VERONIS Vol. 137 

and R = [2d3ga(AT)2/kv]\4. Then equations (13)-(16) can be written as (all primes are 
dropped and the variables are now non-dimensional) 

61 “ v2)v2w=" [( 1 _ x 2}+x 2 X2<wr> ] 

X V2T V2T2 — - L 1 2R 1 a 

(irv2)T= ^+<wr>- (wd^iw+ä, 

GI -’■X’î“+äSi) - (•v ' > - 5( ^ •v“ > ] • 

d2 

dy2 

d2 

dydz. 

where the non-dimensional form of equation (11), viz., 

T-T0 

AT 
-Î+\[l-^(wT)m]z+^f\wT)dz, 

(20) 

(21) 

(22) 

(23) 

(24) 

has been used in equation (20). 
The non-dimensionalization is straightforward. Either hold can be used for the length 

scale and either ic/d or v/d for the characteristic velocity. The remaining definitions in 
equations (19) follow almost automatically. 

The quantity 

R - 2\4 ¿3= 2X4 d3 (25) 
KV P* KV 

(where Ap is the [constant] density difference between 0° and 4° C water) is 2\4 times 
the Rayleigh number for the present problem. To simplify the notation, we incorporate 
the factor 2\4 into R. However, when we speak of the Rayleigh number, it should be 
understood that the reference is to R/2\A. As in the Bénard problem, the Rayleigh num- 
ber contains a ‘‘potential-energy-releasing’’ term in the numerator, viz., 

q(Ar)2 / = gAp\ 
g d dpj' 

and the product of two “dissipation” terms in the denominator, viz., K¡d2 and v/d2. Thus 
an increase in R corresponds to an increase in rate of release of potential energy or a 
decrease in rate of dissipation—either would tend to destabilize the system. 

The method of solution is based on the method proposed by Malkus and Veronis 
(1958). We expand the velocity and temperature fluctuation in a power series of a small 
amplitude factor €. The parameter, i?, is also expanded in a power series. Thus 

v = evo + e2Vi + ezv2 + . . ., 

r = er0 + e2Tx + e3r2 + ..., (26) 

R^Rv+eR^ e2R2 + . . . . 

Since the equations can now be expressed in a power series in c and since the coefficients 
of each power of e must vanish for each equation, we are led to a series of ordered equa- 
tions in Vi, Ti, Ri- The ordered set will not be written here, but each set of equations 
will be written down as needed. 
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III. FIRST-ORDER EQUATIONS 

Substituting equations (26) in equations (20) and (21), we can write the set of equa- 
gions for first-order velocity and temperature fluctuations: 

f27) 

(28) 

The boundary conditions in terms of the variables wq and To can be derived from equa- 
tions (17), (18), and (2). We now restrict our attention to stress-free boundaries. Then 

Wq 
d2Wo 
dz2 

T0 = 0 , 

= 0, 
z — 0 y 1 (29) 

We can eliminate one of the variables To or wo- In the present case it is more convenient 
to work with To, and we therefore eliminate wo from equations (27) and (28), and, using 
equation (28), we can express the boundary condition (29) in terms of T0. Thus 

6 v!)(fr ^ v,:r»-■E"a - 

To = 
d2T0 d4r0 

dz' dz‘ 
= 0 on z = 0, 1 (31) 

Equations (30) and (31) are homogeneous equations in T0. We are therefore confronted 
with an eigenvalue problem. In particular, we wish to find the relationship between Rq, 
o-, and the time and spatial dependence of T0, which must be satisfied for the basic 
conductive state to be unstable to infinitesimal disturbances. 

We shall assume separability of t, x, y, and z in equation (30). In particular, we assume 
a form 

To ~ e8tf(x, y)T0(z), 02) 

where 

V?/0, y) = -a?f(x, y), (33) 

i.e., where T<, has a cellular structure in the horizontal direction. Then equations (30) 
and (31) can be written as 

( D2 — a2 ) |A — (Z>2-a2)] [5- (P2-a2)]r0= -a2i?0(l -\z)T0, (34) 

T0 = D2T0 = DAT0 = 0 on z = 0, 1 , os) 
where D = d/dz. 

a) Principle of Exchange of Stabilities 

It will first be shown that s must be real for undamped disturbances in the free bound- 
ary systems,4 i.e., for marginal stability s = 0. 

Multiply equation (34) by Tj, the complex conjugate of T0, and integrate from z = 0 

4 This result was originally derived by E. A Spiegel (unpublished) for a system with an arbitrary 
mean temperature profile. The principle has not been established for rigid boundaries. 
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to z = 1. Then, by integrating by parts, we can show that the resultant equation can 
be written 

^ f\DT
0DT* + a^T*)dz 

+ (3 + O ^ ( D2ToD2To + 2 a2DT0DT* + a^T* ) dz 
(36) 

+ f\D*T0D*T* + 3a2D2TQD
2T* + 3a*DT0DT* + aQTT* )dz 

= a^R0f\l-\z)T0T*dz, 
‘'O 

or 
S2Ii-j- Sl2-\-Is =RoI4 , (37) 

where the iVs—i = 1, 2, 3—are the positive definite coefficients in equation (36). 
If we take the complex conjugate of equation (34) and multiply by To and integrate 

in the vertical, we get 

s*2/i + **/2 + /3 = Roh, 08) 

where the I7s are the same as in equation (37). 
Write s = p iq, s* = p — iq. Subtracting equation (38) from equation (37) then 

yields 

iqttph + 2/2] = 0 . 
Hence 

q = 0 or p= (39) 

i.e., for marginal stability (p = 0), it is necessary that g = 0. The principle of exchange 
of stabilities is therefore established. 

