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A STATISTICAL THEORY OF STELLAR ENCOUNTERS 

S. CHANDRASEKHAR 

ABSTRACT 
In this paper the principles of a statistical theory of stellar encounters are developed. The funda- 

mental idea of this new method is to describe the fluctuating part of the gravitational field acting on a 
star in terms of two functions: a function W(F), which gives the probability of occurrence of a field 
strength F, and a function T(F) which gives the average time during which the field strength F acts. 
With regard to W(F) it is shown that a probability-distribution function derived by Holtsmark to de- 
scribe the interionic fields in a discharge tube can be adapted to suit the gravitational case. In a certain 
approximation this probability of a given field is directly related to the probability of finding the nearest 
neighbor to a given star at some prescribed distance. In this latter approximation the mean fife of the 
state F can be obtained by using a formula due to Smoluchowski in the theory of Brownian motion. In 
terms of these functions W(F) and T{F) the probable accelerations which a star will undergo can be de- 
termined according to the principles of the theory of random walk. 

As an application of the methods of this statistical theory, the problem of the time of relaxation, 
tR, of a stellar system has been reconsidered. It is found that 

, _ 1 / 3 \ 3/2 (^)3/2 

R 6 \27r/ f ( D^\ V 

^nloge W)"o-355J 

where G is the constant of gravitation, N the number of stars per unit volume, v2 their mean square 
speed, M the mass of a star, and, finally, D = (471-/3A)This formula for the time of relaxation is 
shown to be in agreement with that derived by the alternative method in which the individual encounters 
are analyzed in terms of the two-body problem. 

I. Introduction.—In estimating the influence of a fluctuating stellar distribution on 
the motions of stars it has invariably been supposed that such effects can be considered as 
the cumulative result of a large number of separate events, each of which can be idealized 
as distinct two-body encounters.1 But a closer examination of the problem along these 
lines reveals an essential inconsistency in the assumptions made. For, on evaluating any 
of the desired quantities (e.g., S|A E|2 or 2 sin2 2 SB [cf. I and II]), it appears that the 
most important of the effects arise from encounters with impact parameters of the same 
order as the average distance between the stars. In other words, the physical situations 
most relevant to the problem are precisely those for which the two-body idealization of 
stellar encounters fails as a satisfactory mode of description. While this results in a 
divergence of the appropriate integrals as the impact parameter D tends to infinity and 
has in consequence to be cut off arbitrarily at some value of D, the really serious draw- 
back of the method consists, however, in the essential inadequacy of the model to take 
account of the inherent physical aspects of the problem. A consideration of this and other 
related difficulties suggests that we abandon the two-body approximation of stellar en- 
counters altogether and devise a more satisfactory statistical method. It is the object of 
this paper to outline the principles of such a statistical theory and to show its practical 
feasibility by reconsidering the problem of the time of relaxation of a stellar system along 
these new lines. 

1 For the most recent version of the theory based on these ideas see S. Chandrasekhar, Ap. /., 93, 
285, 1941; R. E. Williamson and S. Chandrasekhar, Ap. 93» 305, 1941; and S. Chandrasekhar, 
Ap. J., 93, 323, 1941. These papers will be referred to as I, II, and III, respectively. References to 
earlier literature will be found in these papers. 

Su 
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2. The general principles of the statistical method.—Quite generally the force F acting 
on a star, per unit mass, is given by 

(1) 
IM 

where Mn denotes the mass of a typical field star and rn its position vector relative to the 
star under consideration. Further, the summation in equation (1) is taken over all the 
neighboring stars. The actual value of F at any particular instant will depend on the 
instantaneous positions of all the other stars and is in consequence subject to fluctuations. 
It would therefore be practically impossible to specify the exact dependence of F on the 
position and/or the time for individual cases. But, on the other hand, we can ask the 
probability of occurrence of any particular field strength. In evaluating this probability, 
we can (consistent with the physical situations we have in view) suppose that fluctua- 
tions subject only to the restriction of a constant average density occur. 

