Sign on

SAO/NASA ADS Astronomy Abstract Service


· Find Similar Abstracts (with default settings below)
· Electronic Refereed Journal Article (HTML)
· Full Refereed Journal Article (PDF/Postscript)
· arXiv e-print (arXiv:1805.07157)
· References in the article
· Citations to the Article (1) (Citation History)
· Refereed Citations to the Article
· SIMBAD Objects (8)
· Also-Read Articles (Reads History)
·
· Translate This Page
Title:
Hubble Tarantula Treasury Project - VI. Identification of pre-main-sequence stars using machine-learning techniques
Authors:
Ksoll, Victor F.; Gouliermis, Dimitrios A.; Klessen, Ralf S.; Grebel, Eva K.; Sabbi, Elena; Anderson, Jay; Lennon, Daniel J.; Cignoni, Michele; de Marchi, Guido; Smith, Linda J.; Tosi, Monica; van der Marel, Roeland P.
Affiliation:
AA(Institut für Theoretische Astrophysik, Zentrum für Astronomie der Universität Heidelberg, Albert-Ueberle-Str 2, D-69120 Heidelberg, Germany; Interdisciplinary Center for Scientific Computing, University of Heidelberg, Mathematikon, Im Neuenheimer Feld 205, D-69120 Heidelberg, Germany), AB(Institut für Theoretische Astrophysik, Zentrum für Astronomie der Universität Heidelberg, Albert-Ueberle-Str 2, D-69120 Heidelberg, Germany; Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg, Germany 0000-0002-2763-0075), AC(Institut für Theoretische Astrophysik, Zentrum für Astronomie der Universität Heidelberg, Albert-Ueberle-Str 2, D-69120 Heidelberg, Germany), AD(Astronomisches Rechen-Institut, Zentrum für Astronomie der Universität Heidelberg, Mönchhofstr 12-14, D-69120 Heidelberg, Germany), AE(Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA), AF(Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA), AG(ESA - European Space Astronomy Center, Apdo. de Correo 78, E-28691 Associate Villanueva de la Caada, Madrid, Spain), AH(Department of Physics, University of Pisa, Largo Pontecorvo 3, I-56127 Pisa, Italy 0000-0001-6291-6813), AI(European Space Research and Technology Centre, Keplerlaan 1, NL-2200 AG Noordwijk, the Netherlands), AJ(European Space Agency and Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA), AK(INAF-Osservatorio Astronomico di Bologna, Via Ranzani 1, I-40127 Bologna, Italy), AL(Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA)
Publication:
Monthly Notices of the Royal Astronomical Society, Volume 479, Issue 2, p.2389-2414 (MNRAS Homepage)
Publication Date:
09/2018
Origin:
OUP
Astronomy Keywords:
methods: data analysis, methods: statistical, Hertzsprung-Russell and colour-magnitude diagrams, stars: pre-main-sequence, Magellanic Clouds, galaxies: star clusters: individual: NGC2060, NGC2070
Abstract Copyright:
2018 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society
DOI:
10.1093/mnras/sty1317
Bibliographic Code:
2018MNRAS.479.2389K

Abstract

The Hubble Tarantula Treasury Project (HTTP) has provided an unprecedented photometric coverage of the entire starburst region of 30 Doradus down to the half Solar mass limit. We use the deep stellar catalogue of HTTP to identify all the pre-main-sequence (PMS) stars of the region, i.e. stars that have not started their lives on the main-sequence yet. The photometric distinction of these stars from the more evolved populations is not a trivial task due to several factors that alter their colour-magnitude diagram positions. The identification of PMS stars requires, thus, sophisticated statistical methods. We employ machine-learning classification techniques on the HTTP survey of more than 800 000 sources to identify the PMS stellar content of the observed field. Our methodology consists of (1) carefully selecting the most probable low-mass PMS stellar population of the star-forming cluster NGC 2070, (2) using this sample to train classification algorithms to build a predictive model for PMS stars, and (3) applying this model in order to identify the most probable PMS content across the entire Tarantula Nebula. We employ decision tree, random forest (RF), and support vector machine (SVM) classifiers to categorize the stars as PMS and non-PMS. The RF and SVM provided the most accurate models, predicting about 20 000 sources with a candidateship probability higher than 50 per cent, and almost 10 000 PMS candidates with a probability higher than 95 per cent. This is the richest and most accurate photometric catalogue of extragalactic PMS candidates across the extent of a whole star-forming complex.
Bibtex entry for this abstract   Preferred format for this abstract (see Preferences)


Find Similar Abstracts:

Use: Authors
Title
Keywords (in text query field)
Abstract Text
Return: Query Results Return    items starting with number
Query Form
Database: Astronomy
Physics
arXiv e-prints