b) Stability Problem 

Equation (34) can now be written 

£To = l(P2 - a2Y + a2R,{\ - Xz)]T0 = 0 (40) 

and is the same equation as that for flow between rotating cylinders. (In the latter 
problem, X is interpreted as 1 minus the ratio of the rotation rates of the outer to the 
inner cylinder.) The boundary conditions given by equations (35) are for free boundaries. 
Rigid boundary conditions are the same as those for the rotating-cylinder problem (cf. 
Taylor 1923; Chandrasekhar 1954). As stated earlier, we restrict our attention to free 
boundaries.5 

We can represent To by a Fourier sine series in the vertical and derive expressions 
for the Fourier amplitudes from equation (40). For the free-boundary problem, the 
Fourier sine series is particularly useful because the boundary conditions are automati- 
cally satisfied. Also, derivatives of To up to the sixth order can be represented by the 
differentiated Fourier series even at the boundary points because of the particular form 

6 L. N. Howard has suggested that the analysis of Jeffreys and Jeffreys (1946) for the Bénard convec- 
tion problem is particularly appropriate for the present problem when X is not too large. He has carried 
out the analysis for the stability problem with a variety of boundary conditions and reproduces the results 
of Chandrasekhar (for the Taylor rotating-cylinder problem). We apply the same method here for the 
free-boundary stability problem and use the results for the finite amplitude range. 
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of the boundary conditions. (The difficulty with convergence at the boundary as dis- 
cussed by Jeffreys and Jeffreys 1946 does not enter explicitly as it does in the rigid 
boundary problem. However, the higher-order even derivatives of r0, e.g., d^o/dz8 

do not vanish.) 
We now introduce two useful definitions for the stability problem. Let 

a2 = 7r2a2, wz = Ç . (4i) 

Then equation (40) becomes 

( 
^)V0=-a^(i-^)r0, (42) 

where R'0 = i?o /x4. Substituting the Fourier series representation, 

00 

T0 — ^-4« sin «f, (43) 
1 

in equation (42), we derive the expression (after dividing by i?o) 

1 00 / \t\ œ 

=7 ^ (n2+ a2)zAn sinrcf = (l J sin . 
A-o i \ Tr / 1 

(44) 

Now multiply by sin rf and integrate from f = 0 to f = 1 to get 

(r2+a2) ^ r , ( r2 + a2)3"| A _ ^ [TT2 A 4rn A “j 
Odd r: 2 [a R, \ Ar a\[4^r 2^ / 2 __ ^2)2 ^nj , 

Even y [a2- —Ar=a*\ 
odd 

( — n2)2 

4:rn 

Tr'^'n2)2 

(45) 

Expression (45) represents an infinite matrix relating the various Fourier amplitudes. 
Since the equations are homogeneous, it is necessary that some condition (expressed as 
a determinant of the coefficients of the Ai) between i£0, X, and a be satisfied in order 
to make the system of equations consistent. We shall consider several different values 
of X corresponding to different temperatures for the upper boundary. In each case the 
matrix will be truncated and an approximate relation between R0, X, and a will be 
derived. 

The general determinant formed from equation (45) is 
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where 

Pr (r2+a2)3- 

Case I: T = 4° C at z = h; X = 1.—For this case, just the first term is sufficient 
because the determinant yields the minimum Rq with surprising accuracy. 

g 
-^~ = 6.75t4 for a2 = 0.5. (47a) 

The 4X4 determinant gives 

JD 
-~2=6.72w4 for a2 = 0.507. (47b) 

The present result can be derived even more simply if one notes that, since the entire 
layer is unstable, the destabilizing term on the right-hand side of the stability equation, 

/ d2 V 
fe-,r2aVro= - 2)ro- 

can be approximated by its average value — (Tr2a2/z)Rf
QTo. Then sin ttz is the exact eigen- 

function of the approximate problem and one obtains equation (47a) as the result. 
It is worthwhile to pause at this point and compare the results with those of Rayleigh 

for the Bénard problem, viz., 

Ro = 6.75TT4 for a2 = 0.5 . 

It is seen that the Rayleigh number is identical with the value given by equation (47a). 
The larger mass of dense water at the top of the layer tends to make the system more 
unstable gravitationally than the Bénard system. However, the depth over which the 
density gradient is appreciable is smaller in the present problem. This appears as a 
stabilizing effect and just compensates for the destabilizing effect of the deeper layer 
of dense water. This result should be kept in mind in the remaining cases where the addi- 
tion of the stable layer will add an additional degree of freedom, viz., the boundary con- 
dition at the top of the unstable layer is relaxed so that the fluid motion can penetrate 
into the stable layer and seek its optimum form. 

Case II: T — 8° C at z — h;\ — 2.—The 2X2 determinant suffices and is equivalent 
to the equation 

*0 = l6\ o? ’ (48) 

which, when minimized with respect to a2, yields 

*o_ 
2X4 = 2.73x4 for 

,2 -5+V153 
X2 32 

0.230. (49) 

The 4X4 determinant gives the slightly altered result, 

^7=2.72îr4 for ^ = 0.234. (5o) 
2X4 X2 

In order to make a comparison with the Bénard problem, we have divided a2 by X2, 
since this changes the meaning of a to the wave number defined on the basis of the depth 
of the unstable layer. Thus the addition of the stable layer has relaxed the constraints 
to such a degree that the Rayleigh number is decreased to less than half the value of 
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the Bénard problem and of Case I, and the scale has increased by about 50 per cent 
(a/X = 0.48 as compared with a/X = 0.71 in Bénard convection). 

