Sign on

SAO/NASA ADS Astronomy Abstract Service


· Find Similar Abstracts (with default settings below)
· Electronic Refereed Journal Article (HTML)
· Full Refereed Journal Article (PDF/Postscript)
· arXiv e-print (arXiv:1711.11039)
· References in the article
· Citations to the Article (5) (Citation History)
· Refereed Citations to the Article
· Also-Read Articles (Reads History)
·
· Translate This Page
Title:
Similar star formation rate and metallicity variability time-scales drive the fundamental metallicity relation
Authors:
Torrey, Paul; Vogelsberger, Mark; Hernquist, Lars; McKinnon, Ryan; Marinacci, Federico; Simcoe, Robert A.; Springel, Volker; Pillepich, Annalisa; Naiman, Jill; Pakmor, Rüdiger; Weinberger, Rainer; Nelson, Dylan; Genel, Shy
Affiliation:
AA(MIT Kavli Institute for Astrophysics & Space Research, Cambridge, MA 02139, USA), AB(MIT Kavli Institute for Astrophysics & Space Research, Cambridge, MA 02139, USA), AC(Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA), AD(MIT Kavli Institute for Astrophysics & Space Research, Cambridge, MA 02139, USA 0000-0001-9018-1180), AE(MIT Kavli Institute for Astrophysics & Space Research, Cambridge, MA 02139, USA 0000-0003-3816-7028), AF(MIT Kavli Institute for Astrophysics & Space Research, Cambridge, MA 02139, USA), AG(Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg 35, D-69118 Heidelberg, Germany; Zentrum für Astronomie der Universität Heidelberg, ARI, Mönchhofstr. 12-14, D-69120 Heidelberg, Germany; Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str 1, D-85741 Garching, Germany), AH(Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg, Germany), AI(Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA), AJ(Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg 35, D-69118 Heidelberg, Germany), AK(Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg 35, D-69118 Heidelberg, Germany), AL(Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str 1, D-85741 Garching, Germany), AM(Center for Computational Astrophysics, Flatiron Institute, 162 Fifth Avenue, New York, NY 10010, USA; Columbia Astrophysics Laboratory, Columbia University, 550 West 120th Street, New York, NY 10027, USA 0000-0002-3185-1540)
Publication:
Monthly Notices of the Royal Astronomical Society: Letters, Volume 477, Issue 1, p.L16-L20 (MNRAS Homepage)
Publication Date:
06/2018
Origin:
OUP
Astronomy Keywords:
galaxies: evolution, galaxies: general
Abstract Copyright:
2018 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society
DOI:
10.1093/mnrasl/sly031
Bibliographic Code:
2018MNRAS.477L..16T

Abstract

The fundamental metallicity relation (FMR) is a postulated correlation between galaxy stellar mass, star formation rate (SFR), and gas-phase metallicity. At its core, this relation posits that offsets from the mass-metallicity relation (MZR) at a fixed stellar mass are correlated with galactic SFR. In this Letter, we use hydrodynamical simulations to quantify the time-scales over which populations of galaxies oscillate about the average SFR and metallicity values at fixed stellar mass. We find that Illustris and IllustrisTNG predict that galaxy offsets from the star formation main sequence and MZR oscillate over similar time-scales, are often anticorrelated in their evolution, evolve with the halo dynamical time, and produce a pronounced FMR. Our models indicate that galaxies oscillate about equilibrium SFR and metallicity values - set by the galaxy's stellar mass - and that SFR and metallicity offsets evolve in an anticorrelated fashion. This anticorrelated variability of the metallicity and SFR offsets drives the existence of the FMR in our models. In contrast to Illustris and IllustrisTNG, we speculate that the SFR and metallicity evolution tracks may become decoupled in galaxy formation models dominated by feedback-driven globally bursty SFR histories, which could weaken the FMR residual correlation strength. This opens the possibility of discriminating between bursty and non-bursty feedback models based on the strength and persistence of the FMR - especially at high redshift.
Bibtex entry for this abstract   Preferred format for this abstract (see Preferences)


Find Similar Abstracts:

Use: Authors
Title
Keywords (in text query field)
Abstract Text
Return: Query Results Return    items starting with number
Query Form
Database: Astronomy
Physics
arXiv e-prints