Let 

W(X, F, Z)dXdYdZ (2) 

be the probability that F occurs in the range 

(X, F, Z) <$ F <C (X + ¿X, F + dY, Z + dZ) . (3) 

From the symmetry of the problem we should expect that 

W(F) = 47rF2PF(F) , (4) 

where F stands for | F |. The meaning of IF (F) is simply that it gives the fraction of a 
long-enough interval of time during which a force of intensity F acts. A knowledge of 
IF(F) is therefore essential to our problem. It does not, however, provide all the neces- 
sary information. For, in order that we may be able to follow the motion of any particu- 
lar star statistically, we need to know in addition the average length of time during 
which a given field strength acts once it has become operative. In other words we also re- 
quire a knowledge of the mean life of the statistical state defined by F. 

Now the notions of the mean life and the spontaneous decay of a given state of fluctua- 
tion has been introduced by Smoluchowski in his general investigations on Brownian 
motion and fluctuation phenomena.2 According to these ideas of Smoluchowski, the 
probability <¡){t)dt that a state represented by a well-defined statistical fluctuation con- 
tinues to exist for a time t and makes a transition to a state of different fluctuation during 
t and t dt\s expressible in the form 

4>{t)dt = e-'/T ~ , (s) 

where F is a constant characteristic of the state. Accordingly, we may define T as the 
mean life of the state under consideration. In our case we need to specify the mean life 

T(F) (6) 

2 Marian von Smoluchowski, Wien. Ber., 123, Ha, 2381, 1915; ibid., 124, lia, 339, 1915; see also his 
papers in Phys. Zs., 16,321, 1915, and 17, 557, 585, 1916. For a general account of Smoluchowski’s ideas 
see R. Furth, Schwankungserscheinungen in der Physik {Sammlung Vieweg), Heft 48, Braunschweig, 
1920. 
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of a state in which a force of intensity F acts on a particular star (per unit mass). Gen- 
eral considerations would suggest that for the average field strengths F we should expect 

T{F) , (7) 
m 

where D stands for the average distance between the stars and Jv\ their average speeds. 
Now, when a state defined by F becomes realized in consequence of fluctuations, the 

star will be accelerated at the rate F, and, since the mean life of this state is T(F), the 
average acceleration to be expected during such a state is 

Av = T(F)F . (8) 

When this state of fluctuation gives place to another, the star will begin to be accelerated 
at a different rate and in a direction uncorrelated with that in the earlier state. Hence 
the net acceleration suffered by the star is formally given by 

XAv = 2T(F)F , (9) 

where, as we have already indicated, the frequency of occurrence of the different values 
of F will be governed by W(F). 

On the basis of equation (9) we cannot, of course, predict the actual acceleration suf- 
fered by a star in any specified length of time. On the other hand, according to the prin- 
ciples of the theory of random walk5 we should be able to predict the probability of a 
star’s having been accelerated by a specified amount in a given length of time. This is 
the principle of our method. 

After this general statement of the fundamental ideas we proceed to a more detailed 
consideration of the various factors which are involved. 

3. The probability of a given field strength. The Holtsmark distribution.—According to 
our remarks in § 2, our first problem is to determine the probability of occurrence of a 
given field strength at some definite point due to a random distribution of centers of 
inverse square field of forces. This problem is clearly equivalent to finding the probability 
of a given electric field strength acting at a point in a gas composed of simple ions. This 
latter problem has been considered by J. Holtsmark;4 and, re-writing his probability 
function to be appropriate for the gravitational case, we have 

7r(GAi)3/2iVp3/2 p gjjQ F pdp , (io) 

where N stands for the number of stars per unit volume. We can re-write the foregoing 
formula for W(F) more conveniently if we introduce a normal field strength, defined by 

Qh = = 2.6o$GMN2/3 , (11) 

3 Lord Rayleigh, Collected Papers, 1, 491, Cambridge, England, 1899; 2, 370, 1903; M. von Smolu- 
chowski, Bull. Acad. Cracome, p. 203, 1906; J. H. Jeans, An Introduction to the Kinetic Theory of Gases, 
p. 219, Cambridge, England, 1940; E. H. Kennard, Kinetic Theory of Gases, chap, vii, New York: 
McGraw-Hill, 1938. 