We shall concentrate on Case II in the finite amplitude analysis and shall make use 
of the relatively simple results of the 2X2 matrix. Using equation (48) in the truncated 
2X2 determinant (46), we find, for the coefficients of sin f, 

4^=4.!; A r = 0, r >2. <si) 
A 2 

The corresponding wq expression can be derived from equation (28) with dTo/dT = 0. 
Graphs of w0 versus z and T0 versus z are given in Figure 2. Note that there is a small 
reversed cell at the top of the layer of fluid. 

The remaining cases are listed in Table 1. They were derived by using the 4X4 
truncated matrix so that the results were carried only up to X = 3.5. For higher X, one 
should go to a truncated matrix of higher order for equivalent accuracy (>99 per cent). 

d 

Fig. 2.—A plot of w0 versus 2 for X = 2 with T0 normalized, i.e., (r0)m = 1, and w0 deduced from eq. 
(28) A small secondary cell near the upper boundary is driven by viscous forces and is shown as the 
region in which wo is negative. 

TABLE 1 

Critical Rayleigh Numbers and Corresponding Wave Numbers 
for Various Values of x in Stress-free Problem 

Rq/tt* a2/X2 Ro/2X47r< 

0 500 
0 500 
0 505 
0 519 
0 535 
0 630 
0 750 
0 930 
1 64 
2 29 
3 10 

6 75 
13 43 
16 69 
21 92 
31 37 
50 86 
67 07 
87 18 

222 2 
547 9 
854 7 

0 5 
351 
265 
209 
194 
205 
233 

.262 
254 

0 253 

72 
03 
81 
40 
42 
58 
73 
84 
83 
84 
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The results for the problem with rigid boundaries are listed in Table 2. The second 
and third columns are the results of Chandrasekhar (1954) and were taken from Chan- 
drasekhar’s book (1961), in which he presents the values of the critical Taylor number, 
rc, and the corresponding wave numbers a for Couette flow. It was noted earlier that 
the stability problem for rigid boundaries is identical with the Couette flow problem 
solved by Chandrasekhar. His values of a in the second column were squared and divided 
by (1 — /¿)27r2(=\27r2)(/¿ is the ratio of rotation rates of outer to inner cylinder) and the 
values a2/(l — ai)27t2 can be compared with the values a2/X2 in Table 1. His values of 
the critical Taylor number, Tc, were divided by 2(1 — /¿)27r4(=2\47r4) for comparison 
with i?o/2X47T4 in Table 1. 

There is, of course, a quantitative difference between the results of the two cases 
because of the different boundary conditions. However, the qualitative behavior is the 
same, and we shall therefore discuss the stress-free problem only. 

There are several interesting features evident from an inspection of Table 1. The 
modified wave number a/X has a minimum value at about X = 1.8, then rises to a local 

TABLE 2* 
Critical Rayleigh Numbers and Corresponding Wave Numbers 

for Various Values of x in Rigid-Boundary Problem 

25 
5 
6 

1 8 

12 
12 
13 
20 
24 
49 
70 
00 
06 
10 
10 

To 

708 X103 

390X103 

462 X103 

417X103 

7 688X103 

182 X104 

494X104 

868X104 

619X104 

558X104 

771X105 

a2/ (1 —/í)27t2 

0 986 
635 
461 
415 
386 
384 
405 
415 
419 

0 417 

ro/2(l—/It)27r4 

17 40 
9 383 
6.506 
6 022 

779 
885 
993 
069 
057 
058 

* From Chandrasekhar (1961) 

maximum for X = 2.5, and finally approaches an asymptotic value of approximately 
0.25. The minimum value of a/X is attained at that value of X at which the fluid makes 
the transition from a single vertical cell to a double cell. The oscillatory nature of the 
a/X versus X values seems to be related to the numbers of vertical cells associated with 
the motion. As the Rayleigh number approaches the point where the optimum motion 
requires two cells instead of one, the horizontal wavelength of the single cell has a 
maximum value. Where the transition occurs from two cells to three, the horizontal 
scale is a (local) minimum. One can perhaps generalize and say that the transition from 
an odd to an even number of cells is associated with a maximum horizontal scale, whereas 
the transition from an even to an odd number is accompanied by a minimum horizontal 
scale. It should be noted that the foregoing statement is a generalization drawn from 
the small amount of data in Table 1 and may not be correct. 

The minimum Rayleigh number occurs at X = 1.68, which corresponds to a top tem- 
perature of about 6.7° C. The asymptotic value for large X appears to be 2.83. Why 
should the fluid be most unstable when the top temperature exceeds 4° C, and, in par- 
ticular, why does it choose the specific value of X = 1.68 as the most preferred value? 

The first part of the question seems to have an obvious answer. By adding stable fluid 
above, one relaxes the boundary condition at the top, and the fluid motion can achieve 
its optimum form. However, from this argument alone, one might expect the minimum 
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Rayleigh number to occur when the fluid layer was very deep and the unstable layer 
was restricted to a small depth near the bottom. In that case the inhibiting effect of 
the upper boundary would be minimized. However, there are two additional charac- 
teristics of the fluid system which are pertinent and tend to reduce the optimum value 
of X. 

