Sign on
ADS Classic is now deprecated. It will be completely retired in October 2019. Please redirect your searches to the new ADS modern form or the classic form. More info can be found on our blog.

SAO/NASA ADS Astronomy Abstract Service

· Find Similar Abstracts (with default settings below)
· Full Refereed Journal Article (PDF/Postscript)
· Full Refereed Scanned Article (GIF)
· References in the article
· Citations to the Article (160) (Citation History)
· Refereed Citations to the Article
· SIMBAD Objects (35)
· NED Objects (34)
· Also-Read Articles (Reads History)
· Translate This Page
The Atmospheres of Type II Supernovae and the Expanding Photosphere Method
Eastman, Ronald G.; Schmidt, Brian P.; Kirshner, Robert
Astrophysical Journal v.466, p.911 (ApJ Homepage)
Publication Date:
Astronomy Keywords:
Bibliographic Code:


The Expanding Photosphere Method (EPM) determines distances to Type II supernova (SNe II) by comparing the photospheric angular size with the expansion velocity measured from spectral lines. The photospheres of SNe II are low density and are dominated by electron scattering, and consequently the photospheric flux is dilute relative to a Planck function at the best-fitting continuum color temperature. The reliability of EPM distances depends on understanding bow the dilution is related to physical properties of the supernova atmosphere. To study this, we have calculated 63 different model atmospheres relevant to SNe II. The excitation, ionization, and thermal structure are described for the case of high effective temperature in which the atmosphere is completely ionized, and for the case of cooler effective temperatures in which the photosphere is formed in a region of recombining hydrogen. The general spectral features of both cases are discussed. We explore how the computed spectrum changes with density structure, helium abundance, metallicity, expansion rate, and luminosity or effective temperature. The most important variable in determining spectral appearance is the effective temperature. The amount by which the emergent flux is dilute relative to the best-fitting blackbody depends on a number of factors, most important of which are the temperature and, in short-wavelength bandpasses, density at the photosphere. For each of the models we derive distance correction factors for application in EPM, using the four filter combinations {BV}, {VI_c_}, {BVI_c_}, and {JHK}. The main differences may be expressed in terms of the observable color temperature and a slowly varying dependence on density. Functional fits to the distance correction factor are provided which can be used to estimate the photospheric angular size from broadband photometry. The effect of uncertain dust extinction on angular size is shown to be small. This work places EPM on a firm theoretical foundation and substantiates the Hubble constant measurement by Schmidt et al. of H_0_ = 73 +/- 7.

Printing Options

Print whole paper
Print Page(s) through

Return 600 dpi PDF to Acrobat/Browser. Different resolutions (200 or 600 dpi), formats (Postscript, PDF, etc), page sizes (US Letter, European A4, etc), and compression (gzip,compress,none) can be set through the Printing Preferences

More Article Retrieval Options

HELP for Article Retrieval

Bibtex entry for this abstract   Preferred format for this abstract (see Preferences)

Find Similar Abstracts:

Use: Authors
Keywords (in text query field)
Abstract Text
Return: Query Results Return    items starting with number
Query Form
Database: Astronomy
arXiv e-prints