4 Ann. d. Phys., 58, 577, 1919. See also the papers by the same author in Phys. Zs., 20,162, 1919, and 
25, 73, 1924- 
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and express F in terms of this unit. According to equations (10) and (11), we have 

J<*co 
e~{QH/FW^/2

x sin x¿x ? (I2) 
0 

or, if 

F = ßQn, (13) 

W(ß)dß = f e~{x/ß)3/2x sin xdx . (14) 
wß Jo 

The function W (ß) has been evaluated numerically by Holtsmark and more recently by 
Verweij.5 

We may note that, according to equation (12), 

W(F) 3 QhJ 
2 Fs¡2 ’ 

F —» 00 . (15) 

This corresponds to a relatively slow decrease of the probability for high field strengths. 
Indeed, the probability distribution (12) gives an infinite value for the mean square field, 
F2. For certain physical problems this is unsatisfactory, and Gans6 and Holtsmark7 have 
modified the law (12), in the electrical case, to take into account the finite sizes of the 
ions. For the astronomical applications we have in view, the finite sizes of the stars 
cannot clearly be of any relevance. However, a modification of a different nature must 
be introduced before we can use the Holtsmark distribution (12). We shall return to this 
question in § 5. 

4. The probable field strengths produced by the nearest neighbor.—In a general way it is 
clear that the main contribution to the field acting on a star must be due to its nearest 
neighbor. Indeed, as we shall presently see, the probable field strengths produced by the 
nearest neighbor provides a sufficiently good first approximation to the probability dis- 
tribution according to equation (12). 

To show this, consider first the probability w(r)dr of finding the nearest neighbor to a 
given star between r and r + dr. It is readily seen that if the distribution of the stars is 
perfectly random (subject only to the restriction of a constant average density N) then 
w(r) must satisfy the equation8 

[-X 
w{r)dr 4Tr2N = w(r) (16) 

From equation (16) we derive 

d T w(r) 
dr 4irr2N 

= —4Trr2N 
w(r) 

4Trr2N * (17) 

5 S. Verweij, Pub. Ap. Inst. Amsterdam, No. 5, Table 3, 1936. 
6 Ann. d. Phys., 66, 396, 1921. 7 Phys. Zs., 25, 73, 1924. 
8 P. Hertz, Math. Ann., 67, 387, 1909; R. Gans, Phys. Zs., 23, 109, 1922; C. V. Raman, Phil. Mag., 

47, 671, 1924. 
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Hence 

SiS 

w(r) = e~AirrlN^ 4Trr2N , (i8) 

since, according to equation (i6), 

w(r) —> 4Trr2N , r —> o . (19) 

If we now suppose that the field acting on a star is entirely due to the nearest neighbor, 
then 

F = 
GM 

,2 ’ (20) 

and the law of distribution of the nearest neighbors (eq. [18]) becomes equivalent to 

W(F)dF = . (21) 

If we now introduce the normal field 

Q = (iir)2/^GMN2^ = 2.599GATA2/3, 

equation (21) becomes 

W(F)dF = . 

According to equation (23), 

dF 
W(F)dF^^2^7-2j F co . 

(22) 

(¿3) 

(24) 

Comparing equations (11) and (15) with equations (22) and (24), respectively, we con- 
clude that for all practical purposes we may regard them as identical. Moreover, a more 
detailed comparison of the distributions (12) and (23) shows that even as regards the 
general dependence on F the two agree sufficiently well. There is an appreciable disagree- 
ment between the two distributions only for very small values of F/Q; but, as we shall 
see later, the weak fields have no significant consequences for the statistical theory. 
Finally, we may remark that the agreement in the asymptotic behaviors of the two dis- 
tributions for large values of F implies that the highest field strengths are produced by 
the nearest neighbor. 

5. The modification of the distribution function for high field strengths.—As we have al- 
ready remarked in § 3, the Holtsmark distribution (12) predicts too high probabilities for 
high field strengths. The same remark applies also to the distribution (23). In our pres- 
ent case the high probabilities result from the assumption of the randomness of the stellar 
distribution for all elements of volume. But it is clear that this assumption cannot be 
valid for the regions in the immediate neighborhoods of the individual stars. For a star 
with a linear velocity9 v cannot come closer to another star than a certain critical dis- 
tance r(v) such that 

^Mv2 = 
GM2 

r{v) (25) 

9 At an average distance from the other stars. 
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516 S. CHANDRASEKHAR 

or 

rO) = 
2GM 

(26) 

For otherwise the star should strictly be regarded as the component of a binary system, 
and this is inconsistent with our original premises. This restriction naturally implies a 
departure from true randomness for these stars as r—*r(v). However, it appears that 
under the conditions of our problem these departures become significant only as r o. 
In any case it is apparent that the relatively high probabilities predicted by equation 
(12) or equation (23) for high field strengths will be reduced if proper account is taken of 
the increasing lack of randomness in stellar distribution as we approach the centers of 
attraction. A rigorous treatment of this effect will require a reconsideration of the whole 
problem in phase space10 and is beyond the scope of the present investigation. However, 
an elementary treatment of the effect can be given, and this appears to be adequate for 
our purposes. 