The first of these characteristics is associated with the presence of multiple cells. As 
the value of X is increased, the optimum form of the motion is one with more than one 
cell. The second cell lies completely within the stable fluid and must be driven by (i.e., 
must draw its energy from) the motion in the unstable layer by means of viscous forces. 
One might expect the presence of a second cell to be a drain on the energy of the unstable 
part of the system and that an optimum upper temperature would be one for which the 
fluid motion had only a single cell in the vertical. 

The second pertinent feature of the fluid system is based on the distribution of density 
of the conductive state. Gravitationally, the fluid from 0° to 4° C is unstable, and the 
fluid above 4° C is stable. However, when we speak of a gravitationally stable or unstable 
layer of fluid we are thinking of the relationship of the layer to contiguous layers. In 
our particular example other considerations must enter because, even though the 5° C 
layer is locally stable, it is unstable with respect to all layers below 3° C. If there were 
some way for the 5° C layer to penetrate below the 3° C depth, it would be able to release 

Fig. 3 —{a) The density profile associated with the pure conduction state is sketched for the case 
with the top temperature between 4° and 8° C. (b) The redistributed density profile has the densest fluid 
at the bottom, the next dense layer above it, etc. There is a discontinuity in slope at a distance 2d — h 
below the upper surface. Below this point two temperatures correspond to each value of the density. 

potential energy. We can pose this problem as a quantitative one by the following pro- 
cedure. 

Suppose we redistribute adiabatically the various layers of fluid, so that the densest 
(4° C) layer is at the bottom and the vertical density profile is gravitationally stable—i.e., 
the density decreases continuously with height. In doing so, we neglect boundary condi- 
tions and look merely at the configuration of minimum potential energy, with the con- 
straint that we preserve the existence of each layer of fluid. If we subtract the potential 
energy of this redistributed configuration from the potential energy of the actual con- 
ductive state, we have a measure of the maximum amount of potential energy 
“available” to the system by adiabatic redistribution. It should be kept in mind 
that we are redistributing only the density layers and are ignoring temperature effects 
and micro-processes. The calculation is simple and straightforward. 

It is clear that we can neglect the region of water with temperature greater than 8° C, 
since the density distribution is the same in the two cases and we are interested only in 
the difference of potential energies. Hence, consider the conductive state sketched in 
Figure 3, a. The temperature at the top boundary has a value between 4° and 8° C. 
The symmetric portion of the curve lies in the range 2d—h< z < h. (Thus if the top 
temperature were 8° C, the entire region would be symmetric.) Now for the configuration 
of minimum potential energy it is clear that the layer of water below z = 2d—h must be 
turned upside down and placed at the top, the 4° C layer must be at the bottom, and 
the symmetric layers on either side of the 4° C layer must be combined and placed next 
to each other, with density decreasing with height. We then get the configuration shown 
in Figure 3, 
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Mathematically, the redistributed density profile can be written down by inspection: 

p = p0[l-a'(£)2], 0<Z<2{h-d), 

P=Po[l-a'(2-Á+¿)2], 2{h-d)<z<h, 

(52a) 

(52b) 

where a' = a(AI/d)2. The factor J appears with z in formula (52a) because each value 
of the density corresponds to two layers in the conductive configuration of Figure 3, a, 
one on either side of 4° G. 

Now the vertically integrated potential energy per unit area for Figure 3, a, is given 
by 

rh 
I gPo[l — a'(z d)2] zdz , (53) 

and the same quantity for Figure 3, b, is given by 

/» 2(h—d) r /z\2l rh 

I gpo 1 —a'i^) zdz+ / gpoll — a'(z — h +d)2] zdz . (54) 

We subtract quantity (54) from quantity (53) for the difference and have, after a simple 
integration and collection of terms, 

APE 

or 
Unit area 

APE 

Unit area 

,\{h — d)4 , (h-dy , (h-d)d* . 1 
gPoa'[ 

[^=-—-(x-l)3 + x-l+ï], 

|] 

(55) 

where x = h/d. 
Maximizing APE with respect to x> we arrive at 

4(x-D3- (x-D2 + i = o, (56) 

with solutions x — 2, x — 2, x := i- The maximum occurs at x = 2 or /? = 2^, as might 
have been anticipated. 

In summary, the value of the critical Rayleigh number is affected by the presence 
of the stable fluid in the region above the 4° C layer through three physical features: 
(a) the relaxation of the upper boundary condition would favor a very thick stable layer; 
{b) the increase in “available” potential energy would favor a temperature at the top 
boundary with a value of 8° C and would not be affected by further deepening of the 
stable layer; (c) the necessity for more than a single cell to form implies that energy 
must be drawn from the kinetic energy of the unstable layer, and this process favors 
a layer with the temperature at the top boundary less than 8° C. The complex interaction 
of these three processes is included in the stability analysis and indicates an optimum 
top temperature of about 6.7° C. 

IV. FINITE AMPLITUDE METHOD AND SOLUTION FOR X = 2 

Thus far we have treated the first-order equations. Higher-order equations can be 
derived from the set (20)-(23) when the expansions (26) are substituted. The zero-order 
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terms are time-independent, and it can be shown that the higher-order quantities will 
also not involve time. The pertinent equations are 

é:2Tl^R1(í-\z) v¡r0 + v^00 - - v¡r* Ro 
oo ’ (57a) 

V2Ti =R0wl+RiWo+ h0o, (57b) 

V^2
1ui = 

_V2 + 
dydz 0 

- V2 d2^i 

dx* 

Ô2 a2 

dxdz 

(57c) 

(57d) 

eh 2T2=R2(1-\z)V¡T0 +Rl(l-Xz)V?l 

+ \\(wQ
r

0)mZ- + [<w/0> - (W^) JwJ (58.) 

