Sign on

SAO/NASA ADS Astronomy Abstract Service


· Find Similar Abstracts (with default settings below)
· Electronic Refereed Journal Article (HTML)
· Full Refereed Journal Article (PDF/Postscript)
· arXiv e-print (arXiv:1805.03690)
· On-line Data
· References in the article
· Citations to the Article (4) (Citation History)
· Refereed Citations to the Article
· SIMBAD Objects (4)
· Associated Articles
· Also-Read Articles (Reads History)
·
· Translate This Page
Title:
Amplitude and lifetime of radial modes in red giant star spectra observed by Kepler
Authors:
Vrard, M.; Kallinger, T.; Mosser, B.; Barban, C.; Baudin, F.; Belkacem, K.; Cunha, M. S.
Affiliation:
AA(Instituto de Astrofísica e Ciências do Espaço, Universidade do Porto, CAUP, Rua das Estrelas, 4150-762, Porto, Portugal ), AB(Institute for Astrophysics (IfA), University of Vienna, Türkenschanzstrasse 17, 1180, Vienna, Austria), AC(LESIA, CNRS, PSL Research University, Université Pierre et Marie Curie, Université Denis Diderot, Observatoire de Paris, 92195, Meudon Cedex, France), AD(LESIA, CNRS, PSL Research University, Université Pierre et Marie Curie, Université Denis Diderot, Observatoire de Paris, 92195, Meudon Cedex, France), AE(Université Paris-Sud, CNRS, Institut d'Astrophysique Spatiale, UMR 8617, 91405, Orsay Cedex, France), AF(LESIA, CNRS, PSL Research University, Université Pierre et Marie Curie, Université Denis Diderot, Observatoire de Paris, 92195, Meudon Cedex, France), AG(Instituto de Astrofísica e Ciências do Espaço, Universidade do Porto, CAUP, Rua das Estrelas, 4150-762, Porto, Portugal)
Publication:
Astronomy & Astrophysics, Volume 616, id.A94, 12 pp. (A&A Homepage)
Publication Date:
08/2018
Origin:
EDP Sciences
Astronomy Keywords:
asteroseismology, convection, stars: solar-type, stars: evolution, stars: interiors, methods: data analysis
DOI:
10.1051/0004-6361/201732477
Bibliographic Code:
2018A&A...616A..94V

Abstract

Context. The space-borne missions CoRoT and Kepler have provided photometric observations of unprecedented quality. The study of solar-like oscillations observed in red giant stars by these satellites allows a better understanding of the different physical processes occurring in their interiors. In particular, the study of the mode excitation and damping is a promising way to improve our understanding of stellar physics that has, so far, been performed only on a limited number of targets.
Aims: The recent asteroseismic characterization of the evolutionary status for a large number of red giants allows us to study the physical processes acting in the interior of red giants and how they are modified during stellar evolution. In this work, we aim to obtain information on the excitation and damping of pressure modes through the measurement of the stars' pressure mode widths and amplitudes and to analyze how they are modified with stellar evolution. The objective is to bring observational constraints on the modeling of the physical processes behind mode excitation and damping.
Methods: We fit the frequency spectra of red giants with well-defined evolutionary status using Lorentzian functions to derive the pressure mode widths and amplitudes. To strengthen our conclusions, we used two different fitting techniques.
Results: Pressure mode widths and amplitudes were determined for more than 5000 red giants. With a stellar sample two orders of magnitude larger than previous results, we confirmed that the mode width depends on stellar evolution and varies with stellar effective temperature. In addition, we discovered that the mode width depends on stellar mass. We also confirmed observationally the influence of the stellar metallicity on the mode amplitudes, as predicted by models.

The full results are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/616/A94


Associated Articles

Source Paper     Catalog Description    


Bibtex entry for this abstract   Preferred format for this abstract (see Preferences)


Find Similar Abstracts:

Use: Authors
Title
Keywords (in text query field)
Abstract Text
Return: Query Results Return    items starting with number
Query Form
Database: Astronomy
Physics
arXiv e-prints