We shall first consider the problem along the lines of § 4. If w(r) represents, as be- 
fore, the probability of finding the nearest neighbor to a given star between r and r + dr, 
then the circumstance that stars with linear velocities v cannot come closer to the center 
than the limit given by (26) will modify equation (16) to 

|^i — ^ w(r)Jrj47rr2x(r)A w(r) , (27) 

where the function xM has been introduced to take account of the lack of randomness 
at close distances. Quite generally we should expect that 

xO) o , r -> o ; xO) 1 , r 00 . 

The formal solution of equation (27) can be readily written down. We have 

—47riV i r2x(r)dr 
w(r) = e 4.Tr2x(r)N, 

(28) 

(29) 

or, differently, as 

where we have written 

w(r) — e 47rArf3x^)//347rr2x(^)A , 

x(r) = y3Jo r
2x(r)dr . 

According to equation (28), 

x0) -> o , r -> o ; x(r) i , r 

(30) 

(31) 

(32) 

To make the law of distribution of the nearest neighbors according to equation (30) 
more definite, we need an explicit expression for xW- As we have already indicated, the 
exact specification of xM will require a detailed consideration of the problem in phase 

10 In contrast to Holtsmark’s treatment, in which the probability distribution of the centers of attrac- 
tion in configuration space is assumed to be independent of the velocities of the particles. 
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space. But it appears that in a first approximation we may suppose that the distribution of 
stars of any prescribed velocity v about a given star is perfectly random for all distances 
greater than the critical distance r(v) = 2GM/V2. Similarly, we may suppose that no 
stars with velocity v occur within the sphere of radius r(v).11 On these assumptions we can 
readily write down an explicit expression for %(/)• We have 

xO) = 

I I =00 

/XL 
|i;| =V/ 2GM/r 

f(v)dvxdvydv 2 ? (33) 

where/(i;) denotes the frequency function of the velocities among the stars. If, for the 
sake of definiteness, we suppose that f(v) is Maxwellian, 

fiv) = ¿ ^2|B|2 > 

then 

xM = Í e~^7v2dv . T 7 J\/2GM/r 

(34) 

(35) 

The foregoing formula for xM can be expressed more conveniently in the form 

/'CO 

xW = ^ I - e~yYdy, 
* ' Ja/y/r 

where we have written 

y = jv ; a = V2GM j . 

An alternative form for xM may be noted: 

XM = i - • 

Again, according to equation (31), we have 

ïM-Âi/WI 

or, after an integration by parts, 

XW = XM - ^f'r*' 

e~y3y2dy) dr 
‘A1'2 / 

i/2e-
a2/rdr . 

(36) 

(37) 

(38) 

(39) 

(40) 

After some further reductions we find that 

xW = x(r) - 
4a6 

Sir^r3 (41) 

11 This latter assumption is, however, necessary (see the remark immediately following equation [26]). 
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The functions x and x are tabulated in Table 1 for different values of the argument 
a/rl/2. An examination of this table shows that to a first approximation we may write 

x(r) = i , a r1/2 ; xO) = o , a > r1/2 . 

In this approximation equation (30) becomes 

w(r) = e~4']rN(r:i~ri'l/34Tr2N (r r0) , j 

= 0 (r <r0) ,] 

where 

r0 = 2GMj2 . 

Returning to equation (30), we see that this law of distribution of the nearest neigh- 
bors implies a probability of occurrence of a field strength F (assuming that the field 
arises principally from the first neighbor) given by 

(42) 

(43) 

(44) 

W{F) = 3r)3/ie-Qi/2x(VGM/F)/Fi'i x(y^GM/_F) 
2^ c ps/l > (45) 

where Q, x> and x are defined as in equations (22), (38), and (41). The modification which 
we have thus effected in the distribution function (23) removes the principal objection to 

TABLE 1 

xM AND xM 

a/r1'2 

o. . 
0.2 
0.4 
0.6 
0.8 
i .0 

i .000 
0.994 
0.956 
0.868 
0.734 
0.572 

i .000 
0.989 
0.922 
0.787 
0.610 
0.430 

a¡r 1/2 

1.2, 
I.4, 
1.6. 
1.8. 
2.0, 
3-0. 