+ vva01+A) -^r1r0-^(x01+z10) -^l00, 

V2T2 =RS)W2+R1Wi+R2Wo+ [ (w0T0) — (îyoro)m]îe)o+ h0i+ h10, 

d2 

v2v?î>„= -v2^A + ^( VVZ1 +VV2>0) 1 2 dydz ÔX' 

d2w2 d2 

dxdz dy^ 

d2Wo d2 

v2v2«2= -v2—-^+—+ + (58d) 

dxdy 

dxdy 

(58b) 

(i;0-Vw0), (580 

where ha = Vi^Tj — (d/dz)(wiTj) and equivalent use of i, j applies to Lij. 
To solve for Ti, we could proceed formally as follows: Equation (57a) is an inhomo- 

geneous equation for Ti. A necessary and sufficient condition for a solution to this equa- 
tion to exist (Ince 1926) is that 

/^„[r^I-Xz) V¡Ta + V h00-±viTl-^LO0]dz = 0, 

where To is the adjoint function defined by the equation 

flfomdz= f1T%Todz = 0, 
Jo J § 

which serves also to define the operator 8. 
The necessary and sufficient condition yields the following expression: 

R
lfj0(l-Xz)V(r0

d
Z=fo

1 [f0 I f0Lw - fy Ä00] dz. (59) 

Once Ri is evaluated in this manner, the remaining part of the right-hand side of 
equation (57a) provides the forced solution Ti and the procedure is straightforward. 

A remaining arbitrariness is due to the fact that 87\ = 0 can be satisfied by an arbi- 
trary multiple of To. We can eliminate this arbitrariness by the following procedure: 
Normalize To so that (T2)m — 1 and impose the condition that (T0T)m = e, i.e., that 
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(TiTo)m = 0 for i > 0. Then all the amplitude of the To term is put into e. This serves 
to give specific meaning to e, as well as to remove the arbitrariness. 

Once Ti has been determined, Ui, Vj, can also be evaluated from the set (57); 
T2, W2, ^2, etc., can then be evaluated by repeating the procedure.6 For our case the 
operator and boundary conditions render the problem self-adjoint, so that To = T0 and 
8^2. 

If T0 were known exactly, we could proceed as outlined. However, it will be seen that, 
since T0 is known only approximately, the method breaks down. Limited finite amplitude 
results can, however, be derived by the present technique. Wé proceed with the case 
where the horizontal spatial dependence is one-dimensional, i.e., d/dy = 0. 

a) Two-dimensional Cells (Rolls) 

The normalized approximate solution for T0 for the case 0o-8° C is 

To = (Ai sin TZ + A2 sin 2wz) cos Tax , i60a) 

where Ai = 1.943, A2 = 0.474, so that (To)w = 1. 
The remaining first-order variables can be derived from equations (21), (22), and (23), 

with the non-linear terms neglected. This gives 

Wo=: —^-[(a2+l)^4i sin wz (a2+4)^42 sin 2tz] cos wax , (60t>) 
Jto 

ub = [( a
2 + 1 ) ^4 1 cos 7rs + 2(a2+4)^42 cos 2wz] sin wax , (60c) 

Vq — 0 . (60d) 

Substituting the zero-order variables in equation (57a) and proceeding as outlined, 
we obtain 

V4 hnn = 
lw7A 1 A n 2 [ ( 9 + 4a2)2 sin Sttz — 3 ( 1 + 4a2)2 sin ttz ] cos 2TaXy 

ARo 

R 3w7 

— Loo = 7r¿— ^4 i^4 2( a2 + 1 )(a2 + 4) (sin 3x2 — 3 sin wz) cos 2wax, 
G llS-Q G 

V2T2 = — 7r2a2 [^42( 1 — cos 2wz) + 2^^ (cos wz — cos 3wz ) 

+ ^42( 1 — cos 4x2 ) ] cos 2xax . 

When these are substituted in the right-hand side of equation (57a) and the equation is 
multiplied by T0 and integrated, the result is 

.#1 = 0 (61) 

because of the orthogonality of cos wax and cos 2wax. 
With Ri known, we can solve equation (57a) approximately for Ti. This is done by 

substituting VÏ = — 4x2a2 (since the horizontal dependence is uniformly cos 2xcu:) and 
letting Ti be expressed in terms of the Fourier series: 

00 

Ti = sin nwz . 
1 

; 6 The method outlined here is the correct procedure for the problem with any homogeneous boundary 
conditions. The procedure outlined in an earlier paper (Malkus and Veronis 1958) is incorrect, but the 
computed results are valid because the method employed coincides with the present form when the 
operator is self-adjoint—the only case actually computed. 
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To determine the Bn’s we multiply the equation by sin rwz and integrate. The procedure 
gives rise to an infinite set of inhomogeneous equations. It turns out that the truncated 
3X3 matrix is sufficient to give results correct to 1 per cent. We find 

3 
Ti = sin mrz cos lirax, (62) 

i 

where Bi = —15.08 w/8a?Roy B2 = — 5.0777r/8a2i?o, Bz = — 0.611l7r/8a2-^o- The quan- 
tities wi and Ui can be computed from equations (57). We can then proceed to (58a) 
for the next higher-order quantities. 

