Sign on

SAO/NASA ADS Astronomy Abstract Service

· Find Similar Abstracts (with default settings below)
· Electronic Refereed Journal Article (HTML)
· Full Refereed Journal Article (PDF/Postscript)
· Full Refereed Scanned Article (GIF)
· References in the article
· Citations to the Article (31) (Citation History)
· Refereed Citations to the Article
· SIMBAD Objects (45)
· NED Objects (38)
· Also-Read Articles (Reads History)
· Translate This Page
Spitzer observations of M33 and the hot star, HII region connection
Rubin, Robert H.; Simpson, Janet P.; Colgan, Sean W. J.; Dufour, Reginald J.; Brunner, Gregory; McNabb, Ian A.; Pauldrach, Adalbert W. A.; Erickson, Edwin F.; Haas, Michael R.; Citron, Robert I.
AA(NASA/Ames Research Center, Moffett Field, CA 94035-1000, USA; Orion Enterprises, MS 245-6, Moffett Field, CA 94035-1000, USA), AB(NASA/Ames Research Center, Moffett Field, CA 94035-1000, USA; SETI Institute, 515 N Whisman Road, Mountain View, CA 94043, USA), AC(NASA/Ames Research Center, Moffett Field, CA 94035-1000, USA), AD(Physics and Astronomy Department, Rice University, MS 61, Houston, TX 77005-1892, USA), AE(Physics and Astronomy Department, Rice University, MS 61, Houston, TX 77005-1892, USA), AF(NASA/Ames Research Center, Moffett Field, CA 94035-1000, USA), AG(University of Munich, Munich D-81679, Germany), AH(NASA/Ames Research Center, Moffett Field, CA 94035-1000, USA), AI(NASA/Ames Research Center, Moffett Field, CA 94035-1000, USA), AJ(NASA/Ames Research Center, Moffett Field, CA 94035-1000, USA)
Monthly Notices of the Royal Astronomical Society, Volume 387, Issue 1, pp. 45-62. (MNRAS Homepage)
Publication Date:
Astronomy Keywords:
stars: atmospheres , ISM: abundances , HII regions , galaxies: individual: M33
Bibliographic Code:


We have observed emission lines of [SIV] 10.51, H(7-6) 12.37, [NeII] 12.81, [NeIII] 15.56 and [SIII] 18.71 mum in a number of extragalactic HII regions with the Spitzer Space Telescope. A previous paper presented our data and analysis for the substantially face-on spiral galaxy M83. Here we report our results for the Local Group spiral galaxy M33. The nebulae selected cover a wide range of galactocentric radii (RG). The observations were made with the Infrared Spectrograph with the short wavelength, high-resolution module. The above set of five lines is observed cospatially, thus permitting a reliable comparison of the fluxes. From the measured fluxes, we determine the ionic abundance ratios including Ne++/Ne+, S3+/S++, and S++/Ne+ and find that there is a correlation of increasingly higher ionization with larger RG. By sampling the dominant ionization states of Ne (Ne+, Ne++) and S (S++, S3+) for HII regions, we can estimate the Ne/H, S/H and Ne/S ratios. We find from linear least-squares fits that there is a decrease in metallicity with increasing RG: dlog(Ne/H)/dRG = -0.058 +/- 0.014 and dlog(S/H)/dRG = -0.052 +/- 0.021 dex kpc-1. There is no apparent variation in the Ne/S ratio with RG. Unlike our previous similar study of M83, where we conjectured that this ratio was an upper limit, for M33 the derived ratios are likely a robust indication of Ne/S. This occurs because the HII regions have lower metallicity and higher ionization than those in M83. Both Ne and S are primary elements produced in alpha-chain reactions, following C and O burning in stars, making their yields depend very little on the stellar metallicity. Thus, it is expected that the Ne/S ratio remains relatively constant throughout a galaxy. The median (average) Ne/S ratio derived for HII regions in M33 is 16.3 (16.9), just slightly higher than the Orion Nebula value of 14.3. The same methodology is applied to Spitzer observations recently published for three massive HII regions: NGC 3603 (Milky Way), 30 Dor (LMC) and N 66 (SMC) as well as for a group of blue compact dwarf galaxies. We find median Ne/S values of 14.6, 11.4, 10.1, and 14.0, respectively. All of these values are in sharp contrast with the much lower `canonical', but controversial, solar value of ~5. A recent nucleosynthesis, galactic chemical evolution model predicts an Ne/S abundance of ~9. Our observations may also be used to test the predicted ionizing spectral energy distribution of various stellar atmosphere models. We compare the ratio of fractional ionizations <Ne++>/<S++>, <Ne++>/<S3+>, and <Ne++>/<Ne+> versus <S3+>/<S++> with predictions made from our photoionization models using several of the state-of-the-art stellar atmosphere model grids. The trends of the ionic ratios established from the prior M83 study are remarkably similar, but continued to higher ionization with the present M33 objects.

Printing Options

Print whole paper
Print Page(s) through

Return 600 dpi PDF to Acrobat/Browser. Different resolutions (200 or 600 dpi), formats (Postscript, PDF, etc), page sizes (US Letter, European A4, etc), and compression (gzip,compress,none) can be set through the Printing Preferences

More Article Retrieval Options

HELP for Article Retrieval

Bibtex entry for this abstract   Preferred format for this abstract (see Preferences)

Find Similar Abstracts:

Use: Authors
Keywords (in text query field)
Abstract Text
Return: Query Results Return    items starting with number
Query Form
Database: Astronomy
arXiv e-prints