0.410 
. 270 
. 163 
.090 
.046 

0.000 

0.275 
. 161 
.086 
•043 
.019 

0.000 

it, namely, the prediction of a nonconvergent value for P2, for our present distribution 
function (45) yields a finite value for the mean square field. 

In the approximation (42), equation (45) simplifies to 

W(F) = lQ^e-&,2^/2-K^) ^ 

= o 

(F ^ Fmax) , 

{F > Fmax) , 

where, according to equation (44), 

F max 
I 

4GMp ' 

(46) 

(47) 
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We shall now consider very briefly how the lack of randomness in the immediate neigh- 
borhoods of the centers of attraction can be incorporated into the Holtsmark distribution 
(12). It appears that it is not an altogether simple matter to modify the Holtsmark dis- 
tribution rigorously even on the basis of the very simplified assumptions which led to the 
explicit expressions (38) and (41) for xM and %(/)• But, remembering that the highest 
fields are produced by the nearest neighbor and, further, that the lack of randomness 
becomes significant only as r —> o, it appears that we may incorporate the main features 
by considering an approximation corresponding to equation (42), i.e., by supposing that 
no star has a first neighbor closer than r0 = 2GMj2 and that the distribution is random 
but for this restriction. In this last approximation the problem becomes formally the 
same as when the ions, in the electrical case, have finite dimensions. With suitable 
changes we can therefore use the results of Gans and Holtsmark,12 who have modified 
the distribution function (12), in the electrical case, for the finite sizes of the ions. We 
have13 

W(F) = — Ge-^i/2K{p)p sin Fpdp , (48) 
^ Jo 

where K(p) is a certain correction factor which is defined in Holtsmark’s paper.14 

6. The mean life of the state F.—Our next problem is to determine the mean life of a 
statistical state defined by F. The totality of statistical complexions which go to make up 
the state in question are not explicitly defined, and Smoluchowski’s ideas cannot be ap- 
plied without further deep generalizations of them. However, in the approximation in 
which the fluctuating fields are assumed to arise from the nearest neighbor, the statistical 
complexion is specified explicitly, and a formula due to Smoluchowski can be directly 
used. 

Now, according to Smoluchowski, the mean life of a state in which n particles are 
found in an element of volume a is given by15 

T = 
VóTr 

vV (w + v) 

a 

S'a (49) 

where v2 denotes the mean square speed of the particles, Sff the surface area of the ele- 
ment <7, and v the number of particles which the element or would contain at the constant 
average density: 

v = Na . (50) 

For the particular case we have in view 

a = |7rr3 ; Sa = 47JT2 ; n = 1 ; v = ^irr3N , (51) 

12 See the references given in nn. 6 and 7. 
J. Holtsmark, Phys. Zs., 25, 73, 1924; see particularly eqs. (104) and (145). 

^ See eq. (124) in the paper referred to in n. 13. Holtsmark has not evaluated this correction factor 
exphcitly for the case of an inverse square field. But an evaluation of this factor along the lines of Holts- 
mark’s analysis for the dipole field is possible. 

15 Smoluchowski, Phys. Zs., 17, 557, 1916; and see §§5, 6, and 7 in this paper and particularly eq. 
(30). See also Furth, op. cit., pp. 34, 35, and 43. 
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since we need the mean life of a state in which a particular star continues to exist as the 
sole occupant of a sphere of radius r. Accordingly, 

T{r) = 
+ i (52) 

In the approximation of § 4 

and equation (52) implies for the state F the mean life 

2tGM 

3V2 

F 
Q3/2 P3/2 ’ 

(53) 

(54) 

where Q is defined as in equation (22). 
Formula (54) for T(F) is clearly only an approximate one. But since, according to the 

Holtsmark distribution, the highest fields are produced by the nearest neighbor, the true 
expression for T(F) must tend to equation (54) for high field strengths. Consequently, 
we may expect equation (54) to give as good an approximation to the true values of 
T(F) as the W(F) according to equation (23) or equation (30) provides an approximation 
to the Holtsmark distribution. This is probably quite sufficient for most purposes. 