The first information regarding amplitude can be deduced from the value of R2, which 
can be determined at this point. Since Ui, Vi, Wi, Ti, and Ri are all known for i = 0, 1, 
the right-hand side of equation (58a) is known. Hence the procedure outlined in the 
paragraphs following equation (58d) will yield R2. That is, we multiply the right-hand 
side of equation (58a) by To and average. The quantity R2 is then expressed in terms of 
definite integrals of known quantities. The computation is very tedious and will not be 
reproduced here. The result is 

r2 = —0.00366 . (63) 

We return to equation (26) and note that, to the second order (since i£i = 0), 

R =zRo-\-62R2 

or 
,, R—Rq (64) 

Hence, since e2 > 0 and R2 < 0, it is necessary that R < Rq. In other words, the solu- 
tion which we have found is valid for subcritical Rayleigh numbers. If disturbances of 
finite amplitude are present which enable this roll solution to form, a motion field would 
be established for values of R less than Rq. This type of finite amplitude instability was 
also derived for convection in a rotating system (Veronis 1959). However, in that case 
the values of the parameters necessary for the finite amplitude instability did not cor- 
respond to those available in the laboratory. In the present case, the experiment can 
be carried out. 

The non-dimensional form of the heat flux expression (9) to the second order is 

H 

- K(AT/d) 
l-j¿(woT0)m= 1 + 1.33—-^ (65) 

This result is plotted in Figure 4. The heat transport increases indefinitely as Æ > 0. 
It is clear that the second-order approximation must break down at some point and one 
must go to higher-order terms as (Rq — R)/R becomes larger. The curve must eventually 
turn up again. Possible curves are dashed into the figure. The farther to the right the 
turning up occurs, the lower the Rayleigh number, and the more dramatic will be the 
jump in heat transport when the finite amplitude instability sets in. 

As described in an earlier paper (Veronis 1959), experimentally the behavior of the 
system for R near R0 depends on the manner in which the Rayleigh number is varied 
and on the background noise. If R is increased from = 0, the heat transport could 
increase to a value larger than the conduction value for any fixed value of R between 
i^min7 and Rq, depending on the amplitude of the noise. If the latter is infinitestimal, the 
conduction line will obtain until R = Rq. Then H will jump to the maximum allowed 
value, and an increase in R is necessary for any further increase in H. Jumps in heat 
transport for values between T0 and Tmin depend on the amplitude of the noise. If R 

7 Rmm. is the point where the dashed curve attains a minimum. 
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is decreased from a supercritical value, the value of H for a given R will always be the 
maximum possible, i.e., motions will always exist for Rm\n < R < Rô- 

ti) Hexagonal Cells 

When the horizontal plan form is hexagonal, a horizontal asymmetry is introduced. 
The vertical dependence is, of course, not symmetric (cf. Fig. 2). The asymmetry for 
hexagonal cells provides some new and interesting results. In the first place, it will be 
shown that Ri5¿ 0. This result is interesting because a non-vanishing Ri makes a finite 
amplitude instability possible, regardless of the sign of R2- This rather surprising result 
can be seen immediately from the expansion of 7?. To the first order we have 

Fig. 4.—The non-dimensional heat transport is plotted as a function of R/Ro The solid line is the 
curve for roll solutions to order c2. The dashed curves are possible roll solutions with higher-order terms. 
For hexagons {dotted curve) the results show that the curve is tangent to the conduction line. 

If R\ ^ 0, then e ^ 0 requires that R < R$. Thus it is always possible for a solution to 
exist for subcritical R. Higher-order terms cannot alter this result because equation (66) 
is always the dominant relation in some restricted range of i? — i?o. 

The possibility for a finite amplitude instability as given by equation (66) is explicitly 
associated with the asymmetry of the problem. In the case of rolls, the horizontal plan 
form is symmetric, and, at any given point, the sign of the vertical velocity, for example, 
can always be altered by translating the reference axes. This symmetry is reflected in 
the fact that only e2n terms appear in the R expansion. Thus a subcritical finite amplitude 
solution for rolls is possible only when has the appropriate sign. For hexagons the 
sign of € is an added degree of freedom, and a subcritical finite amplitude instability is 
always possible and should occur, provided that the white noise background has sufficient 
amplitude. This result may serve to explain the occurrence of hexagons in the Bénard 
type of experiments where the top boundary is a free surface. Since a finite amplitude 
solution is possible for subcritical i?, it would be the preferred solution according to the 
relative stability criterion of Malkus and Veronis (1958). 

The second interesting aspect of the hexagonal case is that the non-vanishing of R\ 
creates a problem for extending the solution to obtain R2. The difficulty is associated 
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with the fact that we have only approximate solutions for the stability problem. (We 
would have been confronted with this difficulty in the case of rolls, had we attempted 
to go beyond the i?2 calculation.) 

The normalized form of r0 for hexagons is 

■^0 ^ ^ ^ i sin tt 2 + ^4 2 sin 2 tt z ), (r2)m= 1 • 

V ( 3 ) wax iray 
9 = 2 cos 2 cos ~2~ + cos 7ra y ’ 

yli= 1.1218 , A 2 = 0.2 736 . 

The corresponding velocities are 

w0= —5-0[(a2+l)^4isin7T2 + (a2+4)^42sin27r2 
2vo 

TT2VS . V ( 3 )irax Tray ,, , , , w 
«o —s sin -r cos —T— [ ( a2 + 1 ) ^4 i cos x2 Koa l l 

Vo 

(67a) 

(67b) 

(67c) 

(67d) 

+ 2 ( a2+4) ^4 2 cos 27rz ], 

7T2 r V (3)Trax . iray . . 1 
=R^rS 2 sm—+Smray\ 

X [ ( a2 + 1 ) ^4 i cos 7rz + 2(a2+4)^42 cos 27rz ] . 

Proceeding with the calculation of the inhomogeneous terms in equation (57a), we find 

STx = — 'ir2a2R1 (1 — 2 z ) </> (^41 sin 7TZ + ^4 2 sin 2tz ) + [ an sin W7rzJ</) 

(68a) 

+ K sin nirz~^\l/ + [? Cn sin TtTT z J % , 

where the an, bn, and cn’s are known constants (independent of Ri) and 

^ = 2 cos V ( 3 ) Trax cos Tray+ COS 27ray , V2^ = — 47r2aV , 

_ V(3 )7rax 
X = 2 cos   cos + cos V (3)7rax, V2x = — 37r2a2x- 

(68b) 

(68c) 

The functions ^ and x arc harmonics of the basic hexagonal plan form, <£. 
The difficulty which arises is associated with the coefficients of 0 in equation (68a). 

(The particular solutions resulting from the \¡/ and x expressions can be deduced in the 
usual manner and lead to no difficulties.) Let us suppose that Ri has been evaluated as 
before In fact, if one proceeds as before, one finds 

Rl = 1.47T . (69) 

Now the problem is to compute that part of Ti that is proportional to 0. Continuing 
with our approximation procedure, we substitute 

CO 

T1= sin mrz<t> (7o) 
i 
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in equation (68a) (with the \f/ and x terms deleted) and then multiply by sin rirz and 
integrate from 2 = 0 to 2=1.We end up with the infinite set of inhomogeneous equa- 
tions, 

— TT6 ( 1 + a2 )3 

4a2£o 
B\ + + 0 + ^3-^4 + • • • — , 

<ij-6 ( « 2 \ 3 
4^7LiÍ2+^+o+ • • • = 

(71) 
7T® ( Q -4- 0,2 } 3 

7T6( Í 6 -4- a2)s 

^+0+if 53 - £4 +... = ^4, 

where the ntiS are known constants and include the value of Ri. 
The determinant made up of the coefficients of the left-hand side of equations (71) 

is precisely the determinant that was equated to zero to yield the Rq versus a2 relation 
for the stability problem. The fact that the 4X4 determinant does not vanish arises 
from the original approximation, where only the 2X2 determinant was used. However, 
this means that solving for the Bi’s above is possible only because of the small residual 
errors which were neglected originally. As might be expected, the method leads to absurd 
results. 

The difficulty can be removed by the following procedure: We rewrite To so that only 
that part of it which has the form Ai4> sin tz is normalized, i.e., Ai = 2/\/S. The ampli- 
tude A2 — 0.282 is then determined from the stability problem. Now e is interpreted 
as the amplitude of $ sin ttz. Hence none of the TVs, i> 0, contain a term of the form 
<í> sin 7T2, because (</> sin wzT)m = e and this automatically implies that all TVs with i > 0 
are orthogonal to <£ sin 7T2. The procedure is therefore altered because Ri must now be 
evaluated so as to absorb all the amplitude of terms of the form <£ sin tz on the right-hand 
side of equation (68a). We shall therefore substitute 

00 

Ti = ^^Bn sin fiTZ 
2 

in equation (68a) (note that Bi = 0), and we therefore force all the amplitude of </) sin tz 
to be absorbed into Ri. Hence, after multiplying by sin ttz and integrating, we obtain 
a new set of linear inhomogeneous equations of the form 

Q A 
-^R1 + sB2 + 0+^_Bi+ . . . =Pu 

# 41 - —4—- ^+0+• • 
*Ro 

+11^2 - TT*BS + £f £4 + 25 Ro 

Í6A 

fezfo*1 + 0+^ 

(16 + a2)3 

• ~ R% ! 

• =Pb, 

Tr6Bi + . . . =P4) 

(72) 

where the Pi’s are known constants. Note that the result will give Ri and the form of the 
ij> part of Ti simultaneously. 
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The truncated 4 X 4 set is sufficient for our purposes, and we derive the results 

*-1.27., -e*-0-0658 2Sr.' 

The value of Ri differs from that computed previously (69). However, it has a different 
meaning, since it determines the amplitude of </> sin ttz instead of the amplitude of the 
entire T0 term. If we compare the two methods by computing the amplitude of 0 sin 
TZ in the two cases, we find that the amplitudes differ by about 9 percent. It should be 
noted that this result is based on eigenfunctions which gave the critical Rayleigh number 
with an error of considerably less than 1 per cent. Thus the error appears to mount up 
in higher-order calculations if one applies the method originally proposed. The crucial 
point is, of course, that one cannot continue the solution to higher-order terms with the 
first method. 

A suitable program seems to be the following: Decide a priori (if possible) to what 
order, j, the calculation will be made and then proceed by the second method up to the 
Rj calculation. Make the final Rj calculation according to the old method, which is much 
simpler because it involves only those terms which sufficed for the stability problem. 
There will, of course, be an error in the value of Rj, but at least it will have been minimized 
by the correct procedure prior to the Rj evaluation. The reason for making the last step 
approximately is that a number of terms which must now be kept to proceed according 
to the revised method can be dropped if the old method is used. If feasible, the new meth- 
od should, of course, be used for all calculations. 