7. The acceleration of a star in the fluctuating gravitational field.—We shall begin our 
discussion of this problem by considering the following simplified case : Imagine a star’s 
undergoing a series of accelerations during a large number of intervals of constant dura- 
tion T, in such a way that during each interval it is accelerated at the same rate F but in 
directions which are uncorrelated from interval to interval. Under these circumstances 
the star experiences an increase of velocity of amount TF m each of the intervals; but 
these increments take place along uncorrelated directions in a random manner. We now 
ask the probability that at the end of s such intervals the star has undergone a nefiin- 
crease of velocity of mFT in some specified direction. According to the principles of the 
theory of random walk we have16 

p-- ■ (ss) 

when 5 is sufficiently large. Since the net increase in velocity Av and the time t during 
which this increase has taken place are related to m and s by 

isv = mFT ; t = sT , (56) 

we have 

P(Ad) = e-3|A»lV(2pr/) _ (S7) 

16 See the references given in n. 3, particularly Kennard, op. cit., pp. 269-72. 
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Hence, the probability that there occurs an increase in velocity in the range [Afl, Av + 
d(Av)] during a time t in some prescribed direction is given by 

P^v)d^v) = . (58) 

Accordingly, 

Av2 — F2Tt . (59) 

We shall now generalize the foregoing problem to the case when F does not have a 
unique value but occurs according to a definite frequency function W(F) and when the 
average duration of an acceleration at the rate F is given by a function T(F). In view of 
the addition theorem for the Gaussian error functions, equation (58) becomes modified 
under these more general circumstances to 

where 

P(Av) 
-4 

3 g—31 Aî) 12/{2F2Tt) 
2TF2Tt 

F2T = W(F)F2T(F)dF . 

Hence, instead of equation (59) we now have 

Av2 - F2Tt. 

(60) 

(61) 

(62) 

8. The evaluation of Av2.—According to equations (45), (54), and (61) we have 

WT = Q3/2 jf F¡/1 e-Q''^FÏÏTF)/F^x{VGMjF)dF . (63) 

When we introduce a new variable x defined by 

03/2 
PS/2 X ’ (64) 

equation (63) becomes 

FT = 2(—y/2G2J^f Fe-^CVGMTQ^Íí ^—ViVÖM/Qx^dx. (65) 
V 3 / V Jo \X X -f- I / 

Substituting for Q from equation (22) in the argument for the functions % and x in the 
foregoing equation, we obtain 
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where we have written 

D = 
i 

(6?) 

Now, according to equations (38) and (41), the functions x and x depend on r only 
through the combination a/Vl/2. From equations (37) and (66) we now find that 

Since 

(68) 

— = 2 « X 104 (-P/parsec)  
2GM (Af/O)(10 km/sec)2 ’ (69) 

it follows that under most stellar conditions 2 GMj2/D^'io~A. Hence, only for values of 
x < 10-11 do the functions x and x deviate appreciably from unity (see Table 1). We can 
therefore replace x by unity whenever it does not occur multiplied by a factor which 
diverges at æ = o. Similarly, we can replace x also by unity; but this we can always do 
since x occurs in the exponent multiplied with x. Thus, to a high degree of accuracy, the 
integral on the right-hand side of equation (63) is the same as 

Jnœe~x r 
— x(Dxl/i)dx — I 

o % Jo x -\- I 
dx = J (say) . (70) 

Substituting for x according to (36) in the foregoing equation we obtain 

J 
H ,U ■y/2GMj2/D arI/6 

e~y2y2dy 
I ' .p . 

dx . 

Writing 

we have 

E{-x) 
p-x 
— dx , 

* X 

J = -^ Í 
^l/2Jo 1 (-E(-Í 

e~y2y2dydx + eE(—i) . 
\/2GMj2/D x*1/6 

(71) 

(72) 

(73) 

Integrating by parts the integral on the right-hand side of equation (73), we find 

J = 
2GMj2 

~iy- 

3 
Z-6 e~z2z2dz — 0.5963 . (74) 

The argument for the exponential integral occurring under the integral sign in equation 
(74) is seen to be extremely small for the values of # which are at all relevant to the value 
of the integral. Hence we can use the asymptotic expansion for E( — x) valid for 
x —» o. We have 

-E (~x) = log * + 0.5772 + 0(x) , (75) 
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where the constant on the right-hand side is the Euler-Mascheroni constant. Using the 
foregoing expansion for E( — x) in equation (74), we readily find that 

6 z*00 

- 0.5772 + I e-**1/2 log xdx— 0.5963 . (76) 
7T Jo 

On the other hand, we have 

J = 3 log 
\2GMj) 

Hence, 

e-xxi/2 |0g X(lx 

7T1/2 

— X 0.03649 . 