For the present calculation, one proceeds with the evaluation of those parts of Ti 
which have horizontal plan forms ^ and x- Substituting 

1\ = ip Cn sin nirz and ^¡ = X D„ si sm nirz 

one now computes 

Ct= -5.32 

C2= - 2.02 

C3= - 1.13 

C4= -0.0196 

8a2Ro * 

7T 
Sa2R0

1 

7T 
SW 

7T 

8a2Rn1 

Dx = -14.6 

D9= -4.22 

£>3 = 0.0128 

£>4 = 0.0466 

6a2Ro’ 

6 a2Rci ’ 

6a2R0’ 

6a2Ro 

(73) 

The amplitudes C4, £>3, and £>4 are actually negligible. They have been included only as 
checks on the truncation. 

We can compute Uif and Vi, from equations (57). There is little point in continuing 
with an outline of the actual computation. It is necessary to note only that the terms 
h0h hio, Loi, Lio, etc., on the right-hand side of equation (54a) can now be computed. It 
is then possible to evaluate R2. One calculates 

(£^2)hex = —0.002017T2 . (74) 

Hence, we have to the second order, 

—0.00201 («r)2 + 1.27 (ctt) + R0 - R = 0 , 
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the solution of which is approximately 

6 = 1 + 0.000126 (i? — i?0) ] • i”) 1.2 /TT 

The useful qualitative aspect of this result has already been pointed out, viz., that it is 
possible for a solution to exist for R < Rq. A second important qualitative feature of 
equation (75) is that, for finite amplitude subcritical motions, e < 0, i.e., the motion 
at the center of the hexagonal cell is upward (because wq < 0, hence ewo > 0). 

A third result of interest is that the R/Ro versus H/—k(AT/<Ï) curve is tangent to 
the conduction line at the critical point and then turns down and to the right (dotted 
line in Fig. 4). This is in marked contrast to the result for rolls, where there is an abrupt 
departure from the conduction line for all values of Æo — Æ > 0 and is a result of the 
asymmetry which gives a non-zero Ri. However, here again we are confronted with the 
problem that the region in which the last two results are applicable may not be observ- 
able experimentally. It is necessary to go to an order which allows the curve to turn up 
again in the Æ/Æo versus H/ — «.(AT/d) diagram. Therefore, the only useful information 
that we obtain in this case is that a finite amplitude solution exists for subcritical R. 

V. SUMMARY AND CONCLUSIONS 

The method used for the solution of the finite amplitude motions is pivoted about the 
solution to the linear stability problem. A technique is described that can be used to 
derive the finite amplitude results when the solution to the stability problem is known 
only approximately. One expands the variables and the external (eigen) parameter, Ry 

in powers of a small parameter €. The coefficients, Rjy of e,- must be determined. To pro- 
ceed, one expands the first-order variables in terms of a complete orthogonal set. The 
resulting set of homogeneous equations and boundary conditions determines the eigen- 
value and the approximate (truncated) set of eigenfunctions. The set of equations which 
form the coefficient of ej have products of the zero-order variables as known inhomogene- 
ous terms. In order to reduce the procedure to a consistent one, we normalize the first 
(or some other) component function of the complete orthogonal set and identify € with 
the amplitude of that component. The higher-order terms then do not contain that 
component. Ri is evaluated so as to balance the amplitude of the normalized component 
in the non-linear inhomogeneous forcing terms. The procedure is actually quite similar to 
that described by Malkus and Veronis (1958), but an alteration is introduced because 
the first-order problem is solved only approximately. 

The results indicate that when the bottom of a layer of water is maintained at 0° C 
temperature and the top at >4° C, a finite amplitude instability should set in at values 
of the Rayleigh number below the critical value given by linear stability theory. Further- 
more, a general result of the expansion indicates that, for a system with built-in asym- 
metries, a finite amplitude instability is always possible. No physical justification has 
been set forth for this last conclusion. However, a simple physical argument can be 
produced for the occurrence of a finite amplitude instability in the problem considered. 
Any finite amplitude motion which mixed water above and below the 4° C layer would 
create a deeper layer of water that would be more unstable gravitationally than the 
corresponding unstable layer in the conduction state. Hence a subcritical finite amplitude 
instability may occur if the white noise background has sufficient amplitude. 

An experimental investigation by Furumoto and Rooth has been directed toward 
establishing the occurrence or absence of a finite amplitude instability. Thus far, no 
experimental evidence is available to establish whether or not the system is unstable 
at subcritical Rayleigh numbers. 

The particular method described in the paper has limited usefulness here because the 
H versus R relation is derived for a subcritical i?-range, where the mathematical solution 
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is probably unstable. That is, since the heat transport increases for decreasing Rayleigh 
number, at some value of the Rayleigh number the H versus R curve must turn back 
up, so that there exists another (probably preferred) value of H for a given subcritical R. 

The calculation must be carried to higher orders—possibly the sixth order—before 
the results can be compared with experiment. However, the same method can be applied 
to other physical problems in which subcritical motions do not occur. In particular, 
the finite amplitude motions for flow between cylinders of opposite rotation can be 
analyzed by the present method, and one ought to be able to deduce second-order 
results which can be compared with experiment. 

It is a pleasure to record my thanks to L. N. Howard, W. V. R. Malkus, and E. A. 
Spiegel for their help, interest, and encouragement and to the Office of Naval Research, 
which provided financial support during the course of this research effort. This is Con- 
tribution No. 1243 from the Woods Hole Oceanographic Institution. 
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