J = 3 log I.O64O . 

(77) 

(78) 

Finally, substituting for F*T according to equations (65) and (78) in equation (62) we 
obtain 

Ad2 = 
j2iry*GM*N 

\ 3 / v^i 
- 0-355 

}- 
(79) 

We may note that if we had used the approximation (46) for W {F) (instead of the 
more accurate formula [45]) we should have obtained 

F2T = 
¡2Try*G2M2N Í 

\ 3 / '(2GMj*/D)3 0C(X + l) 
dx (80) 

instead of equation (65). On evaluating the integral on the right-hand side of (80), we 
find 

X”«™. ix '3 log (sw-) ~ ,',,3S ■ ■<8l) 

which should be compared with equation (78). We thus see that approximations based 
on the assumption (43) (or their equivalents) are likely to provide sufficient accuracy for 
most purposes. In particular, the modification of the Holtsmark distribution suggested 
on page 519 to take account of the lack of randomness in stellar distribution in the 
immediate neighborhoods of stars can be justified on these grounds. 

9. The time of relaxation of a stellar system.—An immediate application of the funda- 
mental formula (79) is to the problem of the time of relaxation of a stellar system. Ac- 
cording to the general ideas outlined in I, § 1, we can definite this as the time required for 
A?)2 to become of the same order as v2. Thus, iitn denotes this time, we have 

3/2 

G2M2N 

(^)3/2 

0-355 

(82) 
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We can now compare this formula with that obtained on the basis of the two-body 
idealization of stellar encounters. We have17 

.aw.—ay- 

16 \x/ / Dv2 \ ’ 
G2M‘ni°s(jgm) 

where D is the average distance between the stars.18 We notice that the two equations 
(82) and (83) are of identical forms; further it is found that the numerical factors in the 
two formulae differ only by a factor 1.11. This agreement, while confirming the general 
correctness of our statistical method, exhibits also its immense superiority over the earlier 
treatments of the same problem both in the appropriateness of the physical ideas and in 
the simplicity of the mathematical treatment. 

10. Concluding remarks.—The perfectly natural way in which the solution to the prob- 
lem of the time of relaxation appears on the present theory suggests the extension of these 
methods to solve other problems of stellar dynamics. Thus the evolution of wide binaries 
in a fluctuating gravitational field is a problem to which the principles of the statistical 
theory are particularly well adapted. For, while on the classical methods the treatment 
of this problem would require the analysis of individual encounters considered strictly as 
three-body problems, on the statistical theory all such detailed considerations would be 
eliminated. Again, the application of the fundamental theorem of statistical dynamics 
due to Planck and Fokker19 to problems of stellar dynamics is another field to which the 
method of the present paper can be used. We shall consider these problems in later 
papers. 

In conclusion I wish to record my indebtedness to Messrs. G. Randers and R. E. Wil- 
liamson for valuable discussions. 

Yerkes Observatory 
July 24, 1941 

Note Added in Proof.—Since the foregoing paper was written it has been found possible 
to solve rigorously the question of the half-life treated approximately in section 6. While this 
exact treatment leads to substantially the same results, it enables a more complete visualiza- 
tion of the phenomenon in question. It is hoped to publish these newer results in the near future. 

17 See. S. Chandrasekhar, The Principles of Stellar Dynamics, chap, ii, University of Chicago Press. 
(In Press.) 

18 According to eq. (18), the average distance D between the stars is given by 

fco 
z> = I e-^n/s^irrtNdr 

or, after some elementary reductions, 
J^oo 

e-xx1'idx 
0 

Hence, comparing eqs. (67) and (83), we have 

D = T(i)D = 0.8930D , 

a result due to Hertz (see the reference in n. 8). 
M. Planck, Sitzungsber. der preuss. Akad., p. 324, Berlin, 1917; A. Fokker, Ann. d. Phys., 45, 812, 

I9I4- 

(84) 

(85) 

(86) 

(83) 
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